首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulating evidence supports a role of chemokines and their receptors in brain function. Up to now scarce evidence has been given of the neuroanatomical distribution of chemokine receptors. Although it is widely accepted that chemokine receptors are present on glial cells, especially in pathological conditions, it remains unclear whether they are constitutively present in normal rat brain and whether neurons have the potential to express such chemokine receptors. CXCR4, a G protein-coupled receptor for the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) was reported to have possible implications in brain development and AIDS-related dementia. By dual immunohistochemistry on brain sections, we clearly demonstrate that CXCR4 is constitutively expressed in adult rat brain, in glial cells (astrocytes, microglia but not oligodendrocytes) as well as in neurons. Neuronal expression of CXCR4 is mainly found in cerebral cortex, caudate putamen, globus pallidus, substantia innominata, supraoptic and paraventricular hypothalamic nuclei, ventromedial thalamic nucleus and substantia nigra. Using confocal microscopy, a differential distribution of CXCR4 in neuronal perikarya and dendrites can be observed according to the brain structure. Furthermore, this work demonstrates for the first time the coexistence of a chemokine receptor with classical neurotransmitters. A localization of CXCR4 is thus observed in neuronal cell bodies expressing choline acetyltransferase-immunoreactivity in the caudate putamen and substantia innominata, as well as in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. In conclusion, the constitutive neuronal CXCR4 expression suggests that SDF-1/CXCL12 could be involved in neuronal communication and possibly linked up with cholinergic and dopaminergic neurotransmission and related disorders.  相似文献   

2.
3.
Chemokines and their receptors are well described in the immune system, where they promote cell migration and activation. In the central nervous system, chemokine has been implicated in neuroinflammatory processes. However, an increasing number of evidence suggests that they have regulatory functions in the normal nervous system, where they could participate in cell communication. In this work, using a semiquantitative immunohistochemistry approach, we provide the first neuroanatomical mapping of constitutive neuronal CCR2 localization. Neuronal expression of CCR2 was observed in the anterior olfactory nucleus, cerebral cortex, hippocampal formation, caudate putamen, globus pallidus, supraoptic and paraventricular hypothalamic nuclei, amygdala, substantia nigra, ventral tegmental area, and in the brainstem and cerebellum. These data are largely in accordance with results obtained using quantitative autoradiography with [(125)I]MCP-1/CCL2 and RT-PCR CCR2 mRNA analysis. Furthermore, using dual fluorescent immunohistochemistry we studied the chemical phenotype of labeled neurons and demonstrated the coexistence of CCR2 with classical neurotransmitters. Indeed, localization of CCR2 immunostaining is observed in dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area as well as in cholinergic neurons in the substantia innominata and caudate putamen. Finally, we show that the preferential CCR2 ligand, MCP-1/CCL2, elicits Ca(2+) transients in primary cultured neurons from various rat brain regions including the cortex, hippocampus, hypothalamus, and mesencephalon. In conclusion, the constitutive neuronal CCR2 expression in selective brain structures suggests that this receptor could be involved in neuronal communication and possibly associated with cholinergic and dopaminergic neurotransmission and related disorders.  相似文献   

4.
5.
百草枯对小鼠黑质多巴胺能神经元的选择性损害   总被引:2,自引:2,他引:0  
目的:探讨百草枯对黑质部多巴胺能神经元的损害是否具有选择性。方法:用口服百草枯的途径,建立小鼠帕金森病模型;应用原位杂交技术观察DAT和VMAT2在不同脑区的mRNA表达水平并测定两者的比值,采用细胞计数观察百草枯干预后多巴胺能神经元的损害。结果:在黑质部DATmRNA和VMAT2mRNA的比值最高;在红核和下丘脑室旁核区域DATmRNA与VMAT2mRNA的比值和黑质部相比较低(P<0·01)。百草枯干预后黑质部的多巴胺能神经元减少37·7%;红核和下丘脑室旁核区的多巴胺能神经元分别减少12·2%和13·1%。结论:百草枯对黑质部多巴胺能神经元的损害具有相对选择性,其原因可能与黑质部DATmRNA和VMAT2mRNA的比值高有关。  相似文献   

6.
It has been suggested that cholinergic neurons in the hypothalamic supraoptic and paraventricular nuclei mediate the release of vasopressin due to osmotic stimuli in the rat. Therefore, in the present experiments the effect of a chronic osmotic stimulus on the activity of cholineacetyltransferase in these and other brain nuclei was studied.Replacement of drinking water with 2 percent saline for up to 2 weeks significantly decreased the activity of cholineacetyltransferase in the supraoptic, paraventricular and arcuate nucleus, but not in other nuclei investigated.These results are consistent with the hypothesis that cholinergic neurons are involved in the osmotically-induced stimulation of vasopressin release.  相似文献   

7.
Dopaminergic neurons of the substantia nigra constitutively express the CXCR4 receptor for the chemokine stromal-cell-derived factor 1α (CXCL12) but, to date, no direct effect of CXCR4 activation by CXCL12 on membrane conductance of dopaminergic neurons has been demonstrated. We tested the effects of CXCL12 on whole-cell currents of dopaminergic neurons recorded in patch clamp in substantia nigra slices and showed that CXCL12 (0.01–10 n m ) increased the amplitude of total high-voltage-activated (HVA) Ca currents through CXCR4 activation. This effect was reversibly reduced by ϖ-conotoxin-GVIA, suggesting that CXCL12 acted on N-type Ca currents, known to be involved in dopamine (DA) release. We therefore investigated the effects of CXCL12 on DA release from cultured dopaminergic neurons from the rat mesencephalon. In basal conditions, CXCL12 alone had no effect on DA release. When neurons were depolarized with KCl (20 m m ), and thus when HVA Ca currents were activated, low CXCL12 concentrations (1–50 n m ) increased DA release via CXCR4 stimulation. These data strongly suggest that the chemokine CXCL12 can act directly as a neuromodulator of dopaminergic neuronal electrical activity through the modulation of HVA currents.  相似文献   

8.
Previous observations indicate that the basal forebrain receives dopaminergic input from the ventral midbrain. The present study aimed at determining the topographic organization of these projections in the rat, and whether this input directly terminates on cholinergic neurons. Injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) into discrete parts of the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNC) labeled axons and terminals in distinct parts of the basal forebrain, including medial and lateral septum, diagonal band nuclei, ventral pallidum, globus pallidus, substantia innominata, globus pallidus, and internal capsule, where PHA-L-labeled terminals abutted cholinergic (choline acetyltransferase=ChAT-containing) profiles. Three—dimensional (3-D) computerized reconstruction of immunostained sections clearly revealed distinct, albeit overlapping, subpopulations of ChAT-immunoreactive neurons apposed by PHA-L-labeled input from medial VTA (mainly in vertical and horizontal diagonal band nuclei), lateral VTA and medial SNC (ventral pallidum and anterior half of substantia innominata), and lateral SNC (caudal half of the substantia innominata and globus pallidus). At the ultrastructural level, about 40% of the selected PHA-L-labeled presynaptic terminals in the ventral pallidum and substantia innominata were found to establish synaptic specializations with ChAT-containing profiles, most of which on the cell body and proximal dendritic shafts. Convergent synaptic input of unlabeled terminals that formed asymmetric synapses with the ChAT-immunoreactive profiles were often found in close proximity to the PHA-L-labeled terminals. These observations show that the cholinergic neurons in the basal forebrain are targets of presumably dopaminergic SNC/VTA neurons, and suggest a direct modulatory role of dopamine in acetylcholine release in the cerebral cortical mantle. © 1996 Wiley-Liss, Inc.  相似文献   

9.
We have investigated the distribution of vasopressin binding sites in the brain of male and female adult mice using a radio-iodinated ligand and film autoradiography. Vasopressin receptors were uncovered in various regions of the brain including the basal nucleus of Meynert, the substantia innominata, the hypothalamic paraventricular nucleus, the substantia nigra pars compacta and the hypoglossal nucleus. A sex-related difference in the expression of vasopressin receptors was seen in the medial preoptic area/anterior hypothalamus corresponding to the rat sexually dimorphic nucleus in the rat and in the hypothalamic mammillary nuclei. In both structures the autoradiographic labeling is more intense in females than in males. These observations confirm that vasopressin binding sites are present in the hypothalamic preoptic area of most species examined so far and that sex-related expression of neuropeptide receptors could trigger sex-related behavioral differences.  相似文献   

10.
Prolactin (PRL) exerts numerous effects in the brain including induction of maternal behaviour, increased food intake, and inhibition of GnRH secretion. Knowledge about the distribution of PRL receptors (PRL-R) in the brain will be critical for investigating mechanisms of PRL-brain interactions during lactation. The present study aimed to investigate the distribution of PRL-R in specific hypothalamic nuclei of lactating rats by immunohistochemistry and to compare this distribution with that in dioestrous rats. Rats were perfused with 2% paraformaldehyde and brains were cut into coronal sections (18 microm) for immunostaining. Immunoreactivity was detected by the avidin biotin complex method using mouse monoclonal antibody U5. In dioestrous rats, PRL-R immunoreactivity was observed in the choroid plexus, three hypothalamic nuclei: medial preoptic, periventricular and arcuate, and in the median eminence. The number of labelled profiles per section in the medial preoptic and arcuate nuclei increased significantly (P<0.05) in lactating rats (days 7-10 to post partum) when compared with dioestrous rats. Furthermore, in lactating rats, PRL-R immunoreactive neurons were identified in the cerebral cortex, substantia nigra and numerous additional hypothalamic nuclei including the ventromedial preoptic, ventrolateral preoptic, lateroanterior hypothalamic, ventrolateral hypothalamic, paraventricular hypothalamic, supraoptic, suprachiasmatic, and ventromedial hypothalamic nuclei. These observations assist our understanding of the multiple sites of PRL effects on brain function during lactation.  相似文献   

11.
Although caffeine is the most widely used central nervous system stimulant, the neuronal populations and pathways mediating its stimulant effects are not well understood. Using c-Fos protein as a marker for neuronal activation, the present study investigated the pattern of c-Fos induction at 2 hours after low locomotor-stimulant doses (1, 5, 10, and 30 mg/kg, i.p.) of caffeine and compared them with those after a higher dose (75 mg/kg, i.p.) or saline injection in adult male rats. Fos-immunoreactive neurons were counted in selected nuclei across the entire brain. Caffeine induced an increase in locomotor activity in a dose-dependent manner up to doses of 30 mg/kg and a decline at 75 mg/kg. Quantitative analysis of Fos-immunoreactive neurons indicated that no structures showed significant Fos expression at doses below 75mg/kg or a biphasic pattern of Fos expression, as in locomotion. In contrast, caffeine at 75 mg/kg induced a significant increase compared with the saline condition in the number of Fos-immunoreactive neurons in the majority of structures examined. The structures included the striatum, nucleus accumbens, globus pallidus, and substantia nigra pars reticulata and autonomic and limbic structures including the basolateral and central nuclei of the amygdala, paraventricular and supraoptic hypothalamic nuclei, periventricular hypothalamus, paraventricular thalamic nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract. The locomotor-enhancing effects of low doses of caffeine did not appear to be associated with significant Fos expression in the rat brain. J. Comp. Neurol. 401:89–108, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The immunohistochemical localization of monoamine oxidase-B in normal cat brain was examined. The enzyme was localized in both neural and nonneural elements of the cat brain. Neurons in the hypothalamus (lateral, dorsal, ventromedial, dorsomedial, and supraoptic nuclei), raphe system, dorsal tegmental nucleus, locus ceruleus, K?lliker-Fuse nucleus, dorsal parabrachial region, and central tegmental field were positive. No substantia nigra pars compacta, retrorubral, or ventral tegmental neurons stained positively. Glial cells (astrocytes) stained positively for monoamine oxidase-B in many regions of the central nervous system, however, there was a significantly greater number of monoamine oxidase-B-positive glial cells in the substantia nigra pars compacta than in other adjacent dopaminergic regions. Because nigra compacta neurons are specifically damaged by the neurotoxin MPTP and because the toxicity of the drug is expressed only in the presence of monoamine oxidase-B, it is possible that the preferential loss of substantia nigra pars compacta neurons in the cat brain may be related to the regional and cellular localization of monoamine oxidase-B.  相似文献   

13.
Using a double immunostaining technique with cholera toxin (CT) as a retrograde tracer, we examined the cells of origin and the histochemical nature of afferents to the cat posterior hypothalamus. After injection in the tuberomamillary nucleus, a number of CT-labeled cells were observed in: medial preoptic area, nuclei of the septum and the stria terminalis, amygdaloid complex, anterior hypothalamic, ventromedial hypothalamic and premamillary nuclei. CT injections in the lateral hypothalamic area gave an additional heavy labeling of neurons in: lateral preoptic area, nuclei of the diagonal band of Broca, substantia innominata, and nucleus accumbens. The posterior hypothalamus receives: 1) cholinergic inputs from the septum, the lateral preoptic area and the nuclei of the diagonal band of Broca; 2) dopaminergic afferents from A11, A13, and A14 groups; 3) histaminergic afferents from the posterior hypothalamus; and 4) peptidergic afferents such as methionin-enkephalin, galanin and neurotensin, substance P and corticotropin-releasing factor from the medial preoptic area, the nucleus of the stria terminalis and/or the posterior hypothalamic structures.  相似文献   

14.
The distribution of immunoreactive (ir)-metorphamide (adrenorphin) in 101 microdissected rat brain and spinal cord regions was determined using a highly specific radioimmunoassay. The highest concentration of metorphamide in brain was found in globus pallidus (280.1 fmol/mg protein). High concentrations of ir-metorphamide (>120 fmol/mg protein) were found in 9 nuclei, including central amygdaloid nucleus, lateral preoptic area, anterior hypothalamic nucleus, hypothalamic paraventricular nucleus, interpeduncular nucleus, periaqueductal grey matter and nucleus of the solitary tract. Moderate concentrations of the peptide (between 60 and 120 fmol/mg protein) were found in 47 brain nuclei such as nucleus accumbens, bed nucleus of stria terminalis, several septal and amygdaloid nuclei, most of the hypothalamic nuclei, ventral tegmental area, red nucleus, raphe nuclei, lateral reticular nucleus, area postrema and others. Low concentrations or ir-metorphamide (<60 fmol/mg protein) were measured in 41 nuclei, e.g., cortical structures, hippocampus, caudate nucleus, thalamic nuclei, supraoptic nucleus, substantia nigra, vestibular nuclei, cerebellum (nuclei and cortex). The olfactory bulb has the lowest metorphamide concentration (5.8 fmol/mg protein). Spinal cord segments exhibit very low peptide concentrations.  相似文献   

15.
A cDNA encoding a GABA(A) receptor subunit was isolated from rat brain. The predicted protein is 70% identical to the human epsilon-subunit. It was recently reported [Sinkkonen et al. (2000), J. Neurosci., 20, 3588-3595] that the rodent epsilon-subunit mRNA encoded an additional sequence ( approximately 400 residues). We provide evidence that human and rat epsilon-subunit are similar in size. The distribution of cells expressing the GABA(A) epsilon-subunit was examined in the rat brain. In situ hybridization histochemistry revealed that epsilon-subunit mRNA is expressed by neurons located in septal and preoptic areas, as well as in various hypothalamic nuclei, including paraventricular, arcuate, dorsomedial and medial tuberal nuclei. The mRNA was also detected in major neuronal groups with broad-range influence, such as the cholinergic (basal nucleus), dopaminergic (substantia nigra compacta), serotonergic (raphe nuclei), and noradrenergic (locus coeruleus) systems. Immunohistochemistry using an affinity-purified antiserum directed towards the N-terminal sequence unique to the rat epsilon-subunit revealed the presence of epsilon-subunit immunoreactivity over the somatodendritic domain of neurons with a distribution closely matching that of mRNA-expressing cells. Moreover, using in situ hybridization, alpha3, theta and epsilon GABA(A) subunit mRNAs were all detected with an overlapping distribution in neurons of the dorsal raphe and the locus coeruleus. Our results suggest that novel GABA(A) receptors may regulate, neuroendocrine and modulatory systems in the brain.  相似文献   

16.
The localization of glial cell line-derived neurotrophic factor (GDNF) family receptor alpha-1 (GFRalpha-1) was investigated in rat brain by immunohistochemistry using a polyclonal antibody against a specific sequence of the rat protein. For raising the antisera in rabbits, we synthesized the oligopeptide SDVFQQVEHISKGN that corresponds to residues 139 to 152 of rat GFRalpha-1. On immunospot assay, 0.5 microg/ml of an affinity-purified antibody was capable of detecting 7.8 pmol of the rat GFRalpha-1 oligopeptides. When rat brain homogenates were examined by Western blots, the antibody revealed two main bands with molecular weights of approximately 47 kDa and 53 kDa, corresponding to the known sizes of GFRalpha-1. Immunohistochemistry in rat brain demonstrated that GFRalpha-1-like immunoreactivity was present in neurons but not in glial cells. The localization of GFRalpha-1-like immunoreactivity was largely consistent with that of the corresponding GFRalpha-1 mRNA. Positive neurons were distributed widely in various brain regions, but were particularly abundant in such regions as the olfactory bulb, diagonal band, substantia innominata, zona incerta, substantia nigra, cerebellar cortex, nuclei of the cranial nerves including auditory system and spinal motoneurons. The present study showed that GFRalpha-1 in the normal central nervous system is expressed preferentially in certain multiple neuronal systems that include cholinergic system as well as dopaminergic system and motor neurons. As GFRalpha-1 protein was found in numerous brain structures, GDNF family ligands may have therapeutic application not only in degenerative diseases affecting in specific nervous systems, such as Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy, but in diffusely damaging diseases like cerebrovascular diseases.  相似文献   

17.
The distribution of immunoreactive (ir)-metorphamide (adrenorphin) in 101 microdissected rat brain and spinal cord regions was determined using a highly specific radioimmunoassay. The highest concentration of metorphamide in brain was found in globus pallidus (280.1 fmol/mg protein). High concentrations of ir-metorphamide (greater than 120 fmol/mg protein) were found in 9 nuclei, including central amygdaloid nucleus, lateral preoptic area, anterior hypothalamic nucleus, hypothalamic paraventricular nucleus, interpeduncular nucleus, periaqueductal grey matter and nucleus of the solitary tract. Moderate concentrations of the peptide (between 60 and 120 fmol/mg protein) were found in 47 brain nuclei such as nucleus accumbens, bed nucleus of stria terminalis, several septal and amygdaloid nuclei, most of the hypothalamic nuclei, ventral tegmental area, red nucleus, raphe nuclei, lateral reticular nucleus, area postrema and others. Low concentrations or ir-metorphamide (less than 60 fmol/mg protein) were measured in 41 nuclei, e.g., cortical structures, hippocampus, caudate nucleus, thalamic nuclei, supraoptic nucleus, substantia nigra, vestibular nuclei, cerebellum (nuclei and cortex). The olfactory bulb has the lowest metorphamide concentration (5.8 fmol/mg protein). Spinal cord segments exhibit very low peptide concentrations.  相似文献   

18.
Axonal projections from hypothalamic nuclei to the basal forebrain, and their relation to cholinergic projection neurons in particular, were studied in the rat by using the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in combination with choline acetyltransferase (ChAT) immunocytochemistry. Discrete iontophoretic PHA-L injections were delivered to different portions of the caudal lateral hypothalamus, as well as to various medial hypothalamic areas, including the ventromedial, dorsomedial, and paraventricular nuclei, and anterior hypothalamic and medial preoptic areas. The simultaneous detection of PHA-L-labeled fibers/terminals and ChAT-positive neurons was performed by using nickel-enhanced diaminobenzidine (DAB) and nonenhanced DAB as chromogens. Selected cases were investigated at the electron microscopic level. Ascending hypothalamic projections maintained an orderly lateromedial arrangement within the different components of the medial forebrain bundle, as well as with respect to their terminal projection fields (e.g., within the bed nucleus of the stria terminalis and lateral septal nucleus). The distribution pattern of hypothalamic inputs to cholinergic projection neurons corresponded to the topography of ascending hypothalamic axons. Axons originating from neurons in the far-lateral hypothalamus reached cholinergic neurons in a zone that extended from the dorsal part of the sublenticular substantia innominata (SI) caudolaterally, to the lateral portion of the bed nucleus of the stria terminalis rostromedially, encompassing a narrow band along the ventral part of the globus pallidus and medial portion of the internal capsule. Axons originating from cells in the medial portion of the lateral hypothalamus reached cholinergic cells primarily in more medial and ventral parts of the SI, and in the magnocellular preoptic nucleus and horizontal limb of the diagonal band nucleus (HDB). Axons from medial hypothalamic cells appeared to contact cholinergic neurons primarily in the medial part of the HDB, and in the medial septum/vertical limb of the diagonal band complex. Electron microscopic double-labeling experiments confirmed contacts between labeled terminals and cholinergic cells in the HDB and SI. Individual hypothalamic axons established synapses with both cholinergic and noncholinergic neuronal elements in the same regions. These findings have important implications for our understanding of the organization of afferents to the basal forebrain cholinergic projection system.  相似文献   

19.
The biochemical consequences of a unilateral 6-hydroxydopamine injection into the substantia nigra of the rat brain were investigated. Projections of dopaminergic neurons from the A8-A9-A10 regions to a number of forebrain areas were confirmed. No innervation to the hypothalamus, including the median eminence, or to the brain stem, could be found with the present techniques. No destruction of serotonergic or GABAergic fibers could be demonstrated in the lesioned substantia nigra. Increases in glutamic acid decarboxylase activity were found restricted to the caudate and zona compacta of the substantia nigra ipsilateral to the lesion, indicating the possibility of a physiological interaction between GABAergic and dopaminergic systems.The neuroanatomical localization of the nigral dopamine-sensitive adenylate cyclase was also studied. No change in enzyme activity was found after destruction of a great proportion of the dopaminergic cells, suggesting that this enzyme has an extradopaminergic localization in the substantia nigra.  相似文献   

20.
Numerous studies have implicated opioids in the regulation of hypothalamic functions. Dynorphin, which is co-expressed with vasopressin in the magnocellular neurons of the paraventricular and supraoptic nuclei, is co-regulated with vasopressin in response to hyperosmolality and appears to inhibit vasopressin and oxytocin release from the posterior pituitary. Enkephalin is present in paraventricular parvocellular neurons and its expression is elevated in response to various stresses. However, enkephalin's presence and roles in paraventricular and supraoptic magnocellular neurons are uncertain. By giving rats daily intraperitoneal injections of hypertonic saline for up to 12 days, we induced a marked increase in enkephalin expression in magnocellular neurons of the paraventricular and supraoptic nuclei, beyond what develops from drinking hypertonic saline. Our results suggest that enkephalin expression in both vasopressin and oxytocin neurons may increase in response to chronic stresses and provide another source of enkephalin in addition to the parvocellular neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号