首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Introduction: Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so‐called fast‐twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow‐twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. Methods: We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. Results: Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. Conclusions: Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow‐ and fast‐twitch muscles. Muscle Nerve 55 : 400–409, 2017  相似文献   

5.
6.
The dystrophin-deficient mdx mouse presents muscle fiber necrosis but active muscle regeneration, probably due to an extensive recruitment of myogenic regulatory factors (MRF), several growth factors and cytokines, and favorable interaction of satellite cells. In contrast, the laminin α2 (merosin)-deficient dy mouse shows progressive muscle fiber necrosis and ineffective muscle regeneration. Using Western blot and immunohistochemical analyses, we investigated the adaptive changes in MRF, growth factors and cytokines and their receptors in the muscles of dy mice during postnatal growth. The relative volume of MyoD, myogenin and Myf-5 proteins was markedly lower in the gastrocnemius and rectus femoris muscles of dy mice. Transforming growth factor-β2, leukemia inhibitory factor (LIF) and basic fibroblast growth factor were not up-regulated in the muscles of dy mice. The levels of the LIF receptor and insulin-like growth factor-I receptor levels were markedly decreased in the muscles of dy mice during the entire postnatal period observed in this study. Therefore, unlike the situation in mdx mice, the milieu of regeneration following repetitive damage seems to be degraded in the muscles of dy mice. Received: 10 December 1998 / Revised: 7 April/27 May 1999 / Accepted: 27 May 1999  相似文献   

7.
Leukemia inhibitory factor (LIF) is implicated in skeletal muscle regeneration, but the effect of exogenous LIF on uninjured muscles is not known. We tested the hypothesis that LIF administration would stimulate muscle hypertrophy, with an increased effect during clenbuterol-induced fiber remodeling. Rats received daily injections of either saline or LIF, and either regular or clenbuterol-supplemented drinking water for 4 weeks. In the slow-twitch soleus muscles of LIF-treated rats, specific force (sP(o)) and muscle fiber size were increased by approximately 13% and approximately 26%, respectively, compared to saline-treated rats. In the soleus muscles of rats receiving LIF and clenbuterol, compared to rats receiving clenbuterol alone, maximum isometric tension (P(o)) was approximately 19% greater. LIF alone did not affect the properties of fast-twitch extensor digitorum longus (EDL) muscles, but in rats receiving LIF and clenbuterol, compared to clenbuterol alone, EDL fiber size and muscle mass were increased by approximately 20% and approximately 10%, respectively. The hypertrophic effects of exogenous LIF on uninjured skeletal muscles indicate that LIF may have application in the treatment of conditions characterized by muscle wasting.  相似文献   

8.
The aim of this study was to examine whether changes in rat motoneuronal calcitonin gene–related peptide (CGRP) can be correlated with axonal growth and plasticity of neuromuscular synapses. Nerve terminal outgrowth was induced by local paralysis with botulinum toxin. Normal adult soleus and tibialis anterior did not show detectable CGRP content at the motor endplates. Following botulinum toxin injection there was a progressive, transient and bimodal increase in CGRP in both motoneuron cell bodies which innervated poisoned muscles and their motor endplates. CGRP content was moderately increased 1 day after paralysis and, after an initial decline, reached a peak 20 days after injection. This was followed by a gradual decrease and a return to normal levels at the 200th day. CGRP changes in intoxicated endplates were less evident in the tibialis anterior than in the soleus muscle. The CGRP content in motoneurons was positively correlated with the degree of intramuscular nerve sprouting found by silver staining. In situ hybridization revealed an increase in CGRP mRNA in spinal cord motoneurons 20 days after toxin administration. We conclude that motoneurons regulate their CGRP in situations in which peripheral synapse remodelling and plasticity occur.  相似文献   

9.
Jill Lincoln  Rehab Harb 《Muscle & nerve》1998,21(10):1344-1346
Nitric oxide synthase (NOS) activity was measured in extensor digitorum longus (EDL) and soleus muscles during postnatal development in the rat. At 1 and 2 weeks of age, similar low levels were found in both muscles. After 2 weeks, activity increased significantly only in EDL. Adult NOS activity was significantly higher in EDL than soleus. Thus, the preferential expression of NOS in fast muscle only occurs once the adult pattern of motor activity is established. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:1344–1346, 1998.  相似文献   

10.
Nerves of two fast muscles [peroneus longus (PL) and extensor digitorum longus (EDL)], having different type 2 muscle fiber compositions, were used to cross-reinnervate the slow soleus muscle in the rat. Contraction characteristics, histochemical muscle fiber type compsotions and myosin heavy chain (MHC) isoform compositions were determined for the reinnervated muscles. Shortening velocity increased in soleus muscles crossreinnervated with EDL nerve [X-SOL(EDL)] but not in muscles cross-reinnervated with PL nerve [X-SOL(PL)]. Type 2A MHC isoform content was increased in X-SOL(EDL) but not in X-SOL(PL), where MHC isoform composition remained similar to normal soleus. The complement of type 1 (slow) muscle fibers was reduced and that of type 2 (fast) fibers increased in both types of X-SOL muscle, but this change was significantly greater in X-SOL(EDL); the majority of the type 2 fibers in X-SOL muscles were of type 2A. Results show that “the type 2 composition” of the reinnervating motoneuron pool is an important factor in determining the transformation of a target slow muscle after cross-reinnervation. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
In rats, acetylcholinesterase (AChE) activity in the fast muscles is several times higher than in the slow soleus muscle. The hypothesis that specific neural impulse patterns in fast or slow muscles are responsible for different AChE activities was tested by altering the neural activation pattern in the fast extensor digitorum longus (EDL) muscle by chronic low-frequency stimulation of its nerve. In addition, the soleus muscle was examined after hind limb immobilization, which changed its neural activation pattern from tonic to phasic. Myosin heavy-chain (MHC) isoforms were analyzed by gel electrophoresis. Activity of the molecular forms of AChE was determined by velocity sedimentation. Low-frequency stimulation of the rat EDL for 35 days shifted the profile of MHC II isoforms toward a slower MHCIIa isoform. Activity of the globular G1 and G4 molecular forms of AChE decreased by a factor of 4 and 10, respectively, and became comparable with those in the soleus muscle. After hind limb immobilization, the fast MHCIId isoform, which is not normally present, appeared in the soleus muscle. Activity of the globular G1 form of AChE increased approximately three times and approached the levels in the fast EDL muscle. In the rabbit, on the contrary to the rat, activity of the globular forms of AChE in a fast muscle increased after low-frequency stimulation. The results demonstrate that specific neural activation patterns regulate AChE activity in muscles. Great differences, however, exist among different mammalian species in regard to muscle AChE regulation. J. Neurosci. Res. 47:49–57, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Previous studies of gastrocnemius muscle reinnervation showed specific normalization of the proportion and diameter of fast type 2b muscle fibres following NT-3 delivery to the proximal stump of the cut sciatic nerve. Here, we investigate if normalization was related to greater improvement of muscle reinnervation of fast (extensor digitorum longus; EDL) than slow (soleus) motor units. NT-3-impregnated (NT-3 group) or plain fibronectin (FN group) mats were inserted into a sciatic nerve gap. Neuromuscular junctions (NMJs) labelled with TRITC-alpha-bungarotoxin were colabelled with calcitonin gene-related peptide (CGRP) or 4E2 antisera and imaged using confocal microscopy. CGRP and 4E2 were used as markers for newly reinnervated and structurally mature NMJs, respectively. At 40 days postsurgery, denervated NMJs in EDL and soleus muscles of both groups presented a 50% decrease of surface area due to decreased width. At day 80 in EDL, more NMJs were reinnervated by CGRP-immunoreactive terminals in the NT-3 (7.1%) than in the FN group (4.2%); there was no difference between groups for soleus. At 120 days, 4E2-immunoreactive NMJs were more numerous in EDL of the NT-3 (40.0%) than in the FN group (7.3%), unlike in soleus (NT-3, 1. 6%; FN, 1.8%), and presented a partial size recovery. These results indicate that NT-3 preferentially improves reinnervation of fast muscles over slow muscle, although the mechanism of this improvement is still unclear.  相似文献   

13.
The beta(2)-adrenoceptor agonist (beta(2)-agonist), formoterol, has been shown to cause muscle hypertrophy in rats even when administered at the micromolar dose of 25 micro g/kg/day. We investigated whether a similar low dose of formoterol could improve muscle function in the dystrophic mdx mouse. Ten-week-old male mdx and wild-type (C57BL/10) mice were administered formoterol (25 micro g/kg/day, i.p.) for 4 weeks. Formoterol treatment increased extensor digitorum longus (EDL) and soleus muscle mass, increased median muscle fibre size in diaphragm, EDL, and soleus muscles, and increased maximum force producing capacity in skeletal muscles of both wild-type and mdx mice. In contrast to other studies where beta(2)-agonists have been administered to mice and rats, generally at higher doses, low dose formoterol treatment did not increase the fatiguability of EDL, soleus or diaphragm muscles. Although others have found formoterol can decrease ubiquitin mRNA and proteasome activity when administered to tumour bearing rats at high doses (2mg/kg/day), in the present study low dose formoterol treatment did not alter ubiquitin or the E1 and E3 ubiquitin ligases in diaphragm muscles of wild-type or mdx mice, but it did reduce the level of ubiquitinated proteins in diaphragm of wild-type mice. The findings indicate that formoterol has considerably more powerful anabolic effects on skeletal muscle than older generation beta(2)-agonists (like clenbuterol and albuterol), and has considerable therapeutic potential for muscular dystrophies and other neuromuscular disorders where muscle wasting is indicated.  相似文献   

14.
Histological, histochemical and morphometric characteristics of diaphragm muscles from mdx and control mice were compared with those of hindlimb muscles [extensor digitorum longus (EDL), tibialis anterior (TA) and soleus (SA) muscles]. In contrast to mdx limb muscles, regeneration after muscle necrosis does not restore diaphragm muscle structure. In mdx mice at 270 days of age, 70–80% of fibres in hindlimb muscles had central nuclei, compared with only 35% in diaphragm muscle. At 270 days of age, mdx diaphragm muscle was characterized by perimysial and endomysial fibrosis; this latter feature was absent from mdx hindlimb muscles. Fibre diameter remained smaller than the control in mdx diaphragm muscle. We suggest that the similarity in muscle pathology between the diaphragms of mdx mice and in patients suffering from Duchenne muscular dystrophy (DMD) makes these an appropriate model for DMD, since respiratory failure is the leading cause of death in DMD patients.  相似文献   

15.
We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.  相似文献   

16.
To assess the impairment of muscle membrane excitation, excitation–contraction (E–C) coupling, and contractility during muscle fatigue, we monitored the contracture responses of resting and fatigued muscles on exposure to high potassium and caffeine. On exposure to 140 mmol/L potassium, mouse extensor digitorum longus (EDL) developed a contracture which was 15.7% of tetanic tension before fatigue and 31.7% after fatigue, while soleus developed 59.4% contracture before and 68.8% after fatigue. Potassium causes contractures by depolarizing the muscle fiber membrane. Hence, membrane excitation is reduced in fatigued EDL and soleus. On exposure to 32 mmol/L caffeine, the contracture was 7.1% in resting EDL, 8.5% in fatigued EDL, 50.1% in resting soleus, and 43.7% in fatigued soleus. On exposure to 1 mmol/L caffeine followed by rapid cooling, the contracture was 3.0% in resting EDL, 3.2% in fatigued EDL, 21.5% in resting soleus, and 10.3% in fatigued soleus. Caffeine causes contracture by releasing Ca+ + from the sarcoplasmic reticulum. Our results indicate reduced E–C coupling attributable to reduced membrane excitation in fatigued EDL, and reduced contractility in fatigued soleus. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.  相似文献   

18.
Adrenalectomy did not prevent atrophy of rat soleus muscle during 6 days of tail cast suspension. Cortisol treatment enhanced this atrophy and caused atrophy of the weight-bearing soleus and both extensor digitorum longus (EDL) muscles. Unloading led to increased sarcoplasmic protein concentration in the soleus, but cortisol administration increased the myofibrillar (+stromal) protein concentration in both muscles. Suspension of hindlimbs of adrenalectomized animals led to faster protein degradation, slower sarcoplasmic protein synthesis, and faster myofibrillar protein synthesis in the isolated soleus, whereas with cortisol-treated animals, the difference in synthesis of myofibrillar proteins was enhanced and that of sarcoplasmic proteins was abolished. Both soleus and EDL of suspended, cortisol-treated animals showed faster protein degradation. It is unlikely that any elevation in circulating glucocorticoids was solely responsible for atrophy of the soleus in this model, but catabolic amounts of glucocorticoids could alter the response of muscle to unloading.  相似文献   

19.
20.
Heroin-induced myopathy in rat skeletal muscle   总被引:4,自引:0,他引:4  
Summary The effects of heroin on rat skeletal muscle was studied. Heroin was injected intraperitoneally, and the soleus and tibial anterior muscles were studied using histological and histochemical techniques. Degenerative and regenerative changes were detected, the latter proving more significant. The soleus was the only muscle affected, the anterior tibial showing no sign of damage. The heroin myopathy model may be valuable in studying muscle fibre necrosis and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号