首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia is a genetic arrhythmogenic disorder characterized by stress-induced, bidirectional ventricular tachycardia that may degenerate into cardiac arrest and cause sudden death. The electrocardiographic pattern of this ventricular tachycardia closely resembles the arrhythmias associated with calcium overload and the delayed afterdepolarizations observed during digitalis toxicity. We speculated that a genetically determined abnormality of intracellular calcium handling might be the substrate of the disease; therefore, we considered the human cardiac ryanodine receptor gene (hRyR2) a likely candidate for this genetically transmitted arrhythmic disorder. METHODS AND RESULTS: Twelve patients presenting with typical catecholaminergic polymorphic ventricular tachycardia in the absence of structural heart abnormalities were identified. DNA was extracted from peripheral blood lymphocytes, and single-strand conformation polymorphism analysis was performed on polymerase chain reaction-amplified exons of the hRyR2 gene. Four single nucleotide substitutions leading to missense mutations were identified in 4 probands affected by the disease. Genetic analysis of the asymptomatic parents revealed that 3 probands carried de novo mutations. In 1 case, the identical twin of the proband died suddenly after having suffered syncopal episodes. The fourth mutation was identified in the proband, in 4 clinically affected family members, and in none of 3 nonaffected family members in a kindred with 2 sudden deaths that occurred at 16 and 14 years, respectively, in the sisters of the proband. CONCLUSIONS: We demonstrated that, in agreement with our hypothesis, hRyR2 is a gene responsible for catecholaminergic polymorphic ventricular tachycardia.  相似文献   

3.
4.
Current mechanisms of arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia (CPVT) require spontaneous Ca2+ release via cardiac ryanodine receptor (RyR2) channels affected by gain-of-function mutations. Hence, hyperactive RyR2 channels eager to release Ca2+ on their own appear as essential components of this arrhythmogenic scheme. This mechanism, therefore, appears inadequate to explain lethal arrhythmias in patients harboring RyR2 channels destabilized by loss-of-function mutations. We aimed to elucidate arrhythmia mechanisms in a RyR2-linked CPVT mutation (RyR2-A4860G) that depresses channel activity. Recombinant RyR2-A4860G protein was expressed equally as wild type (WT) RyR2, but channel activity was dramatically inhibited, as inferred by [3H]ryanodine binding and single channel recordings. Mice heterozygous for the RyR2-A4860G mutation (RyR2-A4860G+/−) exhibited basal bradycardia but no cardiac structural alterations; in contrast, no homozygotes were detected at birth, suggesting a lethal phenotype. Sympathetic stimulation elicited malignant arrhythmias in RyR2-A4860G+/− hearts, recapitulating the phenotype originally described in a human patient with the same mutation. In isoproterenol-stimulated ventricular myocytes, the RyR2-A4860G mutation decreased the peak of Ca2+ release during systole, gradually overloading the sarcoplasmic reticulum with Ca2+. The resultant Ca2+ overload then randomly caused bursts of prolonged Ca2+ release, activating electrogenic Na+-Ca2+ exchanger activity and triggering early afterdepolarizations. The RyR2-A4860G mutation reveals novel pathways by which RyR2 channels engage sarcolemmal currents to produce life-threatening arrhythmias.In the heart, ryanodine receptor (RyR2) channels release massive amounts of Ca2+ from the sarcoplasmic reticulum (SR) in response to membrane depolarization, in turn modulating cardiac excitability and triggering ventricular contractions (1, 2). In their intracellular milieu, RyR2 channels are regulated by a variety of cytosolic and luminal factors so that their output signal (i.e., Ca2+) finely grades cardiac contractions (3). However, RyR2 channels operate within a limited margin of safety because conditions that demand higher RyR2 activity (such as sympathetic stimulation) also increase the vulnerability of the heart to life-threatening arrhythmias (4), and this risk is higher in hearts harboring mutant RyR2 channels. Indeed, point mutations in RYR2, the gene encoding for the cardiac RyR channel, are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) (5), a highly arrhythmogenic syndrome triggered by sympathetic stimulation that may lead to sudden cardiac death, especially in children and young adults (6).To date, delayed afterdepolarizations (DADs) triggered by spontaneous Ca2+ release stand as the most accepted cellular mechanism to explain cardiac arrhythmias in CPVT. In this scheme, RyR2 channels destabilized by gain-of-function mutations release Ca2+ during diastole, generating a depolarizing transient inward current (Iti) as the sarcolemmal Na+-Ca2+ exchanger (NCX) extrudes the released Ca2+. This electrogenic inward current then causes DADs, which, if sufficiently large, reach the threshold to initiate untimely action potentials (APs) and generate triggered activity (68). Hence, hyperactive RyR2 channels eager to release Ca2+ on their own appear as essential components of this arrhythmogenic scheme. In fact, most RyR2-linked CPVT mutations characterized to date produce hyperactive RyR2 channels (912). This scheme therefore appears inadequate to explain lethal arrhythmias in patients harboring RyR2 channels destabilized by loss-of-function mutations (13).How do hypoactive RyR2 channels trigger lethal arrhythmias? Here we studied the RyR2-A4860G mutation, which was initially detected in a young girl presenting idiopathic catecholaminergic ventricular fibrillation (VF) (14). When expressed in HEK293 cells, recombinant RyR2-A4860G channels displayed a dramatic depression of activity, manifested mainly as a loss of luminal Ca2+ sensitivity (13). However, this in vitro characterization was insufficient to elucidate the mechanisms by which these hypoactive channels generate cellular substrates favorable for cardiac arrhythmias. We thus generated a mouse model of CPVT harboring the RyR2-A4860G mutation. Inbreeding of mice heterozygous for the mutation (RyR2-A4860G+/−) yields only WT and heterozygous mice, indicating that the mutation is too strong to be harbored in the two RYR2 alleles. Ventricular myocytes from RyR2-A4860G+/− mice have constitutively lower Ca2+ release than WT littermates, and undergo apparently random episodes of prolonged systolic Ca2+ release upon β-adrenergic stimulation, giving rise to early afterdepolarizations (EADs). Thus, this unique RYR2 mutation reveals novel pathways whereby RyR2 channels engage sarcolemmal currents to trigger VF. Although exposed in the setting of CPVT, this mechanism may be extended to a variety of settings, including heart failure, atrial fibrillation, and other cardiomyopathies in which RyR2 down-regulation and posttranslational modifications depress RyR2 function.  相似文献   

5.
A family was identified, of whom which 11 members were carriers of the G14876A ryanodine 2 receptor mutation. All but 1 were symptomatic at the time of the study. Exercise testing showed bidirectional or polymorphic arrhythmias in 4 patients, whereas in 5 patients, it showed monomorphic or rare minor polymorphic ventricular arrhythmias. Two young patients died suddenly at rest while asleep. This study demonstrates that arrhythmias occurring during exercise stress testing in patients affected by catecholaminergic polymorphic ventricular tachycardia (CPVT) could be minor even in very symptomatic patients. The diagnosis of CPVT must be considered in these patients with a familial history of typical CPVT.  相似文献   

6.
7.
Background- Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with mutations in the cardiac ryanodine receptor gene (Ryr2) in the majority of patients. Previous studies of CPVT patients mainly involved probands, so current insight into disease penetrance, expression, genotype-phenotype correlations, and arrhythmic event rates in relatives carrying the Ryr2 mutation is limited. Methods and Results- One-hundred sixteen relatives carrying the Ryr2 mutation from 15 families who were identified by cascade screening of the Ryr2 mutation causing CPVT in the proband were clinically characterized, including 61 relatives from 1 family. Fifty-four of 108 antiarrhythmic drug-free relatives (50%) had a CPVT phenotype at the first cardiological examination, including 27 (25%) with nonsustained ventricular tachycardia. Relatives carrying a Ryr2 mutation in the C-terminal channel-forming domain showed an increased odds of nonsustained ventricular tachycardia (odds ratio, 4.1; 95% CI, 1.5-11.5; P=0.007, compared with N-terminal domain) compared with N-terminal domain. Sinus bradycardia was observed in 19% of relatives, whereas other supraventricular dysrhythmias were present in 16%. Ninety-eight (most actively treated) relatives (84%) were followed up for a median of 4.7 years (range, 0.3-19.0 years). During follow-up, 2 asymptomatic relatives experienced exercise-induced syncope. One relative was not being treated, whereas the other was noncompliant. None of the 116 relatives died of CPVT during a 6.7-year follow-up (range, 1.4-20.9 years). Conclusions- Relatives carrying an Ryr2 mutation show a marked phenotypic diversity. The vast majority do not have signs of supraventricular disease manifestations. Mutation location may be associated with severity of the phenotype. The arrhythmic event rate during follow-up was low.  相似文献   

8.
目的:观察阻断Ryanodine受体对兔儿茶酚胺敏感性室速(CPVT)模型心律失常发生的抑制作用。方法:将40只日本长耳兔随机分为4组:正常对照组、模型组、钙调蛋白激酶Ⅱ抑制剂KN-93组、Ryanodine受体阻滞剂兰尼碱组,每组10只。制备兔左室楔形心肌块的灌流模型,同步记录心内、外膜动作电位及跨壁心电图。正常组灌流台氏液,模型组灌流咖啡因和异丙肾上腺素建立CPVT模型,KN-93组和兰尼碱组预先给予各自药物预灌,然后灌流咖啡因和异丙肾上腺素,观察在快频率程序刺激下各组触发活动和室性心动过速的发生率。结果:对照组、模型组、KN-93(1μmol/L)和兰尼碱组(10μmol/L)触发活动的发生率分别为0/10、10/10、4/10和2/10,多形性室速或室颤的发生率分别为0/10、9/10、3/10、1/10;提示KN-93和兰尼碱均可减少CPVT模型的触发活动和室性心律失常的发生(均P<0.05)。结论:阻断Ryanodine受体能够有效抑制CPVT模型的触发性室性心律失常,Ryanodine受体有望成为防治该类心律失常新的重要靶点。  相似文献   

9.
10.
11.
12.
13.
Mutations in the cardiac ryanodine receptor 2 (RyR2) have been associated with catecholaminergic polymorphic ventricular tachycardia and a form of arrhythmogenic right ventricular dysplasia. To study the relationship between RyR2 function and these phenotypes, we developed knockin mice with the human disease-associated RyR2 mutation R176Q. Histologic analysis of hearts from RyR2(R176Q/+) mice revealed no evidence of fibrofatty infiltration or structural abnormalities characteristic of arrhythmogenic right ventricular dysplasia, but right ventricular end-diastolic volume was decreased in RyR2(R176Q/+) mice compared with controls, indicating subtle functional impairment due to the presence of a single mutant allele. Ventricular tachycardia (VT) was observed after caffeine and epinephrine injection in RyR2(R176Q/+), but not in WT, mice. Intracardiac electrophysiology studies with programmed stimulation also elicited VT in RyR2(R176Q/+) mice. Isoproterenol administration during programmed stimulation increased both the number and duration of VT episodes in RyR2(R176Q/+) mice, but not in controls. Isolated cardiomyocytes from RyR2(R176Q/+) mice exhibited a higher incidence of spontaneous Ca(2+) oscillations in the absence and presence of isoproterenol compared with controls. Our results suggest that the R176Q mutation in RyR2 predisposes the heart to catecholamine-induced oscillatory calcium-release events that trigger a calcium-dependent ventricular arrhythmia.  相似文献   

14.
15.

Background

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an ion channelopathy usually caused by gain-of-function mutations ryanodine receptor type-2 (RyR2). Left ventricular non-compaction (LVNC) is an often genetic cardiomyopathy. A rare LVNC-CPVT overlap syndrome may be caused by exon 3 deletion in RyR2. We sought to characterize the phenotypic spectrum and molecular basis of a novel RyR2 mutation identified in a family with both conditions.

Methods

Several members of an affected family underwent clinical and genetic assessments. A homology model of the RyR2 pore-region was generated to predict the location and potential impact of their RyR2 mutation. Ca2+-release assays were performed to characterize the functional impact of the RyR2 mutant expressed in HEK293 cells.

Results

A multigenerational family presented with a history of sudden death and a phenotype of atypical CPVT and LVNC. Genetic testing revealed a RYR2 mutation (I4855M) in two affected individuals. A homology model of the RyR2 pore-region showed that the I4855M mutant reside is located in the highly conserved ‘inner vestibule’, a water-filled cavity. I4855M may interfere with Ca2+ permeation and affect interactions between RyR2 pore subunits, and is thus predicted in silico to be damaging. Expression and functional studies in HEK293 cells revealed that I4855M inhibited caffeine-induced Ca2+ release and exerted a dominant-negative impact on wild type RyR2.

Conclusions

This study identifies a potentially lethal overlapping syndrome of LVNC and atypical CPVT related to a novel RYR2 variant. Structural and functional studies suggest that this is a loss-of-function mutation, which exerts a dominant-negative effect on wild type RyR2.  相似文献   

16.
17.
18.
Although catecholaminergic polymorphic ventricular tachycardia (CPVT) is associated with fatal ventricular arrhythmias and sudden death, the ECG findings are not fully understood. In this paper, we report on alterations in the U-wave. Seven patients from 6 families with CPVT in which bidirectional tachycardia and polymorphic VT were induced by exercise or isoproterenol infusion visited our hospitals. VT was not inducible by programmed electrical stimulation. A novel gene mutation of the ryanodine receptor 2 (RyR2) was confirmed in 2 families. In one of these patients, U-wave alternans was observed following ventricular pacing at 160 beats/min. In the other patient, U-wave alternans was observed during the recovery phase after the exercise stress test, which was terminated because of polymorphic VT. In both cases, leads V3-V5 were the leads showing alternans most clearly. In the third patient, a negative U-wave became positive following a pause from sinus arrest and a change in T-wave was also noted. Since such findings were not found in the other subjects who underwent electrophysiologic study, isoproterenol infusion or exercise stress testing, the phenomenon seems to be relevant to the underlying pathogenesis of CPVT. The genesis and significance of U-wave alteration need to be determined.  相似文献   

19.
Dissociation of FKBP12.6 from the cardiac Ca2+-release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.6 from RyR2 is controversial. To additionally address this issue, we investigated the effect of PKA phosphorylation and mutations at serine-2808 of RyR2 on recombinant or native FKBP12.6-RyR2 interaction. Site-specific antibodies, which recognize the serine-2808 phosphorylated or nonphosphorylated form of RyR2, were used to unambiguously correlate the phosphorylation state of RyR2 at serine-2808 with its ability to bind FKBP12.6. We found that FKBP12.6 can bind to both the serine-2808 phosphorylated and nonphosphorylated forms of RyR2. The S2808D mutant thought to mimic constitutive phosphorylation also retained the ability to bind FKBP12.6. Complete phosphorylation at serine-2808 by exogenous PKA disrupted neither the recombinant nor native FKBP12.6-RyR2 complex. Furthermore, binding of site-specific antibodies to the serine-2808 phosphorylation site did not dissociate FKBP12.6 from or prevent FKBP12.6 from binding to RyR2. Taken together, our results do not support the notion that PKA phosphorylation at serine-2808 dissociates FKBP12.6 from RyR2.  相似文献   

20.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by adrenergically mediated polymorphic ventricular tachycardia leading to syncope and sudden cardiac death. The autosomal dominant form of CPVT is caused by mutations in the RyR2 gene encoding the cardiac isoform of the ryanodine receptor. In vitro functional characterization of mutant RyR2 channels showed altered behavior on adrenergic stimulation and caffeine administration with enhanced calcium release from the sarcoplasmic reticulum. As of today no experimental evidence is available to demonstrate that RyR2 mutations can reproduce the arrhythmias observed in CPVT patients. We developed a conditional knock-in mouse model carrier of the R4496C mutation, the mouse equivalent to the R4497C mutations identified in CPVT families, to evaluate if the animals would develop a CPVT phenotype and if beta blockers would prevent arrhythmias. Twenty-six mice (12 wild-type (WT) and 14RyR(R4496C)) underwent exercise stress testing followed by epinephrine administration: none of the WT developed ventricular tachycardia (VT) versus 5/14 RyR(R4496C) mice (P=0.02). Twenty-one mice (8 WT, 8 RyR(R4496C), and 5 RyR(R4496C) pretreated with beta-blockers) received epinephrine and caffeine: 4/8 (50%) RyR(R4496C) mice but none of the WT developed VT (P=0.02); 4/5 RyR(R4496C) mice pretreated with propranolol developed VT (P=0.56 nonsignificant versus RyR(R4496C) mice). These data provide the first experimental demonstration that the R4496C RyR2 mutation predisposes the murine heart to VT and VF in response caffeine and/or adrenergic stimulation. Furthermore, the results show that analogous to what is observed in patients, beta adrenergic stimulation seems ineffective in preventing life-threatening arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号