首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of T cells and B cells in kainic acid (KA)-induced hippocampal lesions were studied in C57BL/6 mice lacking specific T cell populations (CD4, CD8, and CD4/CD8 cells) and B cells [Igh-6(-/-)]. At 48 mg/kg of KA administrated intranasally, KA-induced convulsions were seen in all groups. However, CD4/CD8(-/-) mice exhibited the mildest seizures; the responses of CD8(-/-), Igh-6(-/-) and wild-type mice were intermediate, whereas CD4(-/-) mice displayed much more severe clinical signs and 100% early mortality, indicating that a deficiency of CD4 T cells obviously increased susceptibility to KA-induced brain damage. Histopathological analysis of the mice that survived 7 days after KA administration revealed that CD4/CD8(-/-) mice had the fewest pathologic changes but Igh-6(-/-) mice showed more severe lesions in area CA3 of the hippocampus than CD8(-/-) and wild-type mice. Reactive astrogliosis were prominent in all KA-treated mice. Locomotor activity as assessed by open-field test increased after KA administration in Igh-6(-/-) and wild-type mice only. These results denote the influence of the adaptive immune response on KA-induced hippocampal neurodegeneration and suggest that B cell and T cell subsets may contribute differently to the pathogenesis.  相似文献   

2.
目的 应用海人藻酸(Kainic acid,KA)在C57BL/6免疫缺陷小鼠建立了神经退行性病变并观察了免疫活性B细胞和T细胞亚型在病变过程中的作用。方法 经鼻滴入海人藻酸观察其临床和病理变化,细胞流式仪检测和分析脾细胞表面标记。结果 海人藻酸引起了CD4(CD4-/-)、CD8(CD8-/-)、CD48(CD48-/-)和B细胞(Igh6-/-)基因敲除鼠的临床抽搐症状和海马损伤。其临床症状在CD4(-/-)鼠最重,CD8(-/-)、Igh6(-/-)以及野生型鼠次之,而CD4CD8双重基因缺陷鼠最轻。病理变化大约和临床症状相平行,脾细胞表面标记的表达也证实了上述发现。结论 获得性免疫反应参与了海人藻酸引起的海马损伤,CD4T细胞和B细胞在病变过程中可能起到了保护作用,而CD8T细胞则加重神经退行性病变。  相似文献   

3.
Apolipoprotein E (apoE) has an intricate biological function in modulating immune responses and apoE isoforms exhibit diverse effects on neurodegenerative and neuroinflammatory disorders. In the present study, we investigated the individual roles of apoE isoforms in the kainic acid (KA)-induced hippocampal neurodegeneration with focus on immune response and microglia functions. ApoE2, 3 and 4 transgenic mice as well as wild-type (WT) mice were treated with KA by intranasal route. ApoE4 overexpressing mice revealed several peculiarities as compared with other transgenic mice and WT mice, i.e. (1) they had more severe KA-induced seizures than apoE2 and 3 mice, (2) they exhibited neuron loss in hippocampus that was higher than in apoE2, 3 and WT mice, (3) KA administration resulted in higher counts of their head drops in the cross-area of elevated plus-maze, (4) they showed lower KA-induced rearing activity than apoE2 mice in the open-field test, (5) their KA-induced microglial expression of MHC-II and CD86 was elevated compared to apoE3 mice, (6) the KA-induced increase of microglial iNOS was higher than that in the other groups of mice, and (7) the TNF-α and IL-6 expression was decreased 7 days after KA application compared to untreated mice and mice treated 1 day with KA. However, the signaling pathway of NFκB or Akt seemed not to be involved in apoE-isoform dependent susceptibility to KA-induced neurotoxicity. In conclusion, over-expression of apoE4 deteriorated KA-induced hippocampal neurodegeneration in C57BL/6 mice, which might result from a higher up-regulation of microglia activation compared to apoE2 and 3 transgenic mice and WT mice.  相似文献   

4.
Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG(1-125)) in CD4(-/-) and CD8(-/-) DBA/1 mice. Both gene-deleted mice developed clinical signs of EAE, albeit milder than in wild-type mice, suggesting that both CD4(+) and CD8(+) cells participate in disease development. Demyelination and inflammation in the central nervous system was reduced in the absence of CD8(+) T cells. Antibody depletion of CD4(+) cells completely protected CD8(-/-) mice from MOG-induced EAE while depletion of CD8(+) cells in CD4(-/-) mice resulted in fewer EAE incidence compared to that in control antibody-treated mice. Antibody depletion of CD4(+) cells in wild-type mice protected from EAE, but not depletion of CD8(+) cells, although demyelination was reduced on removal of CD8(+) T cells. Immunization with immunodominant MOG(79-96) peptide led to EAE only in the presence of pertussis toxin (PT) in the inoculum. PT also triggered an earlier onset and more severe EAE in CD8(-/-) mice. We interpret our findings such that in an ontogenic lack of CD4(+) T cells, EAE is mediated by CD8(+) and elevated levels of alphabetaCD4(-)CD8(-) cells, and that CNS damage is partly enacted by the activity of CD8(+) T cells.  相似文献   

5.
目的应用海人藻酸在C57BL/6免疫缺陷小鼠建立了神经退行性病变并观察了免疫活性B细胞和T细胞亚型在病变过程中的作用。方法经鼻滴人海人藻酸观察其临床和病理变化、细胞流式仪检测和分析脾细胞表面标记。结果海人藻酸引起了CD_4基因敲除(CD_4-/-)、CD_8(CD_8-/-)、CD_(48)(CD_(48)-/-)和B细胞(Igh6-/-)基因敲除鼠的临床抽搐症状和海马损伤。其临床症状在CD_4(-/-)鼠最重,CD_8(-/-),Igh6(-/-)以及野生型鼠次之,而CD_4、CD_8双重基因缺陷鼠最轻。病理变化大约和临床症状相平行,脾细胞表面标记的表达也证实了上述发现。结论获得性免疫反应参与了海人藻酸引起的海马损伤。CD_4T细胞和B细胞在病变过程中可能起到了保护作用,而CD8T细胞则加重神经退行性病变。  相似文献   

6.
The role of IL-12 in excitotoxic neurodegeneration of brain is largely unknown. To address this issue, we used the model of kainic acid (KA)-induced hippocampal injury in IL-12p35 knockout (KO) mice, a well-characterized model for human neurodegenerative diseases. After KA treatment, hippocampal neurodegeneration was significantly less severe in the IL-12p35 KO mice than in wild-type mice as demonstrated by reduced pathological changes and astrogliosis. One day after KA treatment, levels of F4/80 and CD86 expression on microglia were significantly lower in IL-12p35 KO mice than in wild-type mice analyzed by flow cytometry, indicating that IL-12p35 deficiency resulted in lower levels of microglial activation. Five days after KA treatment, CD86 expression on microglia of wild-type mice was still higher, whereas F4/80 expression in wild-type mice decreased and was similar to that in IL-12p35 KO mice. Because microglial activation is necessary for KA-induced neurodegeneration, the lower level of microglial activation in the absence of IL-12p35 may alleviate hippocampal injury in KO mice. In summary, this study indicates that IL-12 may play a critical role in excitotoxin-induced brain injury.  相似文献   

7.
Although studies have indicated a close relationship between nitric oxide (NO) and kainic acid (KA)-induced seizures, the role of NO in seizures is not fully understood. Here, we quantified NO levels in the brain of KA-treated mice using EPR spectrometry to elucidate the role of NO in KA-induced seizures. KA was administered to mice with or without pretreatment with one of the following: N(G)-nitro-l-arginine methyl ester (l-NAME), an NO synthase (NOS) inhibitor that acts on both endothelial NOS (eNOS) and neuronal NOS (nNOS); 7-nitroindazole (7-NI), which acts more selectively on nNOS in vivo; or the anti-epileptic drug, phenobarbital. To accurately assess NO production during seizure activity, we directly measured KA-induced NO levels in the temporal lobe using an electron paramagnetic resonance NO trapping technique. Our results revealed that the both dose- and time-dependent changes of NO levels in the temporal lobe of KA-treated mice were closely related to the development of seizure activity. l-NAME mediated suppression of the KA-induced NO generation led to enhanced severity of KA-induced seizures. In contrast, 7-NI induced only about 50% suppression and had little effect on seizure severity; while phenobarbital markedly reduced both NO production and seizure severity. These results show that KA-induced neuroexcitation leads to profound increases in NO release to the temporal lobe of KA-treated mice and that NO generation from eNOS exerts an anti-convulsant effect.  相似文献   

8.
Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI-anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA-mediated neurotransmission, parallel studies describe normal behavior of PrPc-mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc-deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA-treated mice. PrPc-deficient mice showed increased sensitivity to KA-induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell-specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc-expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real-time RT-PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA-induced neurotoxicity, probably by regulating the expression of KA receptor subunits.  相似文献   

9.
CD28 provides a critical costimulatory signal for antigen-specific T cell activation. Because CD28 is an important factor in the development of autoimmune diseases, we investigated its role in T cell-mediated experimental autoimmune neuritis (EAN), an animal model of Guillain-Barré syndrome in humans. CD28-deficient mutant (CD28-/-) C57BL/6 mice and corresponding wild-type mice were immunized with P0 peptide 180-199, a purified component of peripheral nerve myelin, and Freund's complete adjuvant. As a result, all wild-type mice developed severe EAN, in contrast, none of the CD28-/- mice manifested clinical signs of disease. Additionally, CD28-/- mice had fewer IL-12 producing cells in sciatic nerve sections and fewer IFN-gamma secreting splenic cells than wild-type mice on day 24 post immunization, i.e., at the peak of clinical EAN. At that time point, CD28-/- mice had milder infiltration of such inflammatory cells as macrophages, CD4+ T cells and monocytes into sciatic nerve tissues and less demyelination than wild-type mice. Moreover, the CD28-deficiency led to reduced production of specific anti-P0 peptide 180-199 antibodies compared with wild-type mice. Evidently, CD28 is required for interaction with B7 to regulate the activation of T and B cells that initiates development of EAN.  相似文献   

10.
Acute and chronic effects of seizures induced by intraperitoneal (i.p.) injection of kainic acid (KA) were studied in developing rats (postnatal days (P) 5, 10, 20, 30, and adult 60). For 3 months following KA-induced status epilepticus, spontaneous recurrent seizure (SRS) occurrence was quantified using intermittent video monitoring. Latency to generalized seizures was then tested using flurothyl, and brains were histologically analyzed for CA3 lesions. In P5-10 rats, KA caused generalized tonic-clonic ('swimming') seizures. SRS did not develop, and there was no significant difference between control and KA-treated rats in latency to flurothyl-induced seizures. In contrast, rats P20 and older exhibited limbic automatisms followed by limbic motor seizures which secondarily generalized. Incidence and frequency of SRS increased with age. P20-30 rats with SRS had shorter latencies to flurothyl seizures than did KA-treated P20-30 rats without SRS or controls. KA-treated P60 rats (with or without SRS) had shorter latencies than controls to flurothyl seizure onset. SRS in P60 rats occurred sooner after KA than in P20-30 rats. CA3 lesions were seen in P20-60 rats with and without SRS, but not in P5-10 rats. These data suggest that there are developmental differences in both acute and chronic responses to KA, with immature animals relatively protected from the long-term deleterious effects of this convulsant.  相似文献   

11.
Calcineurin (CaN)-mediated excitotoxicity impairs γ-aminobutyric acid (GABA) transmission and induces neuronal apoptosis. Ca(2+)-dependent K(+)-Cl(-) cotransporter 2 (KCC2) participates in GABAergic inhibitory transmission. However, the mechanism by which CaN mediates GABA receptor-mediated KCC2 in seizures is not fully understood. In the present study, we investigated the altered expression of KCC2 and the effects of the CaN inhibitor FK506 on KCC2 expression in the mouse hippocampus following kainic acid (KA) treatment. FK506 was injected twice 24 h and 30 min before KA treatment and then mice were treated with KA and killed 2 days later. FK506 had anticonvulsant effect on KA-induced seizure activities. CaN cleavage was evident in the hippocampus 24 h after KA treatment. FK506 pretreatment blocked the truncation of CaN in the KA-treated hippocampus. Cresyl violet and TUNEL staining showed that FK506 prevented KA-induced hippocampal cell death. In particular, Western blot analysis showed that KCC2 expression was time dependent, with a peak at 6 h and a return to decreased levels at 48 h, whereas FK506 pretreatment inhibited the KA-induced decrease in KCC2 expression in the hippocampus. Immunofluorescence showed that FK506 pretreatment protected the loss of inhibitory GABAergic KCC2-expressing neurons following KA treatment. Taken together, these results provide evidence that altered KCC2 expression may be associated with Ca(2+)-mediated seizure activity and indicate that neuron-specific KCC2 may be involved in neuroprotection after seizures.  相似文献   

12.
Neurobehavioral effects caused by the excitotoxin kainic acid (KA) have been characterized by convulsions including 'wet dog shakes' (WDS) with accompanying hippocampal degeneration in experimental animals. Accordingly, this model has been proposed for putative excitotoxin-mediated disorders, such as the temporal lobe epilepsy. There have been reports on age-dependent neurobehavioral effects of KA; however, little is known about possible correlations between neuropathology and behavioral responses to KA. The present study demonstrates that mature adult rats (12 months old) injected subcutaneously (s.c.) with KA (12 mg/kg) had severer damage to the hippocampal formation, i.e. CA3 region, compared with KA-treated young adult rats (2 months old). The mature adult animals also exhibited an earlier onset of WDS, a significantly higher number of WDS (P > 0.01), and severer convulsions compared with young adult rats. These findings indicate a positive correlation between KA-induced hippocampal damage and behavioral responses in young and mature adult rats.  相似文献   

13.
Kainic acid (KA) treatment induced neuronal death and apoptosis in murine cerebellar granule cells (CGNs) cultures from both wild-type and knockout p21(-/-) mice. There was not statistically significant difference in the percentage of neuronal apoptosis among strains. KA-induced neurotoxicity was prevented in the presence of NBQX (20 microM) and GYKI 52446 (20 microM), but not by z-VAD-fmk, suggesting that caspases are not involved in the apoptotic process. Data suggest that p21(WAF/Cip) was unable to modulate KA-induced apoptosis in murine CGNs.  相似文献   

14.
Some epidemiological studies concerning gender differences in Alzheimer's disease (AD) support the higher prevalence and incidence of AD in women, while most studies using animal models of aging have included only male subjects. It is still uncommon for aged males and females to be compared in the same study. In the present study, we investigated how age and gender influence the excitotoxic neurodegeneration by treating C57BL/6 mice (aged females and males as well as adult females and males) with kainic acid (KA) intranasally. Clinical signs, behavioural changes, pathological changes and astrocyte proliferation were tested; and the levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were measured after KA treatment. The results showed that aged female mice were more sensitive to KA-induced excitotoxicity as demonstrated by severer seizure activity, increased locomotion and rearing in open-field test, prominent hippocampal neuronal damage, enhanced astrocyte proliferation compared with aged males, adult females and adult male mice. In addition, higher BDNF level in hippocampus of aged female mice was observed. These results denote the disparity of aging and gender in KA-induced hippocampal neurodegeneration and aged female mice are more sensitive to the excitotoxicity.  相似文献   

15.
Excitotoxicity is a mechanism of neuronal cell death implicated in a range of neurodegenerative conditions. Systemic administration of the excitotoxin kainic acid (KA) induces inflammation and apoptosis in the hippocampus, resulting in neuronal loss. Evidence indicates that stimulation of glial β2-adrenoceptors has anti-inflammatory and neurotrophic properties that could result in neuroprotection. Consequently, in this study we examined the effect of the β2-adrenoceptor agonist clenbuterol on KA-induced inflammation, neurotrophic factor expression and apoptosis in the hippocampus. Clenbuterol (0.5 mg/kg) was administered to rats one hour prior to KA (10 mg/kg). Epileptic behaviour induced by KA was assessed for three hours following administration using the Racine scale. Twenty-four hours later TUNEL staining in the CA3 hippocampal subfield and hippocampal caspase-3 activity was assessed to measure KA-induced apoptosis. In addition, expression of inflammatory cytokines (IL-1β and IFN-γ), inducible nitric oxide synthase (iNOS), kynurenine pathway enzymes indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO), the microglial activation marker CD11b, and the neurotrophins BDNF and NGF were quantified in the hippocampus using real-time PCR. Whilst clenbuterol treatment did not significantly alter KA-induced epileptic behavior it ameliorated KA-induced apoptosis, and this neuroprotective effect was accompanied by reduced inflammatory cytokine expression, reduced expression of iNOS, IDO, KMO and CD11b, coupled with increased BDNF and NGF expression in KA-treated rats. In conclusion, the β2-adrenoceptor agonist clenbuterol has anti-inflammatory and neurotrophic actions and elicits a neuroprotective effect in the KA model of neurodegeneration.  相似文献   

16.
Kainic acid (KA)-induced seizure induces the hippocampal cell death. There are reports that AMP-activated protein kinase (AMPK), which is an important regulator of energy homeostasis of cells, has been proposed as apoptotic molecule. In this study, we investigated the altered expression of AMPK cascade in the hippocampus of mice during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24 or 48 h after KA (30 mg/kg) injection. Histological evaluation of KA-treated hippocampus revealed hippocampal cell death first at 6 h and appearing prominently by 48 h after KA injection. Immunoreactivity of Ca2+/calmodulin-dependent protein kinase kinaseβ (CaMKKβ) was increased after KA treatment. In Western blot analysis, AMPK activation was increased 2 h after KA treatment. The proteins of downstream AMPK, including those of glucose transporter1 (GLUT1) and phosphorylation of Acetyl CoA Carboxylase (ACC) were increased in the hippocampus after KA treatment. These results indicate that sustained AMPK activation might be a mechanism by which KA-induced seizure causes hippocampal cell death of mice.  相似文献   

17.
Rho-associated coil kinase (ROCK) inhibitors reportedly prevent neurodegeneration, and abnormal ROCK activation in the central nervous system induces neurite collapse and retraction. However, it is unclear whether the ROCK inhibitor Y-27632 directly protects hippocampal neurons from excitotoxicity. Here, we determined the effects of Y-27632 on neuroprotection following kainic acid (KA)-induced seizures in mice and during glutamate-induced excitotoxicity in HT22 cells. One day after Y-27632 injection, mice were treated with KA and killed 1–2 days later. Fluoro-Jade B and rapid Golgi staining showed that Y-27632 protected against KA-induced neurodegeneration and neurite dystrophy. Y-27632 inhibited increases in hippocampal RhoA and ROCK2 in KA-treated mice as determined by western blot analysis. Immunohistochemical analysis revealed ROCK2-positive neurons and astrocytes in the KA-treated hippocampus. In HT22 cells, Y-27632 also protected neurons and neurite formation during glutamate-induced excitotoxicity in vitro. These results indicate that ROCK inhibition modulates neurite growth and protects neurons from excitotoxicity-induced cell death.  相似文献   

18.
The exact role of TNF-alpha in excitotoxic neurodegeneration of the brain is unclear. To address this issue, the kainic acid (KA)-induced hippocampal injury model, a well-characterized model of human neurodegenerative diseases, was used in TNF-alpha receptor 1 (TNFR1)-knockout (TNFR1-/-) mice in the present study. After nasal application of a single dose of 40 mg of KA per kilogram body weight, TNFR1-/- mice showed significantly more severe seizures than the wild-type mice. In addition, obvious neurodegeneration, enhanced microglia activation, and astrogliosis in the hippocampus, as well as increased locomotor activity, were found in TNFR1-/- mice compared with the wild-type controls 8 days after KA delivery. Moreover, CC chemokine receptor 3 expression on activated microglia was increased 3 days after KA treatment in TNFR1-/- mice, as measured by flow cytometry. These data suggest that TNF-alpha may play a protective role through TNFR1 signaling.  相似文献   

19.
Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune disease of the peripheral nervous system that duplicates the clinical, pathological, and electrophysiological features of Guillain-Barré syndrome in humans. However, the molecular pathogenesis of EAN remains controversial. Therefore, for this study, we induced EAN with P0 protein peptide 180-199 in CD4(-/-), CD8(-/-), CD4(-)8(-), and B cell knockout (microMT) mice to further investigate the roles of these cells in EAN. Our results showed that the severity of clinical signs and histopathological manifestations of EAN and the T cell response to P0 peptide 180-199 in CD4(-/-) mice were significantly lower than those in their wild-type counterparts. CD8(-/-) mice also had a milder clinical course, less histopathological change, and a diminished T cell response to P0 peptide 180-199. However, more severe clinical and histopathological manifestations, a stronger T cell response to P0 peptide 180-199, and enhanced IFN-gamma production in the spleen were observed in the EAN of CD4(-)8(-) and microMT mice, but these were not obviously different from those of wild-type mice. Levels of IgG production were similar in sera from CD4(-/-), CD8(-/-), and CD4(-)8(-), and wild-type mice. These findings suggest that the induction and control of murine EAN are dependent on both CD4(+) and CD8(+) T cells and that B cells apparently do not perpetuate the related inflammatory demyelination.  相似文献   

20.
Intra-hippocampal injection of kainic acid (KA) in adult mice causes a focal lesion in the CA1 area and hilus of the dentate gyrus, as well as pronounced granule cell hypertrophy and dispersion. The lesion results in chronic focal seizures, with a two-week delay following KA-induced status epilepticus. Furthermore, seizures are preceded by infiltration of T lymphocytes into the lesioned tissue and of macrophage-like cells, strongly immunopositive for the monocyte marker F4/80, into the dentate gyrus, where they regulate granule cell dispersion and survival. Unexpectedly, depletion of CD4(+) and/or CD8(+) T lymphocytes by targeted gene deletion results in a marked shortening of the delay prior to seizure onset, suggesting a role of adaptive immunity in epileptogenesis (Zattoni et al. 2011, J. Neurosci. 31, 4037). Here, we investigated the specific role of adaptive immunity in this TLE model by adoptive i.v. transfer of immunopurified T cells in mutant mice lacking either CD4(+) T cells (MHCII-knockout), CD8(+) T cells (β2-microglobulin-knockout), or both populations (RAG1-knockout mice). EEG analysis in mutants mice injected with KA two days after the T cell transfer revealed that grafting of the missing T cell population had no influence on seizure onset, but strongly influenced F4/80(+) macrophage-like cell infiltration in the dentate gyrus. Specifically, CD8(+) T cells in β2-microgloblin-knockout mice enhanced macrophage recruitment, whereas CD4(+) T cells transferred in MHCII-knockout and in RAG1-knockout mice blocked macrophage infiltration, leading to reduced granule cell dispersion and survival, thereby worsening the KA-induced lesion. These results suggest that intact adaptive immunity is required for delayed seizure onset in this mouse model of TLE and unravel complex interactions between T cells and mononuclear phagocytes for the control of neuronal integrity and survival in the lesioned brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号