首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Racké  D Abel  E Muscholl 《Neuroscience》1985,16(3):501-510
Neurointermediate lobes of the rat pituitary gland were incubated with [3H]dopamine in the presence of desipramine and then superfused with radioactivity-free medium. The outflow of tritium was studied and in most experiments [3H]dopamine and its metabolites were separated by column chromatography. After 60-70 min of superfusion, the spontaneous rate of tritium outflow was 1.2%/min. The spontaneously released radioactivity consisted of 52% O-methylated and deaminated metabolites, 28% 3,4-dihydroxyphenylacetic acid, 18% dopamine and 2% 3-methoxytyramine. In the presence of pargyline (10 microM) the spontaneous rate of total tritium outflow decreased by 46%, that of the O-methylated and deaminated metabolites by 72% and that of 3,4-dihydroxyphenylacetic acid by 79%. The spontaneous rate of outflow of dopamine was unchanged and that of 3-methoxytyramine increased 3-fold. Further addition of nomifensine (10 microM) doubled the rate of outflow of dopamine and 3-methoxytyramine, but had no effect on the other metabolites. Electrical stimulation of the pituitary stalk (0.2 ms, 80 V, 3 Hz, 2 min) caused a tritium release of 8.5% of the tissue tritium. The evoked tritium release was only partially dependent on the extracellular calcium and not affected by tetrodotoxin. In contrast, vasopressin release evoked by stimuli of the same strength was completely calcium-dependent and blocked by tetrodotoxin. After modification of the stimulation conditions (1 ms, 10 V, 10 Hz, 2 min) the evoked tritium release was 4.1% of the tissue tritium. This tritium release was reduced by 73% in the presence of tetrodotoxin. The total evoked tritium release was decreased by 30% in the presence of pargyline and increased by 150% after further addition of nomifensine. Under the latter conditions, tetrodotoxin reduced the evoked tritium release by 67%, but nearly all of the tetrodotoxin-resistant tritium release could be identified as dopamine metabolites. Thus, the electrical stimulation appears to liberate some [3H]dopamine metabolites from an extraneuronal compartment. In conclusion, oxidative deamination and O-methylation are important pathways of the catabolism of dopamine in the neurointermediate lobe of the pituitary gland. After labelling of the transmitter stores with [3H]dopamine, the total tritium release is a poor indicator of [3H]dopamine release from the nerve terminals. Only the isolated [3H]dopamine fraction appears to reflect the release of neuronal [3H]dopamine.  相似文献   

2.
Summary The aim of the study was to examine the influence of intrastriatal dopaminergic grafts on the functioning of striatal cholinergic neurons using an in vitro superfusion method. Rats bearing unilateral 6-hydroxydopamine lesion of the nigrostriatal dopaminergic system received a cell suspension obtained from ED 14 rat embryonic mesencephali which was injected into the denervated striatum. Lesioned animals displayed an ipsilateral rotation in response to amphetamine (5 mg/kg i.p.). This rotational response disappeared following grafting and there was even a significant contralateral rotation in response to the drug. Apomorphine (0.1 mg/kg s.c.) induced a contralateral rotation following the lesion. This latter response was attenuated in the grafted group. Three months after grafting 350 m thick slices were prepared from striata from the control and experimental sides of lesioned and graft-bearing animals. The slices were preincubated either with 3H-dopamine (10-7 M) or 3H-choline (10-7 M) and then superfused with an oxygenated Krebs-Ringer solution. Stimulation with electrical pulses following preincubation with 3H-dopamine elicited a marked increase of tritium outflow from control slices. Stimulation-evoked overflow was of similar magnitude from slices from striata containing the graft, while it was much reduced in slices from lesioned striata. Amphetamine markedly potentiated the effect of electrical stimulation in slices obtained from control and graft-containing striata. Nomifensine (a dopamine uptake blocker) led to a significant decrease of the overflow of 3H-acetylcholine evoked by electrical stimulation from control striatal slices. This inhibition was antagonized by domperidone, a D2 dopamine receptor blocker, a finding which indicates that the action of nomifensine was indeed due to a potentiation of the action of endogenous dopamine released by the electrical stimulation. A similar, although somewhat attenuated, action of nomifensine and domperidone was observed for striatal slices containing the graft. Amphetamine inhibited the stimulation evoked overflow of 3H-acetylcholine in a dose-dependent manner from striatal slices obtained both from the intact and experimental sides of graft-bearing animals, while it had no action on slices from denervated striata. Finally, the dose-response curve for the inhibition of 3H-acetylcholine release by apomorphine was significantly shifted to the left for slices from the lesioned striata as compared with control slices. This leftward shift was totally abolished in the slices from the graft-containing striatum. These results indicate that the dopaminergic inhibition of the striatal cholinergic interneurons, abolished by the lesion, is restored by intrastriatal dopaminergic grafts both in vitro and in vivo. On the other hand the lack of correlation between the in vivo and the in vitro effects (rotational response vs. inhibition of 3H-acetylcholine release) suggest that the effect of such grafts on rotational behavior cannot be explained solely by their action on the striatal cholinergic neurons.  相似文献   

3.
Psychomotor stimulants and neuroleptics exert multiple effects on dopaminergic signaling and produce the dopamine (DA)-related behaviors of motor activation and catalepsy, respectively. However, a clear relationship between dopaminergic activity and behavior has been very difficult to demonstrate in the awake animal, thus challenging existing notions about the mechanism of these drugs. The present study examined whether the drug-induced behaviors are linked to a presynaptic site of action, the DA transporter (DAT) for psychomotor stimulants and the DA autoreceptor for neuroleptics. Doses of nomifensine (7 mg/kg i.p.), a DA uptake inhibitor, and haloperidol (0.5 mg/kg i.p.), a dopaminergic antagonist, were selected to examine characteristic behavioral patterns for each drug: stimulant-induced motor activation in the case of nomifensine and neuroleptic-induced catalepsy in the case of haloperidol. Presynaptic mechanisms were quantified in situ from extracellular DA dynamics evoked by electrical stimulation and recorded by voltammetry in the freely moving animal. In the first experiment, the maximal concentration of electrically evoked DA ([DA](max)) measured in the caudate-putamen was found to reflect the local, instantaneous change in presynaptic DAT or DA autoreceptor activity according to the ascribed action of the drug injected. A positive temporal association was found between [DA](max) and motor activation following nomifensine (r=0.99) and a negative correlation was found between [DA](max) and catalepsy following haloperidol (r=-0.96) in the second experiment.Taken together, the results suggest that a dopaminergic presynaptic site is a target of systemically applied psychomotor stimulants and regulates the postsynaptic action of neuroleptics during behavior. This finding was made possible by a voltammetric microprobe with millisecond temporal resolution and its use in the awake animal to assess release and uptake, two key mechanisms of dopaminergic neurotransmission. Moreover, the results indicate that presynaptic mechanisms may play a more important role in DA-behavior relationships than is currently thought.  相似文献   

4.
T Wichmann  K Starke 《Neuroscience》1988,26(2):621-634
The noradrenaline content, the uptake of [3H]noradrenaline, and the release of previously incorporated [3H]noradrenaline were studied in slices of rabbit superior colliculus. The concentration of endogenous noradrenaline was higher in superficial than in deep layers of the superior colliculus. Upon incubation with [3H]noradrenaline, tritium was accumulated by a mechanism that was strongly inhibited by oxaprotiline but little inhibited by 6-nitroquipazine. Electrical stimulation at 0.2 or 3 Hz increased the outflow of tritium from slices preincubated with [3H]noradrenaline; the increase was almost abolished by tetrodotoxin or a low calcium medium. Clonidine reduced the evoked overflow of tritium, whereas yohimbine increased it and antagonized clonidine. The evoked overflow was also reduced by the dopamine D2-receptor-selective agonists apomorphine and quinpirole, an effect antagonized by sulpiride. The preferential opioid kappa-receptor agonist ethylketocyclazocine produced an inhibition that was counteracted by naloxone. Nicotine accelerated the basal outflow of tritium; part of the acceleration was blocked by hexamethonium. The muscarinic agonist oxotremorine slightly diminished the electrically evoked overflow, and its effect was abolished by atropine. The oxaprotiline-sensitive uptake of [3H]noradrenaline as well as the tetrodotoxin-sensitive and calcium-dependent overflow of tritium upon electrical stimulation (presumably reflecting the release of [3H]noradrenaline) indicate that noradrenaline is a neurotransmitter in the superior colliculus. The release of [3H]noradrenaline is modulated through alpha 2-adrenoceptors as well as dopamine D2-receptors, opioid kappa-receptors and nicotine and muscarine receptors. No clear evidence was found for modulation through beta-adrenoceptors, D1-receptors, serotonin receptors, opioid mu- or delta-receptors or receptors for GABA or glutamate. Only the alpha 2-adrenoceptors receive an endogenous agonist input, at least under the conditions of these experiments. The pattern of presynaptic modulation resembles that found for noradrenaline release in other rabbit brain regions, suggesting that all noradrenergic axons arising in the locus coeruleus possess similar presynaptic receptor systems.  相似文献   

5.
Rats were injected intrastriatally with kainic acid and the viability of dopaminergic terminals two days following the injection was determined by comparing voltage dependent calcium uptake and dopamine release in isolated nerve endings. Evoked dopamine release remained normal following the lesion, but the initial rate of potassium stimulated calcium entry decreased by approximately 1/3. These results suggest that the excitotoxic lesion caused by acute intrastriatal injection of kainic acid results in retention of functional dopaminergic terminals.  相似文献   

6.
Experiments were carried out on cultured sympathetic neurons of the chick embryo; first, to demonstrate the presence of adrenergic and dopaminergic receptors, and then to see if these receptors are involved in regulation of transmitter release. We show that alpha 2-agonists, norepinephrine, epinephrine and clonidine, had no effect on neuronal cyclic 3',5'-adenosine monophosphate content. Forskolin enhanced neuronal cyclic 3',5'-adenosine monophosphate from a control value of about 20 pmoles/mg protein to 150 pmoles/mg protein. In the presence of alpha 2-agonists and forskolin the cyclic 3,5'-adenosine monophosphate content increased between 340 and 430 pmoles/mg protein. The alpha 1-agonist, phenylephrine, had no such effect. The facilitatory effect of alpha 2-agonist on forskolin-stimulated cyclic 3',5'-adenosine monophosphate production was blocked by the alpha 2-antagonist, yohimbine, but not the alpha 1-agonist, prazosin. Dopamine did not affect neuronal cyclic 3',5'-adenosine monophosphate content, but forskolin-stimulated increase in cyclic 3',5'-adenosine monophosphate was further facilitated by dopamine, and this effect was blocked by haloperidol. Activation of neuronal alpha 2-receptors by norepinephrine, epinephrine and clonidine did not interfere with electrically induced release of tritium from [3H]-norepinephrine-loaded sympathetic neurons. However, if sympathetic neurons were co-cultured with heart cells, clonidine, norepinephrine and epinephrine markedly inhibited the stimulation-induced release. Yohimbine or phentolamine partially reversed the inhibitory effects of alpha 2-agonists. alpha 2-Agonists and -antagonists also modified stimulation-induced release of tritium from [3H]norepinephrine-loaded hearts of the chick embryo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The changes induced by maternal exposure to cannabinoids in the maturation of nigrostriatal, tuberoinfundibular and mesolimbic dopaminergic activities of rat offspring 15-40 days old were studied. In the striatum, tyrosine hydroxylase activity was constantly decreased during cannabinoid exposure in males. This decrease was correlative to increased number of D1 and D2 dopaminergic receptors. Both effects were also observed after the drug withdrawal caused by weaning on day 24. In females, the most consistent effect appeared on day 20, when decreased dopamine content and number of D1 receptors were observed. Both effects disappeared after drug withdrawal, but the reduction in the number of D1 receptors was again observed 40 days after birth. In the limbic area, cannabinoid exposure caused a decrease in the number of D1 receptors in 15-day-old females, along with decreases in the content of dopamine and its metabolite, L-3,4-dihydroxyphenylacetic acid. Changes in receptors disappeared on subsequent days, but increases in L-3,4-dihydroxyphenylacetic acid content and in its ratio with dopamine (L-3,4-dihydroxyphenylacetic acid/dopamine) were observed on day 20 followed by a decrease in the neurotransmitter content on day 30. In males, tyrosine hydroxylase activity increased on day 30, followed by an increase in L-3,4-dihydroxyphenylacetic acid content and L-3,4-dihydroxyphenylacetic acid/dopamine ratio on day 40. In the hypothalamus, the cannabinoid effects were always manifested after the cessation of drug exposure. Thus, a rise in L-3,4-dihydroxyphenylacetic acid/dopamine ratio was observed in 30-day-old females, and it was followed by a decrease on day 40, accompanied by a decrease in the anterior pituitary content of dopamine. Rise in prolactin release was not significant. In males, tyrosine hydroxylase activity was increased 30 days after birth, while L-3,4-dihydroxyphenylacetic acid content decreased. On day 40, L-3,4-dihydroxyphenylacetic acid content increased, paired to a rise in L-3,4-dihydroxyphenylacetic acid/dopamine ratio and anterior pituitary content of dopamine and to a decrease in the prolactin release. Perinatal exposure to cannabinoids altered the normal development of nigrostriatal, mesolimbic and tuberoinfundibular dopaminergic neurons, as reflected by changes in several indices of their activity. These changes were different regarding the sex and brain areas. Cannabinoid effects were more marked and constant in the striatum of males, while alterations in limbic neurons were mostly transient and those in hypothalamic neurons occurred after drug withdrawal. A long-term impact of these early changes on the neurological processes of adulthood is plausible.  相似文献   

8.
The weaver (wv) mutation affects the pore-forming region of the inwardly rectifying potassium channel (GIRK) leading to degeneration of cerebellar granule and midbrain dopaminergic neurons. The mutated channel (wvGIRK) loses its potassium selectivity, allowing sodium (Na+) and possibly calcium ions (Ca2+) to enter the cell. Here we performed whole cell patch-clamp recordings combined with microfluorometry to investigate possible differences in calcium ([Ca2+]i) dynamics in native dopaminergic neurons (expressing the wvGIRK2 subunits) in the midbrain slice preparation from homozygous weaver (wv/wv) and control (+/+) mice. Under resting conditions, [Ca2+]i was similar in wv/wv compared with +/+ neurons. Activation of wvGIRK2 channels by D2 and GABAB receptors increased [Ca2+]i in wv/wv neurons, whereas activation of wild-type channels decreased [Ca2+]i in +/+ neurons. The calcium rise in wv/wv neurons was abolished by antagonists of the voltage-gated calcium channels (VGCC); voltage clamp of the neuron at -60 mV; and hyperpolarization of the neuron to -80 mV or more, in current clamp, and was unaffected by TTX. Therefore we propose that wvGIRK2 channels in native dopamine neurons are not permeable to Ca2+, and when activated by D2 and GABAB receptors they mediate membrane depolarization and an indirect Ca2+ influx through VGCC rather than via wvGIRK2 channels. Such calcium influx may be the trigger for calcium-mediated excitotoxicity, responsible for selective neuronal death in weaver mice.  相似文献   

9.
The role of several motor and intralaminar thalamic nuclei in the regulation of dopamine release from terminals and dendrites of the nigrostriatal dopaminergic neurons was investigated in halothane-anaesthetized cats. For this purpose, the effects of the unilateral electrical stimulation of various thalamic nuclei on the release of newly synthesized [3H]dopamine were simultaneously determined in both substantiae nigrae and caudate nuclei using the push-pull cannula method. The electrical stimulation of the motor nuclei was the only one to induce asymmetric changes in the four structures since [3H]dopamine release was enhanced in the ipsilateral caudate nucleus and reduced in the contralateral structure while opposite responses were observed in the corresponding substantiae nigrae. A reduction of [3H]dopamine release occurred in the four structures or only in the contralateral substantia nigra and caudate nucleus following the stimulation of the parafascicularis nucleus and the adjacent posterior part of the nucleus centrum medianum or of the nucleus centralis lateralis and the adjacent paralaminar part of the nucleus medialis dorsalis, respectively. The stimulation of the anterior part of the nucleus centrum medianum, which in contrast to other thalamic nuclei examined, receives few nigral inputs, selectively enhanced [3H]dopamine release in the contralateral substantia nigra. No significant changes in [3H]dopamine release were seen either in the substantiae nigrae or in the caudate nuclei following the stimulation of midline thalamic nuclei. These results indicate that the motor and intralaminar thalamic nuclei exert multiple and selective influences on the release of dopamine from terminals and/or dendrites of the dopaminergic neurons. They also further support a role of thalamic nuclei in the transfer of information from one substantia nigra to the contralateral dopaminergic neurons. The possible involvement of connections between paired thalamic nuclei was underlined by the observations of evoked potentials in contralateral homologous nuclei following unilateral stimulation of motor, or some intralaminar, nuclei. The present report provides new insights on the mechanisms contributing to the reciprocal and/or bilateral regulations of nigrostriatal dopaminergic pathways.  相似文献   

10.
The effect of muscarine on Ca2+ dependent electrical activity was studied in dopamine (DA) neurons located in the substantia nigra pars compacta (SNc) in brain slices from young rats, using sharp electrodes. In most DA neurons tested, muscarine (50 microM) reduced the amplitude of spontaneous oscillatory potentials and evoked Ca2+-dependent potentials recorded in the presence of TTX. Muscarine also reduced the amplitude of the slow afterhyperpolarization (sAHP) following action potentials in most DA neurons. These data suggest that muscarine reduces Ca2+ entry in SNc DA neurons. The reduction of the amplitude of the sAHP by muscarine in DA neurons may facilitate bursting initiated by glutamatergic input by increasing the frequency at which DA neurons can fire. The reduction of the sAHP via activation of muscarinic receptors in vivo may provide a mechanism whereby cholinergic inputs to DA neurons from the tegmental peduncular pontine nucleus could modulate dopamine release at dopaminergic targets in the brain.  相似文献   

11.
The release of previously incorporated [3H]serotonin and its presynaptic modulation were studied in slices of rabbit superior colliculus. Electrical stimulation at frequencies of 0.017-3 Hz greatly increased the outflow of tritiated compounds; this response was almost abolished by tetrodotoxin and in a low calcium medium. Unlabelled serotonin, when added in the presence of nitroquipazine, an inhibitor of high-affinity neuronal serotonin uptake, reduced the electrically evoked overflow of tritium, an effect antagonized by metitepin. Given alone, metitepin caused an increase. The evoked overflow was also decreased by clonidine, and the effect of clonidine was counteracted by phentolamine. Phentolamine itself increased the overflow response. However, this was probably not due to antagonism against an inhibitory effect of endogenous noradrenaline because, first, the selective alpha 2-adrenoceptor antagonist idazoxan did not share with phentolamine the overflow-enhancing effect, second, phentolamine continued to increase the overflow after noradrenergic axons had been destroyed by 6-hydroxydopamine, and third, the facilitatory effects of metitepin and phentolamine were not additive. Phentolamine, like metitepin, antagonized the presynaptic inhibitory effect of serotonin, indicating that it may increase the evoked overflow of tritium by blocking serotonin receptors rather than alpha-adrenoceptors. Ethylketocyclazocine decrease the electrically evoked overflow, and its effect was prevented by naloxone: peptides selective for opioid mu- or delta-receptors caused no change. Nicotine increased the basal outflow of tritium (in the absence of electrical stimulation); the increase was attenuated by hexamethonium and low calcium medium. No or minimal changes in tritium outflow were obtained with beta-adrenoceptor, dopamine receptor, muscarine receptor and GABA receptor ligands or with substance P and glutamate. In conjunction with our previous studies, these results indicate that serotonin is a neurotransmitter in the superior colliculus. Its release is modulated through presynaptic autoreceptors (probably 5-HT1), alpha 2-adrenoceptors, opioid kappa-receptors and nicotine receptors, of which only the autoreceptors receive an endogenous input, at least under the experimental conditions chosen. Each of the three groups of collicular monoamine axons that we have studied recently (cholinergic, noradrenergic, serotoninergic) possesses a specific pattern of presynaptic, release-modulating receptors. A physiological role seems likely only for the alpha 2-autoreceptors at the noradrenergic and the 5-HT1-autoreceptors at the serotoninergic axons.  相似文献   

12.
Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography (HPLC) with electrochemical detection of endogenous dopamine content and by [3H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [3H]dopamine uptake compared with that of their matched controls. Normal appearing [3H]GABA and [3H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry. When functioning normally, the dopaminergic AC of the cat's retina appears to make the receptive field of the off-center cell more sustained and may make its spatial summation characteristics more linear while adjusting the intensitive properties of neurons in both the on- and off-center pathways.  相似文献   

13.
The properties of the mesocortical dopaminergic neurons projecting to the pregenual and anterior supragenual cortices were examined 3–6 months after the degeneration of ascending noradrenergic pathways caused by bilateral multiple or single microinjections of 6-hydroxydopamine made laterally to the pedunculus cerebellaris superior. In all rats and in all cortical areas examined, noradrenaline levels were reduced by more than 75%. A similar decrease in noradrenaline levels was obtained in the ventral tegmental area. As indicated by the increases in cortical levels of dopamine and in [3H]dopamine specific uptake sites as well as by histochemical analysis, these lesions induced a collateral sprouting of the mesocortical dopaminergic neurons. The intensity of the effect varied from one animal to another and even from one anteromedial hemicortex to another. When present, the increase in dopamine levels was observed in all the cortical areas investigated. As suggested by the decreased ratio of the amount of dihydroxyphenylacetic acid to dopamine in the cortex, the activity of the mesocortical dopaminergic neurons was reduced in the rats with lesions. This effect was even seen in rats in which the cortical levels of dopamine were only slightly increased. Both the collateral sprouting and the reduced activity of the mesocortical dopaminergic neurons were related to the degeneration of the noradrenergic neurons and not to a non-specific effect of 6-hydroxydopamine, since both phenomena did not occur in rats pretreated with desipramine, a treatment which prevented the decline in noradrenaline levels.Thus, a lesion of the ascending noradrenergic pathways can lead to sprouting of dopaminergic neurons in the cortex and a reduced activity of these dopaminergic neurons. The respective role of the disappearance of the noradrenergic innervation in the cerebral cortex and in the ventral tegmental area in the collateral sprouting and in the reduced activity of the mesocortical dopaminergic neurons is discussed.  相似文献   

14.
F G Gonon  M J Buda 《Neuroscience》1985,14(3):765-774
Extracellular dopamine concentration has been monitored in the striatum of pargyline treated, anaesthetized rats using differential normal pulse voltammetry. The catechol oxidation current recorded with electrochemically treated carbon fiber electrodes disappeared when the dopaminergic terminals were selectively destroyed by 6-hydroxydopamine. Calibration of the basal oxidation current revealed that the extracellular dopamine concentration was 26 nM. Brief and moderate electrical stimulation of the nigrostriatal pathway at the level of the medial forebrain bundle induced a large increase in the dopamine current. The observed elevation in the dopamine signal lasted as long as the stimulation. It varied with the frequency (0-25 Hz) of the pulses in an exponential manner. Stimulation pulses distributed in a bursted pattern were twice as potent as an equivalent number of pulses regularly spaced. High frequency stimulations (50 Hz) were also investigated in anaesthetized rats (without pargyline) with untreated carbon fiber electrodes; they induced a very large increase in the dopamine extracellular concentration (up to 8-15 microM). Interruption of the dopaminergic impulse flow either by an electrolytic lesion or by a low dose of apomorphine (0.05 mg/kg) caused an immediate decrease of the dopamine current. The time courses and amplitudes (-70%) of these effects were identical. Subsequent injection of haloperidol (0.5 mg/kg) reversed the apomorphine effect up to +360% of the control basal value. Administration of dopaminergic antagonists such as haloperidol (0.05 and 0.5 mg/kg) or metoclopramide (2 mg/kg) significantly increased the dopamine current up to 317, 340 and 215% of the respective control values. Nomifensine (4 mg/kg) produced a big increase (+417%) of the extracellular dopamine levels. The effect of electrical stimulation of the dopaminergic pathway was potentiated by drugs such as amphetamine (2 mg/kg), nomifensine (4 mg/kg) or haloperidol (0.05 and 0.5 mg/kg) but was not altered by apomorphine (0.05 mg/kg). The study by in vivo voltammetry of the variations in the striatal extracellular dopamine concentrations shows that the release of dopamine is under the influence of both the frequency of impulse flow and of dopaminergic striatal autoreceptors.  相似文献   

15.
Systemic administration of the catecholamine uptake inhibitor nomifensine (NOM) in doses of 20-36 mg/kg strongly depressed the discharge rate of dopamine (DA) neurons in the substantia nigra of mice for more than 2-3 h. This effect was fully reverted by the systemically administered DA receptor antagonist haloperidol. Impulse activity of most neurons showed a reduced rhythmicity under the influence of NOM, as assessed by autocorrelograms. It is suggested that the depression of discharge activity of DA neurons by NOM represents an indirect agonist action on the DA receptor, probably via reduced elimination of DA from the extraneuronal space.  相似文献   

16.
Accumulating evidence show that chemokines can modulate the activity of neurons through various mechanisms. Recently, we demonstrated that CCR2, the main receptor for the chemokine CCL2, is constitutively expressed in dopamine neurons in the rat substantia nigra. Here we show that unilateral intranigral injections of CCL2 (50 ng) in freely moving rats increase extracellular concentrations of dopamine and its metabolites and decrease dopamine content in the ipsilateral dorsal striatum. Furthermore, these CCL2 injections are responsible for an increase in locomotor activity resulting in contralateral circling behavior. Using patch-clamp recordings of dopaminergic neurons in slices of the rat substantia nigra, we observed that a prolonged exposure (>8 min) to 10 nM CCL2 significantly increases the membrane resistance of dopaminergic neurons by closure of background channels mainly selective to potassium ions. This leads to an enhancement of dopaminergic neuron discharge in pacemaker or burst mode necessary for dopamine release. We provide here the first evidence that application of CCL2 on dopaminergic neurons increases their excitability, dopamine release and related locomotor activity.  相似文献   

17.
A A Grace  B S Bunney 《Neuroscience》1983,10(2):333-348
Using three independent in vivo methods, we have obtained evidence for electrotonic coupling between sets of rat zona compacta dopaminergic neurons: (1) Lucifer yellow injection into single dopamine neurons resulted in labeling of two to five dopamine neurons in 18 out of 33 injections. Similar injections into reticular formation or nigral reticulata cells did not demonstrate multiple labeling. (2) Intracellular recording revealed spontaneously occurring small (3-15 mV) fast potentials that often triggered action potentials in dopamine neurons when the membrane potential was close to firing threshold. These fast potentials had a firing rate and pattern similar to that reported previously for extracellularly recorded dopamine neurons. Fast potentials were activated antidromically from the caudate nucleus at a latency similar to that reported for dopamine neurons, followed high frequency antidromic stimulation at a constant latency, and collided with spontaneously occurring fast potentials. However, directly elicited action potentials would not collide reliably with antidromically activated fast potentials. Intracellular injection of depolarizing or hyperpolarizing current increased and decreased, respectively, the rate of occurrence of these potentials. The firing rate of fast potentials could be increased and decreased by the intravenous administration of dopamine antagonists and agonists, respectively. (3) Simultaneous extracellular recording from pairs of DA neurons revealed numerous instances of synchronized action potentials. This was observed more frequently following intravenous haloperidol administration. Sets of burst firing dopamine neurons recorded simultaneously consistently demonstrated a decrease in the interspike interval as the burst progressed; a phenomenon commonly reported in other electrically coupled systems. Electrical coupling has been suggested to be present in sets of identified nigrostriatal dopamine neurons. Electrical communication between these neurons could be involved in modulating burst firing and in synchronizing dopamine release.  相似文献   

18.
D L Toan  W Schultz 《Neuroscience》1985,15(3):683-694
The aim of the study was to investigate the influences of dopamine on oligosynaptic corticopallidal neurotransmission. Different cortical areas were electrically stimulated and the responses in the pallidum were recorded by single-cell electrophysiology. Out of 377 pallidal neurons, 192 (51%) responded to stimulation of at least one of the cortical areas investigated. Convergence between frontal cortex and at least one of the other cortical areas was seen in 59 of 110 (54%) pallidal neurons responding to frontal cortex stimulation. Nearly three-quarters (73%) of all responsive pallidal neurons showed a short latency reduction of activity following the stimulus, the rest responded with pure activation or an activation-depression sequence. The dopaminergic influences on this corticopallidal impulse transmission were assessed by the systemic administration of the dopamine receptor-blocking neuroleptics, haloperidol and fluphenazine, as well as by conditioning electrical stimulation of the substantia nigra. Neuroleptic administration augmented the responses to cortical stimulation in 12 of 34 pallidal neurons. Stimulation of the substantia nigra diminished the responses in 24 and augmented them in 6 of 63 of the tested neurons. We propose from the present results, and in agreement with data from conceptually different studies done by others, that dopaminergic influences reduce the flow of information from the cortex to the pallidum. This may constitute a focussing mechanism by which only information form the strongest cortical inputs would pass to the pallidum while less prominent activity would be lost.  相似文献   

19.
The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems--gamma-amino-n-butyric acid (GABA), dopamine, and serotonin--as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAA agonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4',4"-difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.  相似文献   

20.
P. Witkovsky  J.C. Patel  C.R. Lee  M.E. Rice   《Neuroscience》2009,164(2):488-496
We examined the somatodendritic compartment of nigral dopaminergic neurons by immunocytochemistry and confocal microscopy, with the aim of identifying proteins that participate in dopamine packaging and release. Nigral dopaminergic neurons were identified by location, cellular features and tyrosine hydroxylase immunoreactivity. Immunoreactive puncta of vesicular monoamine transporter type 2 and proton ATPase, both involved in the packaging of dopamine for release, were located primarily in dopaminergic cell bodies, but were absent in distal dopaminergic dendrites. Many presynaptic proteins associated with transmitter release at fast synapses were absent in nigral dopaminergic neurons, including synaptotagmin 1, syntaxin1, synaptic vesicle proteins 2a and 2b, synaptophysin and synaptobrevin 1 (VAMP 1). On the other hand, syntaxin 3, synaptobrevin 2 (VAMP 2) and SNAP-25-immunoreactivities were found in dopaminergic somata and dendrites Our data imply that the storage and exocytosis of dopamine from the somatodendritic compartment of nigral dopaminergic neurons is mechanistically distinct from transmitter release at axon terminals utilizing amino acid neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号