首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The CSF-1 gene encodes a hematopoietic colony-stimulating factor (CSF) that promotes growth, differentiation, and survival of mononuclear phagocytes. By using somatic cell hybrids and in situ hybridization, we localized this gene to human chromosome 5 at bands q31 to q35, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, the CSF-1 gene was found to be deleted in the 5q- chromosome of a patient with refractory anemia who had a del(5)(q15q33.3) and in that of a second patient with acute nonlymphocytic leukemia de novo who had a similar distal breakpoint [del(5)(q13q33.3)]. The gene was present in the deleted chromosome of a third patient, with therapy-related acute nonlymphocytic leukemia, who had a more proximal breakpoint in band q33 [del(5)(q22q33.1)]. Hybridization of the CSF-1 probe to metaphase cells of a fourth patient, with acute nonlymphocytic leukemia de novo, who had a rearrangement of chromosomes 5 and 21 [ins(21;5)(q22;q31.3q33.1)] resulted in labeling of the breakpoint junctions of both rearranged chromosomes; this suggested that CSF-1 is located at 5q33.1. Thus, a small segment of chromosome 5 contains GM-CSF (the gene encoding the granulocyte-macrophage CSF), CSF-1, and FMS, which encodes the CSF-1 receptor, in that order from the centromere; this cluster of genes may be involved in the altered hematopoiesis associated with a deletion of 5q.  相似文献   

2.
Between 1986 and 2001, 220 patients with polycythaemia vera (PV) were studied using conventional cytogenetics. Of 204 evaluable patients, 52 (25.4%) had clonal abnormalities. The recurrent chromosomal rearrangements were those of chromosome 9 (21.1%), del(20q) (19.2%), trisomy 8 (19.2%), rearrangements of 13q (13.4%), abnormalities of 1q (11.5%), and of chromosomes 5 and 7 (9.6%). Subsequent analysis of 32 patients, performed at follow-up of up to 14.8 years, revealed new clonal abnormalities in five patients and the disappearance of an abnormal clone in four. Eleven patients remained normal up to 11.5 years and seven patients maintained an abnormality for over 10 years. Fifty-three patients were studied retrospectively using interphase fluorescence in situ hybridization (I-FISH), utilizing probes for centromere enumeration of chromosomes 8 and 9, and for 13q14 and 20q12 loci. Conventional cytogenetics demonstrated clonal chromosome abnormalities in 23% of these 53 patients. The addition of I-FISH increased the detection of abnormalities to 29% and permitted clarification of chromosome 9 rearrangements in an additional 5.6% of patients. FISH uncovered rearrangements of chromosome 9 in 53% of patients with an abnormal FISH pattern, which represented the most frequent genomic alteration in this series.  相似文献   

3.
We identified 120 multiple myeloma (MM) cases with satisfactory cytogenetic evaluation and abnormal karyotypes. Hyperdiploid karyotype was found in 77 cases (64%), hypodiploid in 30 cases (25%), and the remaining 13 cases (11%) had a pseudodiploid karyotype. The most common numerical abnormalities were gains of chromosomes 15, 9, 3 followed by chromosomes 19, 11, 7, 21, and 5. Whole chromosome losses were also frequent involving primarily chromosomes X/Y, 8, 13, 14, and 22. Most cases showed also structural rearrangements leading to del(1p), dup(1q), del(5q), del(6q), del(8p), del(9p), del(13q), and del(17p). Chromosome 13/13q deletion was found in 52% of cases; complete loss of 13 was observed in 73% of cases, whereas 27% had interstitial deletions. In addition, 13/13q deletions occurred in 75% of nonhyperdiploid myeloma but only 39% of the hyperdiploid had 13/13q deletions. Translocations affecting 14q32/IGH region was seen 40 cases; t(11;14)(q13;q32) in 17 cases, t(14;16)(q32;q23) and t(8;14)(q24;q32) in three cases each, and t(6;14)(p21;q32) and t(1;14)(q21;q32) in two cases each. The remaining 14q32 translocations had various t(V;14) partners or of an undetermined origin. Remarkably, the 14q32/IGH translocations were less frequent in the hyperdiploid karyotypes than the nonhyperdiploid karyotypes (17 vs. 63%). Fourteen cases showed break at 8q24/CMYC site; seven of those had Burkitt's-type translocations. Our results revealed that conventional cytogenetics remains an important tool in elucidating the complex and divers genetic anomalies of MM. Cytogenetics identifies two distinct groups of MM, hyperdiploid and nonhyperdiploid, and establishes the presence of prognostic chromosomal markers such as 13/13q, 17p, 8q24, and 16q aberrations.  相似文献   

4.
OBJECTIVES: Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphomas. Cytogenetic studies have revealed a broad spectrum of clonal genetic abnormalities and complex karyotypes. The purpose of this study was to contribute to the understanding of the genomic alterations associated with this group of lymphomas. METHODS: Cytogenetic, fluorescence in situ hybridization (FISH) and molecular analyses were performed in 30 cases with DLBCL: 20 de novo DLBCL (dn-DLBCL) and 10 DLBCL secondary to follicular lymphoma (S-DLBCL). RESULTS: A total of 37 different structural chromosomal rearrangements were found: 27% translocations, 54% deletions, and 19% other alterations. Chromosomes 8, 6, 2, and 9 were the most commonly affected. Interestingly, translocation t(3;14)(q27;q32) and/or BCL-6 gene rearrangements were not observed either by cytogenetic studies or by FISH analysis. Fifteen novel cytogenetic alterations were detected, among them translocations t(2;21)(p11;q22) and t(8;18)(q24;p11.3) appeared as sole structural abnormalities. Translocation t(14;18)(q32;q21) and/or BCL-2-IGH gene rearrangements were the genomic alterations most frequently observed: 50% of S-DLBCL and 30% of dn-DLBCL. Deletions del(4)(q21), del(6)(q27), del(8)(q11), and del(9)(q11) were recurrent. The most common gains involved chromosome regions at 12q13-q24, 7q10-q32, and 17q22-qter; 6q was the most frequently deleted region, followed by losses at 2q35-qter, 7q32-qter, and 9q13-qter. Four novel regions of loss were identified: 5q13-q21, 2q35-qter (both recurrent in our series), 4p11-p12, and 17q11-q12. CONCLUSIONS: These studies emphasize the value of combining conventional cytogenetics with FISH and molecular studies to allow a more accurate definition of the genomic aberrations involved in DLBCL.  相似文献   

5.
The human homolog, c-ros, of the transforming gene, v-ros, of the avian sarcoma virus, UR2, has been isolated from a human genomic library. A single-copy fragment from the human c-ros genomic clone has been used to map the human c-ros homolog (ROS) to human chromosome region 6q16----6q22 by somatic cell hybrid analysis and chromosomal in situ hybridization. Thus, the c-ros gene joins the c-myb oncogene, which is distal to the c-ros gene on the long arm of human chromosome 6, as a candidate for involvement in chromosome 6q deletions and rearrangements seen in various malignancies.  相似文献   

6.
Recurring interstitial loss of all or part of the long arm of chromosome 5, del(5q), is a hallmark of myelodysplastic syndrome and acute myeloid leukemia. Although the genes affected by these changes have not been identified, two critically deleted regions (CDRs) are well established. We have identified 76 zebrafish cDNAs orthologous to genes located in these 5q CDRs. Radiation hybrid mapping revealed that 33 of the 76 zebrafish orthologs are clustered in a genomic region on linkage group 14 (LG14). Fifteen others are located on LG21, and two on LG10. Although there are large blocks of conserved syntenies, the gene order between human and zebrafish is extensively inverted and transposed. Thus, intrachromosomal rearrangements and inversions appear to have occurred more frequently than translocations during evolution from a common chordate ancestor. Interestingly, of the 33 orthologs located on LG14, three have duplicates on LG21, suggesting that the duplication event occurred early in the evolution of teleosts. Murine orthologs of human 5q CDR genes are distributed among three chromosomes, 18, 11, and 13. The order of genes within the three syntenic mouse chromosomes appears to be more colinear with the human order, suggesting that translocations occurred more frequently than inversions during mammalian evolution. Our comparative map should enhance understanding of the evolution of the del(5q) chromosomal region. Mutant fish harboring deletions affecting the 5q CDR syntenic region may provide useful animal models for investigating the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia.  相似文献   

7.
8.
To determine the biologic significance of the structural rearrangements of the long arm of chromosome 6(6q) in acute lymphoblastic leukemia (ALL) at diagnosis, we studied 412 consecutive children whose leukemic cell chromosomes had been completely banded and identified 45 (11%) children with this abnormality. The 45 cases were divided into del(6q) only (n = 11), del(6q) and numerical abnormalities (n = 4), del(6q) and structural abnormalities (n = 23), and 6q translocations (n = 7). The breakpoints of del(6q) were subgrouped: del(6)(q15q21) in 11 cases, del(6) (q13q21) in six, del(6)(q21q23) in four, del(6)(q15) in four, del(6)(q15q23) in three, and other deletions in 10 cases. Notably, all these deletions encompassed the 6q21 band, suggesting that this might be the locus of a recessive tumor suppressor gene, the absence of which contributes to malignant transformation or proliferation. Among the seven children with 6q translocations, a previously unidentified nonrandom translocation, t(6;12)(q21;p13) was noted in two cases with an early pre-B immunophenotype. Clinical features and event-free survival were similar among children with or without 6q abnormalities. Overall, children with 6q abnormalities were less likely than those without the abnormality to have a pre-B immunophenotype (P = .03). T-cell immunophenotypes were equally represented in cases with or without 6q abnormalities. However, all four children with del(6q) and a 12p abnormality had early pre-B ALL and all three children with del(6q) and a 9p abnormality had a T-cell immunophenotype. The lack of specificity for a particular immunophenotype may imply that the gene or genes affected by 6q abnormalities are broadly active in the multistep process of lymphoid leukemogenesis. The relatively high frequency of microscopically visible del(6q) indicates the need for molecular studies to identify cases with submicroscopic deletions.  相似文献   

9.
Morris  CM; Honeybone  LM; Hollings  PE; Fitzgerald  PH 《Blood》1989,74(5):1768-1773
In situ hybridization of the pHul-c-src probe to metaphase cells from three normal donors and two leukemic patients showed significant labeling in the proximal region of the long arm of chromosome 20q, with modal peaks of grains consistently at band 20q11.2. A secondary peak of grains was detected in the region 20q13.2-qter, the localization of SRC suggested by previous in situ studies. The exact localization of SRC is important for understanding the del(20q) chromosomal abnormality in myeloid neoplasias. Chromosome in situ hybridization and genomic studies showed loss of one allele of SRC in two patients with the deletion (20q). These results differ from previously published findings and suggest heterogeneity of the breakpoint at 20q11.2 in interstitial deletions of 20q, which characterize myeloid disorders.  相似文献   

10.
Involvement of bcl-2 gene in Japanese follicular lymphoma   总被引:5,自引:0,他引:5  
A t(14;18) (q32;q21) chromosome translocation is closely associated with the follicular lymphoma, which is prevalent in the United States, and the t(14;18) causes the juxtaposition of a bcl-2 gene on chromosome 18 with an immunoglobulin heavy-chain gene locus on chromosome 14. Genomic DNAs from 30 Japanese patients with follicular lymphoma were examined for the molecular features by Southern blot hybridization. Using probe b for the major breakpoint cluster region of a bcl-2 gene, the rearrangements were detected in eight patients. Six of the eight patients had breakpoints located within the major breakpoint region, while two had breakpoints outside this cluster region but within the region of the 7.5-kb SstI fragment containing the probe b sequence. In two patients, pFL-2 probe detected the bcl-2 gene rearrangements that occurred near or within the minor breakpoint cluster region. These ten patients had a rearranged JH-containing fragment that migrated with the rearranged bcl-2 fragment. In the other 20 patients, these two chromosome 18-specific DNA probes did not detect the bcl-2 rearrangements. Compared with studies performed in the United States, the statistical analysis indicates a significant difference in frequency of the bcl-2 gene rearrangements near or within the major breakpoint cluster region (P = 0.0027) and the minor breakpoint cluster region (P = 0.029). However, the distribution difference of these events was not significant.  相似文献   

11.
Chromosomal abnormalities, such as 13q deletions, are emerging as important prognostic factors in multiple myeloma. Fluorescence in situ hybridization (FISH) using specific DNA probes is the technique most widely used for the determination of genomic aberrations in this disease. The utility of comparative genomic hybridization (CGH) for molecular diagnostics in plasma cell malignancies has not been systematically analysed. We investigated tumour samples of patients with multiple myeloma (n = 43) or plasma cell leukaemia (n = 3) using CGH and FISH with five DNA probes localized to chromosome bands 1p22, 6q21, 11q22-q23, 13q14 and 17p13. By CGH, the most frequent genomic changes were gains on chromosomes 1q, 9q and 11q, as well as losses on chromosomes 13q, 6q, Xp and Xq. By FISH, trisomy 11q was identified at a similar frequency to the 13q deletion (42%). Compared with FISH data, the sensitivity of CGH was 80.7% and the specificity was 97.5%. Thirty-two aberrations found by FISH were not identified by CGH, mostly as a result of the proportion of cells carrying the respective aberrations, or because of the limited spatial resolution of CGH. Our data indicate that, for clinical molecular diagnostics in multiple myeloma, FISH with a disease-specific DNA probe set is superior to CGH analysis.  相似文献   

12.
13.
Summary A genomic probe derived from the breakpoint cluster region (bcr) on chromosome 22q11 was used to assess whether Philadelphia (Ph) chromosome positive chronic myelogenous leukaemia patients have unique patterns of bcr rearrangements and whether this pattern is modified as the disease progresses from stable phase to blast crisis. The data indicated that bcr rearrangements are fairly unique to each patient and are not subject to additional modifications during the course of the disease. We have also found bcr rearrangements in acute lymphocytic leukaemia (ALL) patients, usually of the cALL phenotype. For the majority of Ph+ ALL patients, the breakpoint on 22q11 was in bcr. However, we describe a case of Ph+ ALL without bcr rearrangement, indicating heterogeneity of Ph chromosomes in ALL at the molecular level. Contrary to previous reports, a bcr rearrangement was also identified in a childhood cALL.  相似文献   

14.
Molecular probes for the oncogenes of Rous sarcoma virus (v-src), avian myeloblastosis virus (v-myb), Kirsten murine sarcoma virus (v-Ki-ras), and Harvey murine sarcoma virus (v-Ha-ras) were hybridized to the DNA from mouse-Chinese hamster somatic cell hybrids. The v-src, v-myb, v-Ki-ras, and v-Ha-ras genes each detected one or a few homologous mouse DNA fragments whose segregation was analyzed in cell hybrids. Mouse cellular homologs c-src, c-Ki-ras, c-Ha-ras, and c-myb segregated concordantly with chromosomes 2, 6, 7, and 10, respectively. Comparison with the known locations of human c-src (chromosome 20) and human c-Ha-ras1 (chromosome 11 short arm) suggests that the human and mouse homologs of these two viral oncogenes reside in conserved linkage groups. The c-Ki-ras gene on mouse chromosome 6 might reside also in a conserved linkage group, along with glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase. However, direct confirmation of this suggestion must await a demonstration that c-Ki-ras on mouse chromosome 6 is homologous to c-Ki-ras2 on the short arm of human chromosome 12.  相似文献   

15.
Chromosome change at 20q11-q12, including del(20q), is sometimes reported in plasma cell dyscrasia, but most cases are found during or after chemotherapy. It is therefore still uncertain whether del(20q) is a primary change or therapy-related. We performed cytogenetic studies and fluorescent in situ hybridization (FISH) analysis using 20q12 and 20qter probes to ascertain the possible involvement of 20q in nine patients with Waldenstr?m macroglobulinemia (WM). The FISH study demonstrated deletions of 20q12 and/or 20qter in four of nine patients (44%) with WM at diagnosis, and one of them had the del(20q) chromosome. Moreover, one patient had de novo appearance of the del(20q) chromosome with 20q12 deletion after chemotherapy, although this patient had neither the del(20q) chromosome nor 20q12 deletion at WM diagnosis. Based on the results of this study, we conclude that chromosomal breakage at 20q13 is a non-random genetic change which plays a role in the neoplastic process of WM.  相似文献   

16.
Cytogenetic studies were performed on a new series of 23 patients with therapy-related acute non-lymphocytic leukaemia, preleukaemia or an acute myeloproliferative syndrome. In our total series of now 61 cases studied by chromosome banding techniques, at least one of the abnormalities -7, 5q-, 7q- or -5 or some related unbalanced translocations, primarily -7, +t(1q7p), was observed in 40 patients. The critical region for the deletions of chromosome no. 5 comprises bands 5q22 to 5q33 and of chromosome no. 7 bands distal to 7q22. The third most frequently involved chromosome was no. 21, rearranged at band 21q22 in the three patients with 21q+ and in one patient with 21q-. An i(21q) was observed in two patients, a -21 in four patients and a -22, +t(21q22q) and a -5, -21, +t(5p21q) in one patient each. Other characteristic abnormalities included total loss or rearrangements of the short arm of chromosome no. 17, observed in nine patients. One patient had a -12, three others had rearrangements resulting in a partial or total loss of the short arm of chromosome no. 12. A 19q+ with translocation to band 19q13 was observed in three cases, a -18 in three cases and a 3p- in four cases. Thirty-one patients with multiple chromosome aberrations experienced a significantly shorter survival as compared to 13 patients with a normal karyotype (P = 0.02) and 17 patients with one single chromosome aberration (P less than 0.01).  相似文献   

17.
Previous studies using classical cytogenetics have demonstrated the presence of the t(11;14) (q13;q32) chromosomal translocation in some cases of lymphocytic lymphoma of intermediate differentiation (IDL), a distinct type of low grade B-cell lymphoma. This finding suggested that the bcl-1 region (located at band q13 of chromosome 11) might be involved in this neoplasm. Using a genomic probe from the major breakpoint area of the bcl-1 locus, we identified rearrangements of the bcl-1 region in 10 of 19 cases, 2 of which comigrated with a rearranged allele of the immunoglobulin heavy chain gene joining region. In contrast, bcl-1 rearrangements were not found in other types of low grade B-cell lymphoma, specifically in 36 cases of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and 27 cases of follicular lymphoma (FL). To further assess the molecular pathology of IDL, we analyzed these cases for rearrangements of the bcl-2 proto-oncogene, which is associated primarily with follicular lymphomas. None of the 19 cases of IDL had rearrangements. Furthermore, none of the 36 cases of CLL/SLL showed bcl-2 rearrangements, whereas, as expected, 21 of 27 cases of FL had rearrangements of the bcl-2 locus. Our findings demonstrate an association between a rearranged bcl-1 region with approximately 50% of IDLs and suggest that abnormalities of this locus may be important in the pathogenesis of IDL.  相似文献   

18.
Summary. The most common abnormality of chromosome 20 in haematological malignancy is deletion of the long arm [del(20q)]. These interstitial deletions are variable in size and are seen in both premalignant haematological conditions and acute myeloid neoplasia. A commonly deleted region (CDR), mapped within the 20q11.2/q13.1 segment with an estimated size of 1·7 Mbp, is considered to present a primary genetic lesion marking a gene(s), the loss of which is responsible for the pathogenesis of these haematological disorders. While a small number of recurrent translocations involving chromosome 20 have also been reported, no recurrent aberration of this chromosome has been associated with myeloid disease progression. We present nine cases of Philadelphia (Ph)-positive chronic myeloid leukaemia (CML) in which deletions of chromosome 20 were also detected by conventional karyotyping. In six cases, fluorescent in situ hybridization (FISH) mapping confirmed a del(20q) which corresponded to the myeloid CDR. In the remaining three cases however, the presumed del(20q) marker was shown to be the result of an unbalanced translocation between band 20p11 and a second copy of the Ph chromosome. This new abnormality, termed dic(20;Ph) for short, was identical to a del(20)q by G-banding, and combined duplication of the breakpoint cluster region and Abelson murine leukaemia viral oncogene homologue (BCR-ABL) fusion with loss of the 20p11-pter segment. In all three cases, the dic(20;Ph) was associated with disease progression and therefore represents a new recurrent abnormality in CML blast crisis.  相似文献   

19.
Tissue samples from 60 post-Chernobyl childhood thyroid tumors have been investigated. We used comparative genomic hybridization (CGH) to detect chromosomal gains and losses within the tumor DNA. This is the first CGH study on childhood thyroid tumors. The post-Chernobyl tumors showed chromosomal imbalances in 30% of tumors. The most frequent DNA copy number changes in post-Chernobyl tumors involved chromosomes 2, 7q11.2-21, 13q21-22, 21 (DNA gains), and chromosomes 16p/q, 20q, 22q (DNA losses). Some of these specific alterations detected in post-Chernobyl thyroid tumors (deletions on chromosomes 16p/q and 22q) have previously been reported in thyroid tumors as associated with an aggressive biologic behavior and may therefore also account for the more aggressive phenotype of papillary thyroid carcinoma (PTC) found in post- Chernobyl tumors. Eighteen percent of post-Chernobyl PTC that exhibit RET rearrangements also showed chromosomal imbalances indicating that either additional genetic events are involved in this subset of tumors, or that intratumoral genetic heterogeneity exists in these tumors, suggesting a oligoclonal pattern to tumor development.  相似文献   

20.
Balanced translocations affecting the 11q23 region are among the most frequent chromosomal abnormalities in childhood acute lymphoblastic leukemia (ALL), comprising 5% to 6%. These cases consistently have a rearranged MLL gene and are associated with high-risk presenting features, hyperleukocytosis and younger age, and a poor treatment outcome. To assess the clinical and biologic significance of 11q23- associated structural chromosomal abnormalities other than translocations, we studied 17 cases of childhood ALL [14 with del(11)(q23) and 3 with inv(11)(p12q23)] that were identified among 785 cases with successful chromosome analysis. In contrast to reported cases with 11q23 and MLL gene rearrangement, our series was characterized by relatively low leukocyte counts (median, 15.1 x 10(9)/L), expression of CD10 antigen but not myeloid-associated CD15 and CDw65 antigens, a relatively high frequency of T-cell immunophenotypes, and a generally favorable prognosis. All 13 cases with interpretable molecular analysis lacked MLL gene rearrangements. We suggest that most cases with deletions or inversions affecting the 11q23 region represent clinically and biologically different entities as compared with those defined by 11q23 translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号