首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two novel complexes, [(C7H10NO2)CdCl3]n(I) and [(C7H9NO2)CuCl2],havebeen synthesized and characterized. Single crystal X-ray diffraction revealed that in compound (I), 2,6-dimethanol pyridinium acts as a monodentate ligand through the O atom of the hydroxyl group. Contrarily, the 2,6-dimethanol pyridine ligand interacts tridentately with the Cu(II) ion via the nitrogen atoms and the two oxygen (O, O’) atoms of the two hydroxyl groups. The structure’s intermolecular interactions were studied using contact enrichment ratios and Hirshfeld surfaces. Following metal coordination, numerous hydrogen connections between entities and parallel displacement stacking interactions between pyridine rings dictate the crystal packing of both compounds. The aromatic cycles generate layers in the crystal for both substances. Powder XRD measurements confirmed the crystalline sample phase purity. SEM confirmed the surface homogeneity, whereas EDX semi-quantitative analysis corroborated the composition. IR spectroscopy identified vibrational absorption bands, while optical UV-visible absorption spectroscopy investigated optical properties. The thermal stability of the two materials was tested using TG-DTA.  相似文献   

4.
We report the crystal structure of release factor 2 bound to ribosome with an aminoacyl tRNA substrate analog at the ribosomal P site, at 3.1 Å resolution. The structure shows that upon stop-codon recognition, the universally conserved GGQ motif packs tightly into the peptidyl transferase center. Nucleotide A2602 of 23S rRNA, implicated in peptide release, packs with the GGQ motif in release factor 2. The ribose of A76 of the peptidyl-tRNA adopts the C2′-endo conformation, and the 2′ hydroxyl of A76 is within hydrogen-bond distance of the 2′ hydroxyl of A2451. The structure suggests how a catalytic water can be coordinated in the peptidyl transferase center and, together with previous biochemical and computational data, suggests a model for how the ester bond between the peptidyl tRNA and the nascent peptide is hydrolyzed.  相似文献   

5.
Electronic phases with stripe patterns have been intensively investigated for their vital roles in unique properties of correlated electronic materials. How these real-space patterns affect the conductivity and other properties of materials (which are usually described in momentum space) is one of the major challenges of modern condensed matter physics. By studying the electronic structure of La(2-2x)Sr(1+2x)Mn(2)O(7) (x ~ 0.59) and in combination with earlier scattering measurements, we demonstrate the variation of electronic properties accompanying the melting of so-called bi-stripes in this material. The static bi-stripes can strongly localize the electrons in the insulating phase above T(c) ~ 160 K, while the fraction of mobile electrons grows, coexisting with a significant portion of localized electrons when the static bi-stripes melt below T(c). The presence of localized electrons below T(c) suggests that the melting bi-stripes exist as a disordered or fluctuating counterpart. From static to melting, the bi-stripes act as an atomic-scale electronic valve, leading to a "colossal" metal-insulator transition in this material.  相似文献   

6.
Materials with pyrochlore structure A2B2O7 have attracted considerable attention owing to their various applications as catalysts, sensors, electrolytes, electrodes, and magnets due to the unique crystal structure and thermal stability. At the same time, the possibility of using such materials for electrochemical applications in salt melts has not been studied. This paper presents the new results of obtaining high-density Mg2+-doped ceramics based on Gd2Zr2O7 with pyrochlore structure and comprehensive investigation of the electrical properties and chemical stability in a lithium chloride melt with additives of various concentrations of lithium oxide, performed for the first time. The solid solution of Gd2−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.10) with the pyrochlore structure was obtained by mechanically milling stoichiometric mixtures of the corresponding oxides, followed by annealing at 1500 °C. The lattice parameter changed non-linearly as a result of different mechanisms of Mg2+ incorporation into the Gd2Zr2O7 structure. At low dopant concentrations (x ≤ 0.03) some interstitial positions can be substituted by Mg2+, with further increasing Mg2+-content, the decrease in the lattice parameter occurred due to the substitution of host-ion sites with smaller dopant-ion. High-density ceramics 99% was prepared at T = 1500 °C. According to the results of the measurements of electrical conductivity as a function of oxygen partial pressure, all investigated samples were characterized by the dominant ionic type of conductivity over a wide range of pO2 (1 × 10–18 ≤ pO2 ≤ 0.21 atm) and T < 800 °C. The sample with the composition of x = 0.03 had the highest oxygen-ion conductivity (10−3 S·cm−1 at 600 °C). The investigation of chemical stability of ceramics in the melt of LiCl with 2.5 mas.% Li2O showed that the sample did not react with the melt during the exposed time of one week at the temperature of 650 °C. This result makes it possible to use these materials as oxygen activity sensors in halide melts.  相似文献   

7.
目的 探讨红细胞形态及红细胞膜的弹性变化与糖尿病发生发展的相关性. 方法 利用新型显微成像与分析技术对单个活态红细胞形态和胞膜弹性进行定量检测.测量NGT(56名)组、IGR(53例)组、新诊断T2DM(T2DM-1,55例)组和T2DM病程4~6年(T2DM-5,52例)组的红细胞形态和红细胞胞膜弹性的相关参数. 结果 上述各组红细胞形态和膜弹性参数依次逐步增大,组间细胞膜弹性参数比较差异均有统计学意义(P<0.05).IGR、T2DM-1组与NGT组红细胞的截面积和圆度因子比较,差异有统计学意义(P<0.05);T2DM-5与NGT组全部红细胞形态参数比较差异均有统计学意义(P<0.01).IGR、T2DM-1、T2DM-5组,除IGR、T2DM-1组间红细胞长短轴参数差异无统计学意义(P>0.05)外,其他组间红细胞形态参数比较差异均有统计学意义(P<0.05). 结论 随着T2DM病程的延长和HbA1c的升高,红细胞的变形功能逐渐减弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号