首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Purpose: This study evaluated the effect of three metal conditioners [Metal Photo Primer® (MPP), Cesead II Opaque Primer® (OP), Targis Link® (TL)], and one surface modification system [Siloc® (S)] on the shear bond strength (SBS) of a prosthetic composite material to Ni‐Cr alloy. Materials and Methods: Rivet‐shaped specimens were cast, and three surface treatments were evaluated: Polishing (P); sandblasting with either 50 μm (50SB) or 250 μm (250SB) Al2O3. All products were applied to half of the specimens, while the other half remained without the materials. Veneering resin composite (8‐mm diameter, 2‐mm thick) was applied and light‐exposed for 90 seconds in a laboratory light‐curing unit. The specimens were stored in water at 37°C for 24 hours, and half were subjected to 500 thermal cycles consisting of water baths at 4°C and 60°C. All specimens were submitted to SBS test (0.5 mm/min) until failure. Failure patterns were determined using optical and scanning electron microscope (SEM) analysis. Data were analyzed by ANOVA and post hoc Tukey's test (preset alpha of 5%). Results: The SBS values of OP and TL groups were higher than those of MPP and S within the 50SB treatment (p < 0.05). No significant difference in SBS was noted between OP and TL as well as between MPP and S. On the other hand, no significant differences were found among conditioners within the 250SB group (p > 0.05). The SBS values of MPP, OP, and S from the 250SB group were higher than those from 50SB (p < 0.05). No significant difference in SBS was noted among most groups with conditioners after thermocycling. The only exception was observed for MPP, which showed an increase in SBS after thermocycling (p < 0.05). Differences in SBS were noted among the groups with conditioners (p < 0.05), and no significant difference in SBS was noted between TL and OP groups, which showed the highest values among all within the P group. No significant difference was noted between MPP and S. Debonded surfaces showed adhesive failures predominantly located between metal surface and opaque resin. Conclusions: The OP and TL conditioners and surface sandblasting with 250 μm Al2O3 promoted the highest SBS between resin and the Ni‐Cr metal surface.  相似文献   

2.

PURPOSE

The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy.

MATERIALS AND METHODS

Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test.

RESULTS

There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure.

CONCLUSION

Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys.  相似文献   

3.

Objective

To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems.

Material and Methods

Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV -self-priming etchant (Tyrian-SPe). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey’s test (α=0.05).

Results

Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV -self-priming etchant (Tyrian-SPe). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey’s test (α=0.05).

Conclusion

Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.  相似文献   

4.

Objective:

This study evaluated the effect of the margin location and an adhesive system on the marginal adaptation of composite restorations.

Material and Methods:

Class V cavities were prepared in bovine teeth with the gingival margin on the dentin and the incisal margin on the enamel. The cavities were restored with a micro-hybrid composite resin using an etch-and-rinse [Single Bond 2 (SB)] or a self-etching adhesive [Clearfil SE Bond (CL)]. After finishing and polishing the restorations, epoxy replicas were prepared. The marginal adaptation was analyzed using scanning electronic microscopy (SEM, 500 x magnification). The higher gap width in each margin was recorded (T0). After the first evaluation, the samples were submitted to thermal cycling (2,000 cycles of 5ºC±2ºC followed by 55ºC±2ºC - T1) and mechanical cycling (100,000 cycles of 50 kN and 2 Hz - T2). Replicas of samples were rebuilt after each cycling and analyzed under SEM. The data were submitted to Mann-Whitney, Wilcoxon and Friedman testing (a=0.05).

Results:

The SB presented higher gaps in the dentin than the enamel, while there was no difference between the substrate for the CL. In the dentin, the CL showed better marginal sealing than the SB. The opposite occurred in the enamel. There were no significant differences between the baseline, thermal and mechanical cycling for any experimental condition.

Conclusions:

The outcomes of the present study showed that the adhesive system and margin location have an important effect on the marginal adaptation of composite restorations.  相似文献   

5.

Objectives:

To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters.

Material and methods:

Composite resin (Filtek Z250) buildups were bonded to untreated (prophylaxis) and treated (burcut or SiC-paper) enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition): Clearfil SE Bond (CSE); OptiBond Solo Plus Self-Etch (OP); AdheSe (AD); Tyrian Self Priming Etching (TY), Adper Scotchbond Multi-Purpose Plus (SBMP) and Adper Single Bond (SB). After storage in water (24 h/37°C), the bonded specimens were sectioned into sticks with 0.8 mm2 cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa) were subjected to two-way ANOVA and Tukey''s test (α=0.05). The etching patterns of the adhesive systems were also observed with a scanning electron microscope.

Results:

The main factor adhesive system was statistically significant (p<0.05). The mean bond strength values (MPa) and standard deviations were: CSE (20.5±3.5), OP (11.3±2.3), AD (11.2±2.8), TY (11.1±3.0), SBMP (21.9±4.0) and SB (24.9±3.0). Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system.

Conclusion:

Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed.  相似文献   

6.

Objectives

The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin).

Methods

Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed.

Results

The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface.

Conclusions

Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.  相似文献   

7.

PURPOSE

Veneering porcelain might be delaminated from underlying zirconia-based ceramics. The aim of this study was the evaluation of the effect of different surface treatments and type of zirconia (white or colored) on shear bond strength (SBS) of zirconia core and its veneering porcelain.

MATERIALS AND METHODS

Eighty zirconia disks (40 white and 40 colored; 10 mm in diameter and 4 mm thick) were treated with three different mechanical surface conditioning methods (Sandblasting with 110 µm Al2O3 particle, grinding, sandblasting and liner application). One group had received no treatment. These disks were veneered with 3 mm thick and 5 mm diameter Cercon Ceram Kiss porcelain and SBS test was conducted (cross-head speed = 1 mm/min). Two and one way ANOVA, Tukey''s HSD Past hoc, and T-test were selected to analyzed the data (α=0.05).

RESULTS

In this study, the factor of different types of zirconia ceramics (P=.462) had no significant effect on SBS, but the factors of different surface modification techniques (P=.005) and interaction effect (P=.018) had a significant effect on SBS. Within colored zirconia group, there were no significant differences in mean SBS among the four surface treatment subgroups (P=0.183). Within white zirconia group, "Ground group" exhibited a significantly lower SBS value than "as milled" or control (P=0.001) and liner (P=.05) groups.

CONCLUSION

Type of zirconia did not have any effect on bond strength between zirconia core and veneer ceramic. Surface treatment had different effects on the SBS of the different zirconia types and grinding dramatically decreased the SBS of white zirconia-porcelain.  相似文献   

8.

Objective

This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets.

Material and Methods

Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20): Gc, no treatment (control); Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s). Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC) (TC). The specimens were submitted to the shear bond strength (SBS) test using a universal testing machine (1 mm/min). Failure mode was assessed using optical and scanning electron microscopy (SEM), together with the surface roughness (Ra) of the resin cement in the bracket using interference microscopy (IM). 2-way ANOVA and the Tukey test were used to compare the data (p>0.05).

Results

The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0), but thermocycling did not (p=0.6974). Considering the SBS results (MPa), Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9) and Gt-TC showed the lowest (8.45±6.7). For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157) but the surface treatments did not (p=0.458). For the thermocycled and non-thermocycled groups, Ra (µm) was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces.

Conclusion

Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.  相似文献   

9.

Objectives

The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them.

Material and methods

Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey''s test (α=0.05).

Results

The correlation between tests was estimated with Pearson''s product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests.

Conclusions

The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.  相似文献   

10.

PURPOSE

The purpose of this study was to evaluate the effect of provisional cement removal by different dentin cleaning protocols (dental explorer, pumice, cleaning bur, Er:YAG laser) on the shear bond strength between ceramic and dentin.

MATERIALS AND METHODS

In total, 36 caries-free unrestored human third molars were selected as tooth specimens. Provisional restorations were fabricated and cemented with eugenol-free provisional cement. Then, disc-shaped ceramic specimens were fabricated and randomly assigned to four groups of dentin cleaning protocols (n = 9). Group 1 (control): Provisional cements were mechanically removed with a dental explorer. Group 2: The dentin surfaces were treated with a cleaning brush with pumice Group 3: The dentin surfaces were treated with a cleaning bur. Group 4: The provisional cements were removed by an Er:YAG laser. Self-adhesive luting cement was used to bond ceramic discs to dentin surfaces. Shear bond strength (SBS) was measured using a universal testing machine at a 0.05 mm/min crosshead speed. The data were analyzed using a Kolmogorov Smirnov, One-way ANOVA and Tukey HSD tests to perform multiple comparisons (α=0.05).

RESULTS

The dentin cleaning methods did not significantly affect the SBS of ceramic discs to dentin as follows: dental explorer, pumice, cleaning bur, and Er:YAG laser.

CONCLUSION

The use of different cleaning protocols did not affect the SBS between dentin and ceramic surfaces.  相似文献   

11.
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics.

Objective

The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks.

Material and Methods

Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05).

Results

All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious.

Conclusion

The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.  相似文献   

12.

Objective

The aim of this study was to quantify the surface area, volume and specific surface area of endodontic files employing quantitative X-ray micro computed tomography (mXCT).

Material and Methods

Three sets (six files each) of the Flex-Master Ni-Ti system (Nº 20, 25 and 30, taper .04) were utilized in this study. The files were scanned by mXCT. The surface area and volume of all files were determined from the cutting tip up to 16 mm. The data from the surface area, volume and specific area were statistically evaluated using the one-way ANOVA and SNK multiple comparison tests at α=0.05, employing the file size as a discriminating variable. The correlation between the surface area and volume with nominal ISO sizes were tested employing linear regression analysis.

Results

The surface area and volume of Nº 30 files showed the highest value followed by Nº 25 and Nº 20 and the differences were statistically significant. The Nº 20 files showed a significantly higher specific surface area compared to Nº 25 and Nº 30. The increase in surface and volume towards higher file sizes follows a linear relationship with the nominal ISO sizes (r2=0.930 for surface area and r2=0.974 for volume respectively). Results indicated that the surface area and volume demonstrated an almost linear increase while the specific surface area exhibited an abrupt decrease towards higher sizes.

Conclusions

This study demonstrates that mXCT can be effectively applied to discriminate very small differences in the geometrical features of endodontic micro-instruments, while providing quantitative information for their geometrical properties.  相似文献   

13.
Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified.

Objective:

Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes.

Material and Methods:

Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer''s instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37º C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes.

Results:

Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive).

Conclusions:

Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.  相似文献   

14.

PURPOSE

This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment.

MATERIALS AND METHODS

Sixty specimens were cut in 15 × 2.75 mm discs using zirconia. After air blasting of 50 µm alumina, samples were prepared by tribochemical silica coating with Rocatec™ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+Calibra®, (2) Monobond S+Multilink® N and (3) ESPN sil+RelyX™ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey''s test.

RESULTS

In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05).

CONCLUSION

In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.  相似文献   

15.

Objectives

The aim of the present study was to assess the effect of the exposure to food-simulating liquids prior to brushing simulation on the surface roughness of five composite materials (Quixfil, Filtek Supreme, Esthet-X, Filtek Z250, Tetric Ceram).

Material and methods

Twenty cylinders (5 mm diameter and 4 mm height) of each composite were randomly allocated to 4 groups (n=5), according to the food-simulating liquid in which they were immersed for 7 days at 37ºC: artificial saliva, heptane, citric acid, and ethanol. After this period, the top surface of composite cylinders was submitted to 7,500 brushing cycles (200 g load). Measurements of the surface roughness (Ra, µm) were carried out before and after the exposure to the chemicals/brushing simulation. Changes on the morphology of composite surfaces were observed through scanning electron microscopy (SEM).

Results

The statistical analysis (ANOVA with cofactor / Tukey''s test, α=5%) detected a significant interaction between solutions and composite resins. Esthet-X, Filtek Z250 and Tetric Ceram were not affected by the food-simulating liquids/toothbrushing. Citric acid and ethanol increased the surface roughness of Quixfil and Filtek Supreme, respectively. SEM images corroborate the surface roughness findings, demonstrating the negative effect from chemical solutions and mechanical abrasion.

Conclusions

The surface roughness of composite resin materials are differently affected by the food-simulating solutions, depending on the immersion media.  相似文献   

16.

Objectives

This study evaluated the influence of different exposure times to saliva in situ in comparison with an antioxidant treatment on composite resin bond strength to human enamel restored after tooth bleaching.

Material and Methods

Forty human teeth specimens measuring 5x5 mm were prepared and randomly allocated into 5 groups with 8 specimens each: Gct (control group, restored on unbleached enamel); Gbl (restored immediately after bleaching); Gsa (bleached, treated with 10% sodium ascorbate gel for 60 min and restored); G7d (bleached, exposed to saliva in situ for 7 days and restored); and G14d (bleached, exposed to saliva in situ for 14 days and restored). Restored samples were cut into 0.8 mm2 sticks that were tested in microtensile. Specimens were microscopically analyzed and failure modes were classified as adhesive, cohesive, or mixed. Pretest and cohesive failures were not considered in the statistical analysis, which was performed with one-way ANOVA and Tukey''s post-hoc test (α=0.05), with the dental specimen considered as the experimental unit.

Results

Mean bond strength results found for Gbl in comparison with Gct indicated that bleaching significantly reduced enamel adhesiveness (P<0.01). However, no statistically significant differences were found between Gct, Gsa and G7d (P>0.05). Bond strength found for G14d was significantly higher than for Gsa (P<0.01). Fractures modes were predominantly of a mixed type.

Conclusions

Bonding strength to bleached enamel was immediately restored with the application of sodium ascorbate and exposure to human saliva in situ for at least 7 days. Best results were obtained with exposure to human saliva in situ for 14 days. Treatment with sodium ascorbate gel for 60 min may be recommended in cases patients cannot wait for at least 7 days for adhesive techniques to be performed.  相似文献   

17.

PURPOSE

Topographic analysis of treated ceramics provides qualitative information regarding the surface texture affecting the micromechanical retention and locking of resin-ceramics. This study aims to compare the surface microstructure following different surface treatments of feldspathic porcelain.

MATERIALS AND METHODS

This in-vitro study was conducted on 72 porcelain discs randomly divided into 12 groups (n=6). In 9 groups, feldspathic surfaces were subjected to sandblasting at 2, 3 or 4 bar pressure for 5, 10 or 15 seconds with 50 µm alumina particles at a 5 mm distance. In group 10, 9.5% hydrofluoric acid (HF) gel was applied for 120 seconds. In group 11, specimens were sandblasted at 3 bar pressure for 10 seconds and then conditioned with HF. In group 12, specimens were first treated with HF and then sandblasted at 3 bar pressure for 10 seconds. All specimens were then evaluated under scanning electron microscopy (SEM) at different magnifications.

RESULTS

SEM images of HF treated specimens revealed deep porosities of variable sizes; whereas, the sandblasted surfaces were more homogenous and had sharper peaks. Increasing the pressure and duration of sandblasting increased the surface roughness. SEM images of the two combined techniques showed that in group 11 (sandblasted first), HF caused deeper porosities; whereas in group 12 (treated with HF first) sandblasting caused irregularities with less homogeneity.

CONCLUSION

All surface treatments increased the surface area and caused porous surfaces. In groups subjected to HF, the porosities were deeper than those in sandblasted only groups.  相似文献   

18.

Objectives

Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA).

Material and Methods

Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine.

Results

The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively).

Conclusions

The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite.  相似文献   

19.

Objective

The oral environment is subject to biofilm accumulation and cariogenic challenge, and few studies exist on the effect of these factors on the bond strength of adhesive systems. The aim of this study was to test if the exposure of adhesive interfaces to cariogenic challenge under biofilm accumulation could promote higher degradation than the exposure to biofilm accumulation alone.

Material And Methods

Five molars were ground until exposure of medium dentin and then restored (Single Bond 2 and Z250 3M ESPE). The tooth/resin sets were cut to obtain beam-shaped specimens, which were distributed according to the aging conditions (n=20): water for 24 h (control); biofilm under cariogenic challenge for 3, 5 or 10 days; biofilm without cariogenic challenge for 10 days; and water for 3 months. Microcosm biofilms were formed from human saliva and grown in a saliva analogue medium, supplemented or not with sucrose to promote cariogenic challenge. Specimens were tested for microtensile bond strength, and failure modes were classified using light microscopy. Bond strength data were analyzed using ANOVA and failure modes were analyzed using ANOVA on ranks (α=0.05).

Results

No significant differences in bond strength were detected among the aging methods (P=0.248). The aging period was associated with an increase in the frequency of adhesive failures for the groups aged for 10 days or longer (P<0.001).

Conclusion

Aging leads to a higher prevalence of interfacial adhesive failures, although this effect is not associated with cariogenic challenge or reduction in bond strengths.  相似文献   

20.

PURPOSE

This study aimed to investigate the efficacy of cleaning solutions on saliva-contaminated zirconia in comparison to air-abrasion in terms of resin bonding.

MATERIALS AND METHODS

For saliva-contaminated airabraded zirconia, seven cleaning methods)-no contamination (NC), water-spray rinsing (WS), additional airabrasion (AA), and cleaning with four solutions (Ivoclean [IC]; 1.0 wt% sodium dodecyl sulfate [SDS], 1.0 wt% hydrogen peroxide [HP], and 1.0 wt% sodium hypochlorite [SHC])-were tested. The zirconia surfaces for each group were characterized using various analytical techniques. Three bonded resin (Panavia F 2.0) cylinders (bonding area: 4.5 mm2) were made on one zirconia disk specimen using the Ultradent jig method [four disks (12 cylinders)/group; a total of 28 disks]. After 5,000 thermocycling, all specimens were subjected to a shear bond strength test with a crosshead speed of 1.0 mm/minute. The fractured surfaces were observed using an optical and scanning electron microscope (SEM).

RESULTS

Contact angle measurements showed that groups NC, AA, IC, and SHC had hydrophilic surfaces. The X-ray photoelectron spectroscopy (XPS) analysis showed similar elemental distributions between group AA and groups IC and SHC. Groups IC and SHC showed statistically similar bond strengths to groups NC and AA (P>.05), but not groups SDS and HP (P<.05). For groups WS, SDS, and HP, blister-like bubble formations were observed on the surfaces under SEM.

CONCLUSION

Within the limitations of this in vitro study, some of the cleaning solutions (IC or SHC) were effective in removing saliva contamination and enhancing the resin bond strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号