首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerase chain reaction (PCR) methods enable the detection of large number of human papillomavirus (HPV) genotypes that infect the anogenital tract. In this study, two groups of cervical scrapes with abnormal cytomorphology were analysed. The first group was tested with three sets of consensus primers located within the L1 region of HPV genome, MY09/MY11 (i.e. MY), L1C1/L1C2-1/L1C2-2 (i.e. LC) and pI-1/pI-2 (i.e. pI) primer sets, while the second group of samples, which were all negative with the MY primers, was tested further with the LC primers, as well as with the GP5/GP6 (i.e. GP) primers. The GP primers were used in the nested PCR following amplification with the MY primers (i.e. MY/GP nested PCR). Samples from both groups were also tested with type-specific primers for HPV types 6/11, 16, 18, 31 and 33. In the first study group (N=164) there were 76.2% positive results obtained with at least one set of consensus primers. There were 62.2, 39, 62.2 and 59.1% positive results obtained with the MY, the pI, the LC and the HPV type-specific primer sets, respectively. The best results were obtained when both the MY and the LC primer sets were used, because in combination they detected 75% positive samples compared to 62.2% when used alone. There were 2. 4% samples negative with all consensus primers, but positive with one of the HPV type-specific primers, which increased the overall positivity rate to 78.6%. In the second study group (N=250) there were 8.4, 38.8 and 4% samples positive with the LC primers, the nested MY/GP and the HPV type-specific primer sets, respectively. Thus, the use of the MY/GP nested PCR increased significantly the positivity rate of HPV DNA detection and should be used for samples with a low copy number of HPV DNA. In conclusion, the following diagnostic protocol would be appropriate for detection of cancer-related HPVs: preselection of samples with the MY and the LC primers, additional amplification of the MY- and the LC-negative samples with the MY/GP nested PCR and HPV typing of consensus PCR-positive samples with the HPV type-specific primers.  相似文献   

2.
Cervical samples were evaluated for human papillomavirus (HPV) presence using the hybrid capture-2 (HC2) assay and the polymerase chain reaction (PCR) with three different primer sets (GP5+/6+, MY09/11 and pU1M/2R). PCR results were compared to HC2 and results of all assays were compared to cytological and colposcopy findings. Post-test probability was assessed in individual assays and test combinations. HPV-DNA prevalence was 36.5% with HC2 and 55.2% with PCR. MY09/11 detected HPV-DNA in 38% of samples, GP5+/6+ in 19.1% and pU1M/2R in 16.4%. pU1M/2R and HC2 had the highest concordance (75.31%, k=0.39 in the whole population; 74.1%, k=0.5 in women with abnormal cytology). pU1M/2R had the best diagnostic performance, including optimal post-test probabilities and cervical abnormality detection (individually or in a panel of tests). Women positive for pU1M/2R may be at higher risk of disease progression; the assay performance when combined with a Pap smear in cervical cancer screening programs should be evaluated.  相似文献   

3.
The aim of the present study was to evaluate the first void urine (FVU) as a non-invasive sampling method for HPV detection and genotyping in a high-risk population. Men presenting with HPV associated penile lesions or HPV positive partners attending a urological department in La Plata, Argentina were enrolled for HPV detection and genotyping. DNA from 185 first-void urine samples was evaluated for the presence of HPV by nested polymerase chain reaction using MY09/11 and GP05/06 primers. The viral genotype was analyzed by means of the single-stranded conformation polymorphisms (SSCP) method. Seventy-three percent (135/185) of the FVU specimens were positive for HPV-DNA. The viral prevalence in patients with HPV-DNA positive partners was 68.8% (77/112), and 79.5% (58/73) of patients with penile lesions were found to be HPV positive. The most frequent viral type was HPV-11 (26.7%), followed by HPV-6 (23%), HPV-16 (21.5%), HPV-18 (6%), and HPV-31 (4.4%). In this study, 11.1% (15/135) of the HPV positive specimens were double infections. These results indicate that high-risk HPVs can be found in clinical lesions in a high percentage (43.8%), as simple or double infections. In this sense, the male population represents an important reservoir for the virus and may play a role in the transmission and perpetuation of the infection in the general population. The method described below provides a tool for detection and typing of HPV-DNA using samples obtained by non-invasive techniques and thus easy to obtain.  相似文献   

4.
BACKGROUND: Type-specific persistence of human papillomavirus (HPV) infection can cause invasive cervical cancer. OBJECTIVES: To evaluate the efficacy of HPV detection and typing with a general polymerase chain reaction (PCR)-based genotyping array and to compare it with a type-specific PCR assay. STUDY DESIGN: Four hundred and thirty-three cervical samples were tested with a modified MY11/GP6+ PCR-based reverse-blot assay (EasyChip HPV Blot; King Car, Taiwan [hereafter HPV Blot]) and with 20 genotypes of L1-type-specific PCR (HPV-6, -11, -16, -18, -31, -33, -35, -39, -45, -51, -52, -53, -56, -58, -59, -62, -66, -68, -70, and -71 [CP8061]). RESULTS: The concordance of the two tests in determining HPV positivity was 96.8% (419/433), with a Cohen's kappa=0.93 (95% CI: 0.90-0.97) and McNemar's test of P=1.0, which indicates excellent agreement. The overall concordance of the two tests in the identification of type-specific HPV was 91.0% (394/433). Sensitivity (90-100%), specificity (99.2-100%), and accuracy (98.6-100%) rates of HPV Blot against the gold standard were satisfactory for HPV-16, -18, -58, -33, -52, -39, -45, -31, -51, -70 while HPV-71 (63.6%) had suboptimal sensitivity. Though the kappa values between the two tests for many individual genotypes could not be reliably calculated because of low positivity, the kappa values for HPV-16, -52, and -58 were excellent (0.93, 0.96, and 0.95, respectively). CONCLUSION: The modified MY11/GP6+ PCR-based HPV Blot assay is accurate and sensitive for detection and genotyping of HPV in cervical swab samples.  相似文献   

5.
The novel PGMY L1 consensus primer pair is more sensitive than the MY09 and MY11 primer mix for detection and typing with PCR of human papillomavirus (HPV) DNA in genital specimens. We assessed the diagnostic yield of PGMY primers for the detection and typing of HPV by comparing the results obtained with PGMY09/PGMY11 and MY09/MY11/HMB01 on 299 genital samples. Amplicons generated with PGMY primers were typed with the line blot assay (PGMY-line blot), while HPV amplicons obtained with the degenerate primer pool MY09/MY11/HMB01 were detected with type-specific radiolabeled probes in a dot blot assay (standard consensus PCR test). Cervicovaginal lavage samples (N = 272) and cervical scrape samples (N = 27) were tested in parallel with both PCR tests. The PGMY-line blot test detected the presence of HPV DNA more frequently than the standard consensus PCR assay. The concordance for HPV typing between the two assays was 84.3% (214 of 255 samples), for a good kappa value of 0.69. Of the 177 samples containing HPV DNA by at least one method, 40 samples contained at least one HPV type detected only with PGMY-line blot, whereas positivity exclusively with the standard consensus PCR test was found for only 7 samples (P < 0.001). HPV types 45 and 52 were especially more frequently detected with PGMY than MY primers. However, most HPV types were better amplified with PGMY primers, including HPV-16. Samples with discordant results between the two PCR assays more frequently contained multiple HPV types. Studies using PGMY instead of MY primers have the potential to report higher detection rates of HPV infection not only for newer HPV types but also for well-known genital types.  相似文献   

6.
An in-house polymerase chain reaction direct sequencing (PCR-DS) approach for HPV detection and typing was developed, taking advantage of two widely used pairs of human papillomavirus (HPV)-specific PCR primers, MY09/MY11 and GP5/GP6, and 33P-labeled dideoxynucleotides. In this study, 105 pathological specimens were examined: 89% were diagnosed as cervical intraepithelial neoplasia (CIN) grade I-III, 76.2% were HPV-positive by PCR-DS. The PCR using GP5/GP6 (first tier) and MY09/MY11 primers (second tier for the GP5/GP6-negative samples) detected additional 15%-25% HPV-positive samples compared with each pair used separately. Direct sequencing was then used to type the HPV. A readout of a sequence as short as 34 nucleotides within a specific region in the L1 gene is sufficient to type known or novel sequences. Because of its high sensitivity and cost-effectiveness, the two-tier PCR-DS was adopted by the authors as the current method of choice for HPV diagnosis with ultimate sequence precision.  相似文献   

7.
An optimal method for the processing of archival cervical Papanicolaou (pap)-stained smears for the amplification of human papillomavirus (HPV) DNA by polymerase chain reaction (PCR) was developed. This methodology was then applied to a series of 44 pap smears designated as HPV positive or negative (on the basis of both major and minor cytological criteria) or cervical intraepithelial neoplasia (CIN)-cancer. For the detection of HPV DNA, each sample was tested with the consensus GP5/6 primers, and when negative, with CPI-IIG primers. The HPV DNA was detected in 100% (8 of 8) of CIN-cancer smears using the GP5/6 primers. In smears with cytological evidence of HPV without CIN. the use of both sets of primers yielded positive results in 100% (19 of 19) of the samples. Direct sequence analysis of PCR products showed that 16 of the 27 HPV-positive samples contained more recently described HPV types. When tested with both primer combinations, all 17 cytologically negative smears were positive for beta-globin but negative for HPV DNA. The findings show the value of using archival pap smears for further investigations to address issues such as latency, but they indicate that cytological criteria and DNA technology will be critical factors in the reliability of the results.  相似文献   

8.
Since human papillomavirus (HPV) is the central causal factor in cervical cancer, understanding the epidemiology of this infection constitutes an important step towards development of strategies for prevention. Six hundred and fifty seven cervical samples were tested for HPV using PCR with consensus primers (MY09/MY11), by genotyping (restriction and sequencing analyses) and by cervical cytology, from women who attended a Health Examination Center of the French social security. Women with no cervical smear as well as women with cytological abnormalities within the last 3 years were recruited. HPV DNA was detected in 7.3% of the women (5.3% for high-risk, 2.4% for low-risk, and 0.5% for unknown risk types) including 6 (0.9%) mixed infections. Fifteen different genotypes were detected, of which genotypes 16 (22.2%), 58 (13.0%), 18 (11.1%), 30 (9.2%), and 33 (9.2%) were the most prevalent. In age group 17-25 years, we found the highest frequencies for both any (22.1%) and high-risk (14.7%) HPV, and prevalences gradually decreased with age. 5.2% of low-grade squamous intraepithelial lesion, 0.3% of high-grade squamous intraepithelial lesion, and 1.2% of atypical squamous cells of undetermined significance were found. The frequencies of high risk and all HPV types were significantly higher in squamous intraepithelial lesions than in those with normal and reactive/reparative changes (P < 0.0001). The prevalence of high-risk HPV in the atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion group (28.6%) was significantly higher than in the normal and reactive/reparative changes groups (3.4%) (P < 0.0001). HPV detection was associated with younger age, single marital and non-pregnant status (P < 0.0001), premenopausal status (P = 0.0004), and contraception (P = 0.0008). Marital status (OR 4.5; 95% CI = 2.3-9.0) and tobacco consumption (OR 3.0; 95% CI = 1.6-5.7) were predictive independent factors of HPV infection. The French system of Health Examination Centers might be of interest for following women regularly, especially those with a low socioeconomic status.  相似文献   

9.
A nested multiplex PCR (NMPCR) assay that combines degenerate E6/E7 consensus primers and type-specific primers was evaluated for the detection and typing of human papillomavirus (HPV) genotypes 6/11, 16, 18, 31, 33, 35, 39, 42, 43, 44, 45, 51, 52, 56, 58, 59, 66, and 68 using HPV DNA-containing plasmids and cervical scrapes (n = 1,525). The performance of the NMPCR assay relative to that of conventional PCR with MY09-MY11 and GP5+-GP6+ primers, and nested PCR with these two primer sets (MY/GP) was evaluated in 495 cervical scrapes with corresponding histologic and cytologic findings. HPV prevalence rates determined with the NMPCR assay were 34.7% (102 of 294) in the absence of cervical intraepithelial neoplasia (CIN 0), 94.2% (113 of 120) in the presence of mild or moderate dysplasia (CIN I/II), and 97.8% (44 of 45) in the presence of severe dysplasia (CIN III). The combination of all four HPV detection methods applied in the study was taken as "gold standard": in all three morphological subgroups the NMPCR assay had significantly (P < 0.0001) higher sensitivities than the MY09-MY11 and GP5+-GP6+ assays and sensitivities comparable or equal to those of the MY/GP assay. All 18 HPV genotypes investigated were detected among the clinical samples. The ratio of high- to low-risk HPV genotypes increased from 4:1 (80 of 103) in CIN 0 to 19:1 (149 of 157) in CIN I to III. Multiple infections were detected in 47.9% (124 of 259) of the patients. In conclusion, the novel NMPCR method is a sensitive and useful tool for HPV DNA detection, especially when exact HPV genotyping and the identification of multiple HPV infections are required.  相似文献   

10.
Aims—To assess the validity and practicality of real time polymerase chain reaction (PCR) for human papillomavirus (HPV) testing in combination with liquid based cytology samples for cervical screening.Methods—Real time PCR using consensus (GP5+/6+) and type specific primers was developed to detect genital HPV types. This provides rapid, efficient amplification followed by denaturation of the product and computer analysis of the kinetics data that are generated. Liquid based cytology samples were obtained from patients attending routine cervical screening clinics. DNA was extracted from the residual cellular suspension after cytology using spin columns.Results—Real time PCR successfully distinguished between HPV-16 and HPV-18 on the basis of amplification with consensus primers followed by DNA melting temperature (Tm) analysis. Sensitivities of one to 10 copies of HPV-16 (mean Tm = 79.4°C; 2 SD, 0.8) and four to 40 copies of HPV-18 (mean Tm = 80.4°C; 2 SD, 0.4) were obtained. In a mixed population of SiHa and HeLa cells containing known copy numbers of HPV-16 and HPV-18 genomes, HPV-16 and HPV-18 products were clearly separated by Tm analysis in mixtures varying from equivalence to 1/1000. Together with detailed melt analysis, type specific primers from the same region of the L1 gene confirmed the differential ability of this system. The method was applied to 100 liquid based cytology samples where HPV status using conventional GP5+/6+ PCR was already known. There was 95% agreement between the methods, with 55 positives detected by conventional PCR and 59 with real time PCR. The method was then tested on 200 routine liquid based cytology samples. Approximately 10% were positive by real time PCR, most of which were classified as HPV-16 by detailed melt analysis. Thirteen (6.8%) HPV positives were identified in 189 samples showing no evidence of cervical cytological abnormality.Conclusions—Real time PCR is a rapid, efficient method for the detection of HPV with the separation of HPV-16 and HPV-18 on the basis of differential Tm. Preliminary results suggest it could prove useful if HPV testing is added to cervical screening programmes.  相似文献   

11.
AIMS: To assess the validity and practicality of real time polymerase chain reaction (PCR) for human papillomavirus (HPV) testing in combination with liquid based cytology samples for cervical screening. METHODS: Real time PCR using consensus (GPS+/6+) and type specific primers was developed to detect genital HPV types. This provides rapid, efficient amplification followed by denaturation of the product and computer analysis of the kinetics data that are generated. Liquid based cytology samples were obtained from patients attending routine cervical screening clinics. DNA was extracted from the residual cellular suspension after cytology using spin columns. RESULTS: Real time PCR successfully distinguished between HPV-16 and HPV-18 on the basis of amplification with consensus primers followed by DNA melting temperature (Tm) analysis. Sensitivities of one to 10 copies of HPV-16 (mean Tm = 79.4 degrees C; 2 SD, 0.8) and four to 40 copies of HPV-18 (mean Tm = 80.4 degrees C; 2 SD, 0.4) were obtained. In a mixed population of SiHa and HeLa cells containing known copy numbers of HPV-16 and HPV-18 genomes, HPV-16 and HPV-18 products were clearly separated by Tm analysis in mixtures varying from equivalence to 111000. Together with detailed melt analysis, type specific primers from the same region of the L1 gene confirmed the differential ability of this system. The method was applied to 100 liquid based cytology samples where HPV status using conventional GP5+/6+ PCR was already known. There was 95% agreement between the methods, with 55 positives detected by conventional PCR and 59 with real time PCR. The method was then tested on 200 routine liquid based cytology samples. Approximately 10% were positive by real time PCR, most of which were classified as HPV-16 by detailed melt analysis. Thirteen (6.8%) HPV positives were identified in 189 samples showing no evidence of cervical cytological abnormality. CONCLUSIONS: Real time PCR is a rapid, efficient method for the detection of HPV with the separation of HPV-16 and HPV-18 on the basis of differential Tm. Preliminary results suggest it could prove  相似文献   

12.
In order to examine a sensitive unbiased consensus PCR with routine sequencing for HPV typing, we analysed Danish male and female patients suspected of having an HPV infection. We used the well-characterised nested PCR setting with MY09/MY11 and GP5+/GP6+ primers, followed by routine cycle sequencing. Of 1283 clinical samples from female patients based on suspected HPV infection, we found 379 (29%) negatives and 894 (70%) positives. Samples containing >5000 HPV copies/ml were genotyped by sequencing. Of the 552 HPV genotyped samples from women >15 years of age, 398 were characterised as high-risk types and the remaining 154 as low-risk types. The most commonly found high-risk types were HPV-16, HPV-31, HPV-33, HPV-18, HPV-58, and HPV-52, and the most commonly found low-risk types were HPV-6, HPV-53 and HPV-11. In addition, we observed that other typing assays could not perform as sensitively or accurately as the nested PCR/cycle sequencing method used in this study. For instance, 87 out of 552 genotyped samples could not have been typed correctly in the Hybrid Capture II assay. Of these 87 samples, 46 (53%) were considered as high-risk types.  相似文献   

13.
BACKGROUND: Around half a million new cases of cervical cancer are diagnosed worldwide each year, accounting for almost 300,000 deaths. Development of cervical cancer can be multi-factorial, but high-risk human papillomaviruses (HPV) have been associated with the aetiology of cervical cancer. It is believed that HPV DNA integrates into the host DNA causing abnormal cell growth with cells becoming carcinogenic and spreading metastatically. In Mauritius, cervical cancer account for 65% of gynaecological cancers and 3.4% of the cervical cancers are diagnosed at the stage of carcinoma in situ. OBJECTIVES: To determine the prevalence of HPV in histological samples from patients with cervical cancer in Mauritius. STUDY DESIGN: DNA from archival cervical samples from a cohort of 65 patients suffering from cervical cancer and controls from Mauritius were tested for the presence of HPV using MY09/11 and GP5+/6+ primer sets. RESULTS: In a cohort of 65 patients from Mauritius, diagnosed with cervical cancer in the year 2000, 19% of cervical histology sections were found to be positive for the presence of high-grade HPV, exclusively HPV18 using MY09 and MY11 primers. Only 15% of the Mauritian population is over 50 years of age, whereas 66% (35) of the diagnosed cases of cervical cancer were seen in patients above 50 years with 50% (5) affected with HPV. These findings suggest that for an infection with HPV to develop into cancer may take years if not decades. Differences were noted using two different primer sets, MY09/11 and GP5+/6+. The latter produce a much smaller amplicon (150bp) compared to the former ( approximately 450bp). Seven additional positive cases were detected with the GP5+/6+ primer set, resulting in an apparent prevalence of 32% as compared to the 19% seen with the MY09/11 primer set. This may indicate that some degradation of the target DNA has occurred during processing and storage of histological samples. CONCLUSION: Using primer sets MY09/11 and GP5+/6+, only HPV type 18 was found in the Mauritian cohort with a prevalence of 32%.  相似文献   

14.
Human papillomaviruses (HPVs) are the cause of cervical intraepithelial neoplasia and invasive carcinomas of the uterine cervix. The distribution of specific HPV genotypes varies greatly across populations and HPV surveys have been performed in different geographical regions in order to apply appropriate vaccine strategies. The aim of this study was to determine the spectrum of HPV genotypes and HPV-16 variants among women with cervical lesions living in Ecuador. A total of 71 cases have been analyzed, including 32 chronic cervicitis, 29 cervical intraepithelial neoplasia grade 1, and 10 cervical intraepithelial neoplasia grade 2-3. HPV sequences were detected by broad spectrum consensus-primer-pairs MY09/MY11 and GP5+/GP6+-based polymerase chain reaction and characterized by nucleotide sequence analysis. Overall, 31 (43.7%) cases were HPV positive with prevalence rates of 37.5%, 44.8%, and 60% in patients with chronic cervicitis, cervical intraepithelial neoplasia grade 1 and cervical intraepithelial neoplasia grade 2-3, respectively. Among the positive cases, the most common genotypes were HPV 16 (64.5%) and HPV 81 (29%) followed by HPV 31, 53, 56, and 58, in descending order of prevalence. Seventeen (85%) HPV-16 isolates were classified as European and three (15%) as African-1 variant on the basis of nucleotide signature present within the MY09/MY11 L1 sequence. The results suggest that HPV 16 has a very high prevalence among women with cervical lesions in Ecuador; therefore, an effective HPV-16 based vaccine should prevent the development of cervical cancer in a large proportion of Ecuadorian women.  相似文献   

15.
Persistent cervical high-risk human papillomavirus (HPV) infection is correlated with an increased risk of developing a high-grade cervical intraepithelial lesion. A two-step method was developed for detection and genotyping of high-risk HPV. DNA was firstly amplified by asymmetrical PCR in the presence of Cy3-labelled primers and dUTP. Labelled DNA was then genotyped using DNA microarray hybridization. The current study evaluated the technical efficacy of laboratory-designed HPV DNA microarrays for high-risk HPV genotyping on 57 malignant and non-malignant cervical smears. The approach was evaluated for a broad range of cytological samples: high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL) and atypical squamous cells of high-grade (ASC-H). High-risk HPV was also detected in six atypical squamous cells of undetermined significance (ASC-US) samples; among them only one cervical specimen was found uninfected, associated with no histological lesion. The HPV oligonucleotide DNA microarray genotyping detected 36 infections with a single high-risk HPV type and 5 multiple infections with several high-risk types. Taken together, these results demonstrate the sensitivity and specificity of the HPV DNA microarray approach. This approach could improve clinical management of patients with cervical cytological abnormalities.  相似文献   

16.
BACKGROUND: Human papillomaviruses (HPV) have been considered to be the necessary and central agents of cervical carcinoma. OBJECTIVE: The aim of this study was to determine the prevalence and genotypes of HPV in archival cervical carcinomas. STUDY DESIGN: The study included 152 paraffin-embedded, formaldehyde-fixed cervical carcinoma specimens. To improve the detection and typing of HPV in archival tissues, we conducted a comprehensive study in which, polymerase chain reaction (PCR)-based methods using E7 type-specific (TS) and L1 modified general primers (MY11/GP6+ and GP5+/GP6+) were employed. RESULTS: Overall HPV prevalence was 98% in the cervical carcinomas. HPV 16 was detected in 66% of the tumors, HPV 18 in 22%, HPV 31 in 13%, HPV 33 in 9%, and HPV 58 in 9%. Notably, multiple HPV types were present in 44 (28.9%) of the 152 cervical carcinomas. The most common co-infections were HPV types 16/18 (12 cases), followed by HPV types 16/31 (7 cases). Additionally, HPV 18 was more frequent in adenocarcinomas and adenosquamous carcinomas (86%) than in squamous cell carcinomas (15.8%) (P = 0.0002). CONCLUSIONS: The combination of L1 general primers and E7 type-specific primers can be of use in detecting HPV DNA in archival tissues. The present study showed a high frequency of multiple HPV infections in cervical carcinomas. Hence, relevant HPV typing information in cervical carcinoma is very important for further HPV vaccine design and application.  相似文献   

17.
Human papillomaviruses (HPV) are etiological agents of cervical cancer. In order to address clinical demand for HPV detection and sequence typing, mostly in pre-cancerous cervical lesions, we applied our two-tier PCR-direct sequencing (PCR-DS) approach based on the use of both MY09/MY11 and GP5 + /GP6 + sets of primers. We tested 691 pathological specimens, all of which were biopsies, 75% of which were diagnosed histologically as cervical intraepithelial neoplasia (CIN) grades I-III. In total, 484 samples (70%) tested HPV-positive, yielding 531 HPV sequences from 47 HPV types, including two novel types. Four most frequently found HPV types accounted for 52.9% of all isolates: HPV6, 16, 11, and 31 (21.5%, 20.0%, 7.0%, and 4.5%, respectively). Some interesting results are the following: all currently known high-risk HPV (14 types) and low-risk HPV (6 types) were detected; HPV18 was not the 1st or 2nd but rather the 4th-5th most frequent high-risk HPV type; the highest detection rate for HPV (86%) among samples suspected to be HPV-infected was found in the youngest age group (0-10 years old), including 70% (44/63) "genital" HPV types; HPV types of undetermined cervical cancer risk represented 19% and of the total HPV isolates but were strongly increased in co-infections (36.5% of all isolates). To our knowledge, this is the largest sequencing-based study of HPV. The HPV types of unknown cancer risk, representing the majority of the known HPV types, 27 of the 47 types detected in this study, are not likely to play a major role in cervical cancer because their prevalence in CIN-I, II, and III declines from 16% to 8% to 2.5%. The two-tier PCR-DS method provides greater sensitivity than cycle sequencing using only one pair of primers. It could be used in a simple laboratory setting for quick and reliable typing of known and novel HPV from clinical specimens with fine sequence precision. It could also be applied to anti-cancer vaccine development.  相似文献   

18.
Accurate laboratory assays for the diagnosis of persistent oncogenic HPV infection are being recognized increasingly as essential for clinical management of women with cervical precancerous lesions. HPV viral load has been suggested to be a surrogate marker of persistent infection. Four independent real-time quantitative TaqMan PCR assays were developed for: HPV-16, -31, -18 and/or -45 and -33 and/or -52, -58, -67. The assays had a wide dynamic range of detection and a high degree of accuracy, repeatability and reproducibility. In order to minimize material and hands-on time, automated nucleic acid extraction was performed using a 96-well plate format integrated into a robotic liquid handler workstation. The performance of the TaqMan assays for HPV identification was assessed by comparing results with those obtained by means of PCR using consensus primers (GP5+/GP6+) and sequencing (296 samples) and INNO-LiPA analysis (31 samples). Good agreement was found generally between results obtained by real-time PCR assays and GP(+)-PCR system (kappa statistic=0.91). In conclusion, this study describes four newly developed real-time PCR assays that provide a reliable and high-throughput method for detection of not only HPV DNA but also HPV activity of the most common oncogenic HPV types in cervical specimens.  相似文献   

19.
Human papillomavirus (HPV) is known to be the cause of almost all cervical cancers. The genotypes have been classified into high and low risk types according to their oncogenic potential. However, data for many of the genotypes are limited and some (HPV-26, 53, and 66) have no agreed status. A study was undertaken to determine the HPV genotype distribution in women of Western Australia and the association with cervical neoplasia. Liquid based cervical samples from a cohort of 282 Western Australian women were tested for HPV DNA by PCR followed by DNA sequencing to determine HPV genotypes. HPV-53 and HPV-16 were the most common genotypes found in this population. In addition 86 archived liquid based cervical samples from women with cervical intraepithelial neoplasia grades 1-3 (CIN 1-3) were tested for HPV DNA. Also 32 archived paraffin biopsy samples from women with squamous cell carcinoma were also tested. HPV-16 was the most common genotype found in these samples. Of the cohort of Western Australian women tested, 27% were found to contain HPV and approximately half of these contained known high-risk HPV genotypes, but only 30% of these were types 16 or 18. The data from this study indicate that HPV-53 is not oncogenic based on an R value and odds ratio (OR) of zero. The data also suggest that HPV-73 may be oncogenic, while HPV-66 is unlikely to be. Two high-risk HPV genotypes that are associated with the Asian region (HPV-52 and HPV-58) were found in Western Australian women suggesting a possible epidemiological link between women in these countries.  相似文献   

20.
BACKGROUND AND OBJECTIVES: Human papillomaviruses (HPV) are the causal agent for the development of carcinomas in the cervix uteri and further pathological changes of the skin including mucosa, particularly warts, condylomas and dysplasias. Therefore, we investigated the efficacy of different consensus primers pairs for HPV detection by PCR using brushed samples from the oral cavity in comparison with samples from the cervix uteri. STUDY DESIGN: In the present study, we used two well-established sets of PCR primers in different combinations for the detection of HPV DNA in 106 non-invasive brush biopsy samples of the oral mucosa and 56 samples from the cervix uteri. Direct sequencing of PCR products in all cases determined HPV genotype and specificity. RESULTS: Overall, HPV was detected in 69 of 106 oral mucosa samples. HPV specific amplicons were obtained in 35.8% (N = 38) when using GP5+/6+ primers. The positivity rate was increased to 65.1% in a GP5+/6+ auto-nested PCR approach. In contrast, MY9/11 PCR and nested PCR with MY9/11 outer followed by GP5+/6+ inner primers yielded 2.2% and 16.1%, respectively. In gynaecological samples, PCR results were similar independent of the primer combination used. Thus, DNA quality and DNA content could be additional factors influencing the rate of positivity. CONCLUSION: For oral mucosa samples, auto-nested GP5+/6+ PCR is in our hands the most suitable approach for epidemiological studies because of its high sensitivity, high reliability and reproducibility as well as its relatively simple laboratory procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号