首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
Extracellular recording of neuronal activity of septal nuclei was performed in unanesthetized chronic rabbits in the following conditions: (1) intact septal nuclei; (2) complete interruption of connections with hippocampus; (3) complete basal undercutting of septum. Additional series of records were performed in transversal guinea pig septal slices incubated in vitro. Computer analysis of activity was used.Interruption of hippocampal connections increased the mean frequency of discharges in the lateral septal nucleus 2-fold. Theta-bursts were preserved and the proportion of theta-bursting neurons increased from 28 to 42%. The mean frequency of theta-bursts was slightly augmented (mean 5.4 cps versus 5.2 cps in intact septum). Twenty-six per cent of neurons were characterized by regular, pacemaker-like discharges, while in the normal septum such units were almost completely absent.After septal undercutting the mean frequency of spontaneous activity was increased 2-fold in the medial septal nucleus. Rhythmic bursts were again preserved, the proportion of bursting neurons was close to normal (25%), but the mean frequency of bursts was significantly lower (mean 3.3 cps). Rhythmic activity was extremely regular. Neurons (21%) with pacemaker-like activity were also present.In septal slices neurons possessed relatively high spontaneous activity (mean 10.2/sec). In the majority of units (64%) activity was highly regular. Twenty-two per cent of the units possessed rhythmic bursts in their activity with frequencies of 2.0–5.1 cps.The role of intrinsic septal mechanisms and afferent influences in generation and modulation of theta-bursts is discussed.  相似文献   

2.
Pyramidal neurons in area CA1 of the septal hippocampus degenerate 2-3 days after an episode of transient global cerebral ischemia. The purpose of this study was to investigate synaptic transmission and passive neuronal properties in the post-ischemic period prior to neuronal death. Electrophysiological recordings were made from area CA1 in hippocampal slices prepared from rats which had survived a period of 20 min of ischemia for up to 5 days. In septal slices, field responses were in area CA1 unaltered up to 24 h after the ischemic insult. Forty-eight hours after ischemia, the mean amplitude of the population spike, but not the field-EPSP, was significantly reduced. In septal slices prepared more than 48 h after ischemia field potentials were absent or strongly attenuated, whereas they were intact in slices prepared from the temporal pole. No spontaneous discharges were detected in slices prepared at any time from post-ischemic rats. Intracellular recordings were obtained from slices up to 48 h after the ischemic episode. There was no significant difference in the resting membrane potential or input resistance between these neurons and those from control slices. Action potentials followed by a fast afterhyperpolarization and spike accommodation were preserved in all post-ischemic neurons. In all neurons investigated, orthodromic stimulation evoked an EPSP followed by a fast- and then a slow-IPSP. One hour after ischemia, the slow-IPSP was reduced. Forty-eight hours after ischemia, the fast-IPSP was significantly increased. The EPSP was markedly attenuated by the non N-methyl-D-aspartate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM). The residual depolarizing component was amplified by perfusing with Mg(2+)-free medium and blocked by the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid. Paired-pulse facilitation of the EPSP was also preserved. As in control slices, the slow-IPSP and paired-pulse depression of the fast-IPSP were blocked by 1 microM baclofen. The present experiments provide no evidence that overt alteration of excitatory synaptic transmission or neuronal properties favouring hyperexcitability precede the ischemically induced death of CA1 pyramidal cells.  相似文献   

3.
The morphology was studied of hippocampal neurons which had their somata in the hilus of the area dentata, and in stratum radiatum or stratum oriens of Ammon's horn, and which sent projections to the septum and contralateral hippocampus, respectively. The fluorescent marker Fast Blue was injected into the septum or contralateral hippocampus. Somata were then identified by their fluorescent label in slices of perfused brains. After intracellular injection of these somata with Lucifer Yellow, it was found that contralaterally projecting neurons were pyramidal cells, inverted fusiform and multipolar cells in CA3c, and stellate, fusiform and multipolar cells in the hilus. After septal injections, we identified two groups of aspiny stellate cells in the hilus; pyramidal basket cells, polygonal basket cells, horizontal basket cells in stratum oriens; and stellate cells in stratum radiatum of CA1 and CA3, as well as pyramid-like aspiny cells in stratum radiatum of CA1. These cells also had short locally arborizing axons, thus probably contributing to local circuits. Such cells may constitute a third class of hippocampal neurons combining the properties of principal cells and interneurons. These results support the opinion that the simple concept of separating hippocampal cells into projection neurons and local-circuit neurons needs reconsideration.  相似文献   

4.
The medial septum inhibits the appearance of interictal spikes and seizures through theta rhythm generation. We have determined that medial septal neurons increase their firing rates during chronic epilepsy and that the GABAergic neurons from both medial and lateral septal regions are highly and selectively vulnerable to the epilepsy process. Since the lateral septal region receives a strong projection from the hippocampus and its neurons are vulnerable to epilepsy, their functional properties are probably altered by this disorder. Using the pilocarpine model of temporal lobe epilepsy we examined the pilocarpine-induced functional alterations of lateral septal neurons and provided additional observations on the pilocarpine-induced functional alterations of medial septal neurons. Simultaneous extracellular recordings of septal neurons and hippocampal field potentials were obtained from chronic epileptic rats under urethane anesthesia. Our results show that: (1) the firing rates of lateral septal neurons were chronically decreased by epilepsy, (2) a subset of lateral septal neurons increased their firing rates before and during hippocampal interictal spikes, (3) the discharges of those lateral septal neurons were well correlated to the hippocampal interictal spikes, (4) in contrast, the discharges of medial septal neurons were not correlated with the hippocampal interictal spikes. We conclude that epilepsy creates dysfunctional and uncoupled septo-hippocampal networks. The elucidation of the roles of altered septo-hippocampal neuronal populations and networks during temporal lobe epilepsy will help design new and effective interventions dedicated to reduce or suppress epileptic activity.  相似文献   

5.
The two neuronal populations that have been typically investigated in the septum use acetylcholine and GABA as neurotransmitters. The existence of noncholinergic, non-GABAergic, most likely glutamatergic septal neurons has recently been reported. However, their morphological characteristics, numbers, distribution, and connectivity have not been determined. Furthermore, the projection of septal glutamatergic neurons to the hippocampus has not been characterized. To address these issues, subpopulations of cholinergic and GABAergic neurons were identified by immunohistochemistry. In addition, the retrograde tracer fluorogold was injected into the hippocampus to determine the characteristics of a glutamatergic septo-hippocampal projection. Our work revealed that although glutamatergic neurons are found throughout the septum, they concentrate in medial septal regions. Using stereological probes, approximately 16,000 glutamatergic neurons were estimated in the medial septal region. Triple immunostaining showed that most glutamatergic neurons do not immunoreact with cholinergic or GABAergic neuronal markers (anti-ChAT or anti-GAD67 antibodies, respectively). Fluorogold injections into CA1, CA3, and dentate gyrus of the hippocampus showed that septal glutamatergic neurons project to each of these hippocampal regions, forming approximately 23% of the septo-hippocampal projection. Most cell bodies of septo-hippocampal glutamatergic neurons were located in the medial septum. The remaining cell bodies were found in the diagonal band. This data shows that glutamatergic neurons constitute a significant neuronal population in the septum and that a subpopulation of these neurons projects to hippocampal regions. Thus, the septo-hippocampal projection needs to be reconsidered as a three neurotransmitter pathway.  相似文献   

6.
Epileptiform activity induced by 4-aminopyridine in immature hippocampus   总被引:2,自引:0,他引:2  
Bath application of 4-aminopyridine (4-AP) to hippocampal slices taken from rats on postnatal days 10-15 produced prolonged synchronized epileptiform discharges in the CA3 subfield. Extracellular field recordings obtained from the pyramidal cell body layer recorded repetitive synchronized afterdischarges which were often 30 sec in duration. These ictal-like events were interspersed with variable amplitude positive-going interictal burst-like discharges. The afterdischarges consisted of a sustained negative field potential, upon which were superimposed negative-going population spikes. Simultaneous recordings from areas CA3 and CA1 indicated that the afterdischarge activity originated in CA3 since population spikes recorded there preceded and were time locked to spikes in CA1 pyramidal neurons. The burst-like interictal events recorded in CA3 were not all-or-none and had 2 clearly identifiable phases, the first being a smooth positive wave of relatively constant amplitude and duration. A second and subsequent excitatory phase was also positive going but more variable in size. This latter phase was accompanied by multiple population spikes. Intracellular events recorded simultaneously were most often excitatory, depolarized potentials. These varied in size and duration with coincident field potentials. Thus variations of the extracellular burst-like discharges recorded are more likely to be produced by changes from time to time in excitatory synaptic drive to CA3 pyramidal neurons than by alterations in the number of these pyramidal cells discharging in an all-or-none manner. The 4-AP-induced epileptiform discharge occurred in the presence of inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To understand how nicotinic cholinergic receptors may participate in epileptic seizures, we tested the effects of nicotine and of the competitive nicotinic antagonists dihydro-beta-erythroidine and alpha-bungarotoxin on synaptic paroxysmal depolarization shifts (PDSs) and intrinsic bursts of action potentials recorded in slices from rats presenting a cortical status epilepticus. This model named GABA-withdrawal syndrome (GWS) appears consecutive to the interruption of a prolonged intracortical GABA infusion. Effects of both nicotinic antagonists suggest a distinct involvement of alpha4-beta2 and alpha7 subunits in shaping individual PDSs and patterning repetitive bursts. On one hand, in GWS rats, an increase of PDS latency and prolongation of PDS and bursts were induced by nicotine and reduced by dihydro-beta-erythroidine, but not by alpha-bungarotoxin. The K+ blocker tetraethylammonium also increased duration without changing latency. Thus, dihydro-beta-erythroidine-sensitive receptors exert distinct controls on the presynaptic generation of PDS and on the process which terminates PDSs and bursts. On the other hand, alpha-bungarotoxin depolarized neurons and generated rhythmic discharges of clustered bursts. Clustered bursts were also observed in slices obtained from GWS rats treated with the acetylcholinesterase inhibitor eserine. We suggest that both dihydro-beta-erythroidine and alpha-bungarotoxin-sensitive sites control paroxysmic activities in GWS and could be involved in some human and animal epilepsies presenting mutations of nicotinic cholinergic receptors.  相似文献   

8.
Possible target preferences of basal forebrain cholinergic neurons were studied in organotypic slice cultures. Cholinergic neurons in slices of medial septum or substantia innominata send axons into both hippocampus and neocortex when co-cultured together. However, septal cholinergic axons course through adjacent slices of neocortex to reach and branch densely in slices of hippocampus, but septal axons seldom grow beyond adjacent hippocampal tissue to reach neocortex. In contrast, cholinergic axons from substantia innominata commonly grow through hippocampus to reach neocortex, and also grow through neocortex to reach hippocampus, with similar branching densities in each target. The greater density of septal axonal branches in hippocampus than in neocortex suggests a preference of septal axons for the hippocampal target.  相似文献   

9.
Cell suspensions from the fetal septal region were injected stereotaxically into the hippocampus of fornix-fimbria-transected adult rats. The host rats were sacrificed up to 3 months after the operation and the hippocampus sliced into 350 microns transverse slices. Intracellular recording was made from CA1 neurons adjacent to the graft. Electrical stimulation of the graft produced a voltage-dependent depolarization in some recorded neurons. This was associated with an increase in spontaneous and anodal break action potential discharges. In addition, a slow after-hyperpolarization (AHP) which typically follows a burst discharge was blocked during the depolarization indicating that the stimulation may block a Ca2+-dependent K+ current. The effects of the stimulation were antagonized by atropine. A response to the stimulation was seen 2 weeks but not 1 week after grafting. Over time, cells that were located away from the graft became activated by the stimulation. This was correlated with the extent of proliferation of acetylcholinesterase-containing fibers around the graft. These results suggest that grafted septal neurons make viable cholinergic connections with a host hippocampus.  相似文献   

10.
Rats implanted with recording and stimulating electrodes were trained to run in an activity wheel for a water reward. Unitary discharges and slow activity were recorded by a movable tungsten microelectrode and by fixed electrodes. Single cells were classified according to their spontaneous and evoked response properties as pyramidal cells, granule cells and interneurons. Unit activity, EEG and their interrelations were studied by spectral and spike-triggered averaging methods. Gradual phase-shifts of RSA were observed both in CA1 and the dentate gyrus. Movement-related RSA was correlated with a decrease in firing rate of pyramidal cells and an increase in the firing of both interneurons and granule cells. In the CA1 region pyramidal cells and interneurons fired preferentially on the negative and positive phases of the locally derived RSA, respectively. In the dentate gyrus both granule cells and interneurons discharged mainly on the positive portion of the local RSA waves, about 90° before the CA1 pyramidal cells. Fourier analysis of the spike trains of interneurons and granule cells showed high power at RSA frequency, coherent with the concurrent EEG. Phase relations between discharges of interneurons and RSA remained unchanged following urethane anesthesia. In waking rats, atropine administration resulted in a decreased discharge of interneurons at RSA frequency, and reduced coherence with RSA. Lesions of the septum or the fimbria-fornix abolished RSA and the rhythmic discharges of the interneurons. Isolation of the entorhinal cortex (EC) from its cortical inputs did not change either EEG or neuronal firing. However, in such a preparation atropine completely abolished RSA and related rhythmicity of interneurons. During drinking and immobility but not during walking, sharp waves (SPW) of about 40–100 ms duration appeared in the EEG. SPWs were invariably accompanied by synchronous discharges of several pyramidal cells and interneurons. CA3 pyramidal cells also discharged in synchronous bursts but without local SPWs. Laminar profiles of SPWs and the field potentials evoked by stimulation of Schaf fer collaterals were essentially identical. The behavior-dependent occurrence of SPWs was retained following atropine administration, septal lesion or EC isolation but was lost after fimbria-for-nix-neocortex lesion or following atropine administration in EC isolated rats. In addition to relations to RSA and SPWs, interneurons were phase-locked to the fast EEG pattern (25–70 Hz). This relationship was preserved following lesions of the septum or the fimbria-fornix complex. The above findings allowed us to construct a new model of hippocampal RSA generation based on feed-forward inhibition from the septum and a direct excitation by the entorhinal input. SPWs are suggested to reflect strong synaptic activation of CA1 pyramidal cells via the Schaffer collaterals as a consequence of synchronous discharges of CA3 pyramidal neurons. Fast activity is supposed to reflect synaptic activity close to the somata of pyramidal cells and granule cells.  相似文献   

11.
Neuronal activity of the septal and hippocampal grafts, developing in the anterior eye chamber of the rat for 3-6 months was recorded extracellularly in curarized or cerveau isolé animals. While the units of isolated septum had background activity of regular, irregular and rhythmic burst type, the hippocampal units displayed no background discharges or produced very low-frequency population spikes. In the paired septal-hippocampal grafts neurons of the hippocampus possessed the same types of activity, as that of the septum. Spontaneous epileptiform phenomena were observed in many paired grafts; such phenomena were easily provoked by mild electrical stimulation of one of the grafts. Superfusion with low Ca2+, high Mg2+ medium abolished spontaneous activity in most of hippocampal units but not in septal units. Epileptic discharges were also partly suppressed.  相似文献   

12.
Epileptiform field potentials were compared in the CA3 and CA1 regions of penicillin-treated hippocampal slices. The CA3 field bursts usually began with decrementing spike patterns similar to reported single-unit bursts, whereas spike amplitude gradually increased in spontaneous and long-latency CA1 bursts. Stimuli close to CA1 recording sites also evoked short-latency, decrementing CA1 responses. We postulate that these patterns reflect a more rapid recruitment of CA3 neurons into synchronous bursts and a gradual sequential activation of the CA1 neurons by Schaffer collateral input from CA3. Stimulation of stratum radiatum close to CA1 also produced long-latency "all-or-none" bursts in CA3 and then CA1, identical to spontaneous bursts and those produced by stimulation remote from CA1. At threshold, 76% of the latency to the CA1 burst occurred between the stimulus and the onset of the CA3 burst. The latency to the CA3 burst decreased with increasing stimulus intensity but the intervals from CA3 to CA1 bursts remained constant. Thus, long-latency CA1 bursts appear to be due to antidromic activation of CA3 followed by reexcitation of CA1.  相似文献   

13.
Cyclosporine induces epileptiform activity in an in vitro seizure model   总被引:3,自引:3,他引:0  
Wong M  Yamada KA 《Epilepsia》2000,41(3):271-276
PURPOSE: Cyclosporine (CSA) toxicity represents a common cause of seizures in transplant patients, but the specific mechanisms by which CSA induces seizures are unknown. Although CSA may promote seizure activity by various metabolic, toxic, vascular, or structural mechanisms, CSA also has been hypothesized to modulate neuronal excitability directly. The objective of this study was to determine if CSA exerts direct epileptogenic actions on neurons in an in vitro seizure model. METHODS: Combined hippocampal-entorhinal cortex slices from juvenile rats were exposed directly to artificial cerebrospinal fluid (ACSF) containing either (a) 1.0 mM magnesium sulfate (control), (b) 1.0 mM sodium sulfate (low-magnesium), or (c) 1.0 mM magnesium sulfate + CSA (1,000-10,000 ng/ml). Spontaneous and evoked extracellular field potentials were recorded simultaneously from the dentate gyrus (DG) and CA3 hippocampal regions. Evoked synaptic responses were elicited by stimulation of the entorhinal cortex/perforant pathway. RESULTS: CSA elicited spontaneous or stimulation-induced epileptiform activity in the DG or CA3 region of approximately 40% of slices, consisting of brief repetitive "interictal" discharges or prolonged stereotypical "ictal" discharges. Mean latency to epileptiform activity was approximately 100 min after onset of CSA application. The interictal discharges were inhibited by the non-NMDA antagonist, NBQX. Similar epileptiform activity was observed in low-magnesium ACSF without CSA. In control ACSF alone, epileptiform activity was not seen, except for rare spontaneous potentials in the DG. CONCLUSIONS: Direct effects of CSA on neuronal excitability and synaptic transmission may contribute to seizures seen in clinical CSA neurotoxicity.  相似文献   

14.
The extracellular concentration of glutamate has previously been reported to increase to more than 10-fold the basal level during seizure activity. In the present study, we tested whether localized increases in extracellular glutamate concentration influence the rhythm of epileptiform discharges in the low-magnesium epilepsy model. In hippocampal slices of guinea-pigs, epileptiform activity was induced by omission of magnesium from the bath fluid. Glutamate and its subreceptor agonists N -methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) were ejected into different strata of the CA3 and CA1 regions using microiontophoretic and micropressure application. Glutamate, NMDA and AMPA applied to the CA3 region, but not to the CA1 region, induced a short-lasting increase in epileptiform discharge frequency, often followed by a transient reduction. The effect was most pronounced with application into the stratum lacunosum-moleculare of the CA3 region and could only be evoked in slices exceeding 400 μm in thickness. The effects on the rhythm of epileptiform discharges induced by NMDA and AMPA were blocked by their specific receptor antagonists. They were not influenced by application of GABAA and GABAB receptor antagonists. Changes in somatic membrane potential of CA3 pyramidal neurons did not correlate with changes in the rhythm of epileptiform discharges elicited in this region. The transient suppression of epileptiform discharges that followed the increase in discharge frequency was abolished by an adenosine A1 receptor antagonist. We propose that localized increases in extracellular glutamate concentration modify the rhythm of epileptiform discharges due to changes in neuronal network activity.  相似文献   

15.
We analyzed the effect of the acylpolyaminetoxin JSTX-3 on the epileptogenic discharges induced by perfusion of human hippocampal slices with artificial cerebrospinal fluid lacking Mg2+ or N-methyl-D-aspartate. Hippocampi were surgically removed from patients with refractory medial temporal lobe epilepsy, sliced in the surgical room and taken to the laboratory immersed in normal artificial cerebrospinal fluid. Epileptiform activity was induced by perfusion with Mg2+-free artificial cerebrospinal fluid or by iontophoretically applied N-methyl-D-aspartate and intracellular and field recordings of CA1 neurons were performed. The ictal-like discharges induced by Mg2+-free artificial cerebrospinal fluid and N-methyl-D-aspartate were blocked by incubation with JSTX-3. This effect was similar to that obtained with the N-methyl-D-aspartate receptor antagonist DL (-)2-amino-5 phosphonovaleric acid. Our findings suggest that in human hippocampal neurons, the antiepileptic effect of JSTX-3 is mediated by its action on N-methyl-D-aspartate receptor.  相似文献   

16.
The effects of excitatory amino acid (EAA) receptor antagonists were examined on intracellularly recorded epileptiform discharges in turtle hippocampal (ventromedial cortical) pyramidal neurons in vitro. Afferent synaptic activation of turtle hippocampal neurons evoked monophasic or biphasic GABAergic inhibitory postsynaptic potentials (IPSPs). In the presence of bicuculline (5 microM) or picrotoxin (100 microM) IPSPs were reduced, and long-lasting ictal-like discharges were transiently observed prior to the establishment of a regular rhythm of discharge of spontaneous paroxysmal depolarization shifts (PDSs). Bicuculline-induced PDSs were reversibly reduced in amplitude and duration, but not abolished by the EAA receptor antagonists kynurenic acid (1 mM), cis-2,3-piperidine dicarboxylic acid (cis-2,3-PDA) (1 mM), or DL-2-amino-5-phosphonovalerate (DL-AP-5) (100 microM), revealing a long-lasting hyperpolarizing afterpotential. These results indicate that the blockade of GABAergic inhibition leads to the genesis of epileptiform discharges, and EAA receptor antagonists (particularly those of the N-methyl-D-aspartate (NMDA) receptor subtype) block the maintained depolarization underlying PDSs, but do not prevent their spontaneous discharge in turtle hippocampus.  相似文献   

17.
目的 多电极记录技术在脑片研究的应用已经远远超过了10年,然而该技术却没有广泛地用于癫痫领域的研究。用经典的致痫剂低镁人工脑脊液灌流大鼠急性海马切片,诱导产生癫痫样电活动并用多电极记录技术对其放电特征及内部传导方式进行分析。 方法 用多电极阵列持续记录灌流低镁人工脑脊液后海马各区域的放电情况,并比较切断CA3与CA1区域间的Schaffer氏纤维后各区的放电情况。 结果 在急性海马切片上诱导出自发、同步、癫痫样电活动;CA3区神经元簇发放电持续时间及簇发放电内动作电位的个数与CA1及DG区相比有显著的统计学差异;剪断CA3与CA1间的Schaffer氏纤维后,CA1区的电活动消失,CA3区仍有同步放电,且其自发同步放电的频率与对照组相比无显着改变,但其簇发放电持续时间及簇发放电内动作电位的个数明显降低(P<0.05)。 结论 成功地在多电极上记录到急性海马切片自发、同步、癫痫样电活动;其中CA3区神经元兴奋性最高;在低镁灌流下自发癫痫样电活动起源于CA3区,在剪断Schaffer氏侧支后CA3区神经元群体同步放电的频率的频率没有显着变化。  相似文献   

18.
目的 多电极记录技术在脑片研究的应用已经远远超过了10年,然而该技术却没有广泛地用于癫痫领域的研究。用经典的致痫剂低镁人工脑脊液灌流大鼠急性海马切片,诱导产生癫痫样电活动并用多电极记录技术对其放电特征及内部传导方式进行分析。 方法 用多电极阵列持续记录灌流低镁人工脑脊液后海马各区域的放电情况,并比较切断CA3与CA1区域间的Schaffer氏纤维后各区的放电情况。 结果 在急性海马切片上诱导出自发、同步、癫痫样电活动;CA3区神经元簇发放电持续时间及簇发放电内动作电位的个数与CA1及DG区相比有显著的统计学差异;剪断CA3与CA1间的Schaffer氏纤维后,CA1区的电活动消失,CA3区仍有同步放电,且其自发同步放电的频率与对照组相比无显着改变,但其簇发放电持续时间及簇发放电内动作电位的个数明显降低(P<0.05)。 结论 成功地在多电极上记录到急性海马切片自发、同步、癫痫样电活动;其中CA3区神经元兴奋性最高;在低镁灌流下自发癫痫样电活动起源于CA3区,在剪断Schaffer氏侧支后CA3区神经元群体同步放电的频率的频率没有显着变化。  相似文献   

19.
Layer III neurons of the medial entorhinal cortex (mEC) project to CA1 via the temporoammonic pathway and exert a powerful feed-forward inhibition of CA1 pyramidal neurons. The present study evaluates the hypothesis that disrupted inhibition of CA1 pyramidal neurons causes an eased propagation of entorhinal seizures to the hippocampus via the temporoammonic pathway. Using a method to induce a confined epileptic focus in brain slices, we investigated the spread of epileptiform activity from the disinhibited mEC to CA1 in control and pilocarpine-treated rats that had displayed status epilepticus and spontaneous recurrent seizures. In pilocarpine-treated rats, the mEC showed a moderate layer III cell loss and an enhanced susceptibility to epileptiform discharges compared to control animals. Entorhinal discharges propagated to CA1 in pilocarpine-treated rats but not in controls. Disconnecting CA3 from CA1 did not affect the spread of epileptiform activity to CA1 excluding its propagation via the trisynaptic hippocampal loop. Mimicking the invasion of epileptiform discharges by repetitive stimulation of the temporoammonic pathway caused a facilitation of field potentials in CA1 that were contaminated by population spikes and afterdischarges in pilocarpine-treated but not control rats. Single cell recordings of CA1 pyramidal neurons revealed a dramatic loss of feed-forward inhibition and the occurrence of strong postsynaptic excitatory potentials in pilocarpine-treated rats. Excitatory responses in CA1 were characterized by multiple NMDA receptor-mediated afterdischarges and a strong paired-pulse facilitation in response to activation of the temporoammonic pathway. Our results suggest that, irrespective of the enhanced seizure-susceptibility of the mEC in epileptic rats, the loss of feed-forward inhibition and the enhanced NMDA receptor-mediated excitability CA1 pyramidal cells ease the spread of epileptiform activity from the mEC to CA1 via the temporoammonic pathway bypassing the classical trisynaptic hippocampal loop.  相似文献   

20.
Extra- and intracellular recording techniques were used to study the epileptiform activity generated by rat hippocampal slices perfused with Mg2(+)-free artificial cerebrospinal fluid (ACSF). This procedure induced in both CA1 and CA3 subfields the appearance of synchronous, spontaneously occurring epileptiform discharges which consisted of extracellularly recorded 100-800 ms long, positive shifts with superimposed negative going population spikes. Simultaneous, extracellular recordings from CA1 and CA3 subfields revealed that the epileptiform discharges in CA3 preceded those occurring in CA1 by 5-25 ms. Surgical separation of the two areas led to the disappearance of spontaneous events in the CA1 but not in the CA3 subfield. In this type of experiment CA1 pyramidal cells still generated epileptiform discharges following orthodromic stimuli. The intracellular counterpart of both spontaneous and stimulus-induced epileptiform discharges in CA1 and CA3 pyramidal cells was a large amplitude depolarization with high frequency discharge of action potentials which closely resembled the paroxysmal depolarizing shift recorded in the experimental epileptogenic focus. A hyperpolarizing potential triggered by alvear stimuli was recorded in CA1 cells perfused with Mg2(+)-free ACSF. This hyperpolarization was blocked by bicuculline methiodide (BMI) indicating that it represented a GABAergic inhibitory postsynaptic potential (IPSP). BMI also caused a prolongation of both spontaneous and stimulus-induced Mg(+)-free epileptiform discharges. Perfusion of the slices with the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphono-valerate (APV) reduced and eventually abolished the Mg(+)-free epileptiform discharges. These effects were more pronounced in the CA1 than in the CA3 subfield. APV also reduced the amplitude and the duration of the alveus-induced IPSP. These data demonstrate that Mg(+)-free epileptiform activity is present in the hippocampal slice at a time when inhibitory GABAergic potentials are operant as well as that in the CA1 subfield this type of epileptiform activity is dependent upon NMDA-activated conductances. Our experiments also indicate that NMDA receptors might be involved in the neuronal circuit responsible for the hyperpolarizing IPSP generated by CA1 pyramidal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号