首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enkephalin (ENK) peptides are present in the retina of several vertebrate species and play a crucial role in establishing specific circuits during retinal development. However, there is no information available concerning the development of ENKergic neurons in the mouse retina. To address this question, we used preproenkephalin-enhanced green fluorescent protein (GFP) transgenic mice, in which ENKergic neurons are revealed by GFP. Our results showed that most GFP-positive cells were located in the proximal part of the inner nuclear layer with a scattering of GFP-immunoreactive cells in the ganglion cell layer (GCL) in the adult retina. Double immunostaining with syntaxin indicates that GFP expression was restricted to a population of amacrine cells. The proportions of glycine transporter-1 and γ-aminobutyric acid-positive cells among ENKergic neurons were 57.3 ± 2.4% and 10.1 ± 1.8%, respectively. We then injected retrograde tracer into the superior colliculus and observed that none of the ENKergic neurons in the GCL were retrogradely labeled with the tracer. GFP-positive cells were first observed at embryonic day (E) 15 in the inner neuroblastic layer at only very low levels, which gradually increased until E18. After birth, there was a steep rise in GFP expression levels, reaching maximal activity by postnatal day (P) 7. The distribution and intensity of GFP-positive cells at P15 were similar to those of adult retina. It was found that immunoreactive processes in the inner plexiform layer formed strongly stained patches. The present results provide detailed morphological evidence of the cell type and spatial and temporal distribution of ENKergic neurons in the retina.  相似文献   

2.
Stellate and basket cells in the molecular layer (ML) of the cerebellar cortex proliferate within the white matter (WH) during development. Developmental neuronal death has been documented on granule cells but has not been demonstrated on other GABAergic neurons. We investigated the migration and the cell death of stellate/basket cells further in glutamic acid decarboxylase 67/green fluorescent protein (GFP) knock-in mouse in which every GABAergic neuron was identified by its GFP fluorescence. Analyses were made in the first three postnatal weeks. In the WM, GFP-positive cells were abundant on postnatal day (P) 5-15 but scarce in P21. Stellate/basket cells increased in number in the ML until P15, corresponding to the growth of the ML. Administration of 5-bromo-2'deoxyuridine (BrdU) at P2-8 labeled many cells in the WM within 1h. After BrdU administration at P5, many BrdU-labeled GFP-positive cells were observed in the WM and the internal granular layer at P7, and in the ML at P9. These results support the proliferation of stellate/basket cells in the WM and their migration to the ML. Apoptosis of GABAergic interneurons was demonstrated in the ML and WM during the first two weeks. Their apoptotic loss will contribute to the adjustment of neuron number or elimination of any improper populations.  相似文献   

3.
We analyzed motile behavior of neuronal precursor cells in the intact olfactory bulbs (OBs) using transgenic mice expressing GFP under the control of T alpha 1 tubulin promoter. In the olfactory bulbs at the embryonic days 12.5-14.5, a large number of immature neurons expressed GFP in this transgenic line. Embryonic OBs were maintained in an organ culture system and the migratory behavior of GFP-positive cells was analyzed by time-lapse confocal microscopy. We observed rapid tangential movement of GFP-positive cells in the ventral olfactory bulb. In contrast to the typical bipolar morphology of translocating immature neurons within the developing cortex, the motile cells had neither leading nor trailing processes and changed their overall shape frequently. Comparison of the behavior of cells expressing GFP under the control of T alpha 1 tubulin or nestin promoter revealed that rapid motility was specific to cells in the neuronal lineage. The rapid movement was sensitive to an actin perturbing reagent and also dependent on the calcium influx through L-type calcium channels. These results indicate the presence of a specific form of precursor cell migration in the embryonic olfactory bulb.  相似文献   

4.
5.
6.
The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for alpha3beta2- and alpha6beta2-containing receptors, alpha-conotoxin MII (alphaCtxMII). A subset of these neurons exhibited a faster alpha-bungarotoxin-sensitive inward current component, indicating the expression of alpha7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABA(A) receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by alphaCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC.  相似文献   

7.
为了观察谷氨酸脱羧酶67-绿色荧光蛋白(GAD67-GFP)基因敲入小鼠黑质网状部(SNr)内,表达GFP的GABA能神经元与一对功能相反的Cl-共转运体(K+-Cl-cotransporter2,KCC2;Na+-K+-Cl-cotransporter1,NKCC1)的共存情况,本研究分别运用原位分子杂交与免疫组织化学相结合以及GFP与KCC2或NKCC1免疫荧光染色相结合的双重标记方法,在光学显微镜和激光共聚焦显微镜下同时进行观察。结果显示:(1)SNr内95%以上的GFP阳性神经元同时表达KCC2 mRNA,而50%表达KCC2 mRNA的阳性神经元呈GFP阳性;(2)SNr内80%以上的GFP阳性神经元同时表达NKCC1 mRNA,约35%表达NKCC1 mRNA的阳性神经元呈GFP阳性;(3)SNr内90%以上的GFP阳性神经元同时表达KCC2,双标神经元约占KCC2阳性神经元的50.5%;(4)SNr内80.5%以上的GFP阳性神经元同时表达NKCC1,双标神经元约占NKCC1阳性神经元的42.5%。以上结果表明,SNr内表达GFP的GABA能神经元大部分与KCC2和NKCC1共存,提示氯离子共转运体可能对SNr内GABA能神经元起重要的调控作用。  相似文献   

8.
Reelin与哺乳动物新皮层进化研究进展   总被引:1,自引:1,他引:0  
Reelin信号在哺乳动物新皮层进化发生中起到了重要作用,控制皮层神经元迁移,维持哺乳动物新皮层由内到外的发育模式,维持放射状胶质纤维的平行排列,从而为神经元的正确迁移提供"脚手架"。Reelin信号诱导双极神经元产生以及神经元与放射性胶质的结合,Reelin突变会导致新皮层的严重损伤,Reelin阳性细胞数量在哺乳类中的大量增加可能是新皮层产生的原因之一。对Reelin的进一步研究将为新皮层的发生机制提供新的证据。  相似文献   

9.
The medial septum diagonal band complex (MS/DB) projects via cholinergic and GABAergic pathways to the hippocampus and plays a key role in the hippocampal theta rhythm. In the MS/DB we have previously described a population of fast spiking GABAergic neurons that contain parvalbumin and mediate theta frequency activity in vitro. The Kv3.1 potassium channel is a delayed rectifier channel that plays a major role in fast spiking neurons in the CNS, and has previously been localized in the MS/DB. To determine which cell types in the MS/DB express the Kv3.1b ion channel subunit, transgenic mice in which the expression of GABAergic and glutamate markers are associated with the expression of green fluorescent protein (GFP; GAD67-GFP and VGluT2-GFP mice, respectively) were used for immunofluorescence and axonal tract tracing. Electrophysiological studies were also carried out on rat MS/DB slices to examine the role of the Kv3.1 channel in theta frequency oscillations. The results for the MS/DB were as follows: (1) cholinergic cells did not express GFP in either GAD67-GFP or VGluT2-GFP mice, and there was GAD67 immunoreactivity in GFP-positive neurons in GAD67-GFP mice and in a small proportion (6%) of GFP-positive neurons in VGluT2-GFP mice. (2) Kv3.1b immunofluorescence was associated with the somata of GABAergic neurons, especially those that contained parvalbumin, and with a minority of glutamatergic neurons, but not with cholinergic neurons, and with GABAergic axonal terminal-like processes around certain GABAergic neurons. (3) Both Kv3.1b-positive and -negative GABAergic neurons were septo-hippocampal, and there was a minor projection to hippocampus from VGluT2-GFP neurons. (4) Kainate-induced theta oscillations in the MS/DB slice were potentiated rather than inhibited by the Kv3.1 blocker 4-aminopyridine, and this agent on its own produced theta frequency oscillations in MS/DB slices that were reduced by ionotropic glutamate and GABA receptor antagonists and abolished by low extracellular calcium. These studies confirm the presence of heterogeneous populations of septo-hippocampal neurons in the MS/DB, and suggest that presence of Kv3.1 in the GABAergic neurons does not contribute to theta activity through fast spiking properties, but possibly by the regulation of transmitter release from axonal terminals.  相似文献   

10.
The fluorescent dye Lucifer Yellow CH was intracellularly injected into neurons in slices of guinea-pig visual neocortex which had been prepared by sectioning either in a plane normal to the pial surface (radial slices) or in a plane parallel to the pial surface (tangential slices). In radial slices 44.3% of the injections resulted in dye-coupling and the number of cells coupled to the impaled neuron per injection followed a Poisson distribution. In contrast dye-coupling was not observed in tangential slices. Incidence of dye-coupling in slices that had been sectioned in both the radial and tangential planes was the same as in intact radial slices, indicating that slicing in the radial plane induced the formation of pathways for dye movement between neurons. The results suggest that formation and/or strengthening of direct intercellular junctions between neocortical neurons may occur as a specific neuronal response to partial dendrotomy.  相似文献   

11.
小鼠大脑新皮质片层化形成过程和细胞周期变化   总被引:1,自引:1,他引:0  
目的 探讨小鼠大脑新皮质片层化的组织发生过程和细胞周期的关系,对有丝分裂后神经元在迁移中的细胞周期变化、神经细胞的增殖、神经元的迁移进行观察.方法 各日龄共计200只小鼠,应用免疫荧光法、5′-溴脱氧尿嘧啶核苷(BrdU)检测和DiI标记技术对胚胎期和出生后小鼠的大脑皮质进行形态学观察,对皮质BrdU和Cyclin D1阳性细胞密度进行测量.结果 皮质板最早在胚龄15d(E15)时形成,小鼠大脑新皮质深层(第Ⅵ~Ⅴ层)片层化进程开始于生后0 d(P0),皮质浅层(第Ⅳ~Ⅱ层)的片层化趋势开始于P5,P7时6层结构完全形成,但未呈现片层化特点,P14时小鼠大脑新皮质片层化完全形成,P30时片层化结构趋于稳定.在大脑新皮质片层化过程中,锥体细胞在E17时呈椭圆形,树突有小分支,在P15时发育成熟,呈锥形并有复杂的顶树突和基树突.BrdU检测发现,室管层和室管层下区有大量增殖的干细胞,在此期间由BrdU阳性细胞增殖生成的有丝分裂后神经元可以迁移到大脑新皮质;P0至P30,迁移到皮质板的有丝分裂后神经元逐渐减少.利用G1期特异性标记物Cyclin D1对有丝分裂后神经元的细胞周期进行分析发现,有丝分裂后神经元处于G1期,它们一旦定居到皮质板将退出细胞周期.新皮质中Cyclin D1阳性细胞数量呈抛物线变化,在P12达到峰值,P30后在皮质板只能发现少量的Cyclin D1阳性细胞.结论 小鼠大脑新皮质片层化过程经历了细胞增殖、分化与迁移,同时伴随着皮质板锥体细胞的成熟.神经细胞的增殖和迁移主要发生在胚胎期和生后早期,迁移的细胞主要处于G1期.有丝分裂后神经元的分化过程实际上是G1期到G0期的过渡,一旦在皮质板定居下来,有丝分裂后神经元将退出细胞周期,进入G0期.  相似文献   

12.
Drosophila dachshund is involved in development of eye and limbs and in the development of mushroom bodies, a brain structure required for learning and memory in flies. Its mouse homologue mDach1 is expressed in various embryonic tissues, including limbs, the eye, the dorsal spinal cord and the forebrain. We have isolated a forebrain-specific 2.5-kb enhancer element termed D6 from the mouse mDach1 gene and created D6-LacZ and D6-green fluorescent protein (GFP) reporter gene mouse lines. In embryonic stages, the D6 enhancer activity is first detected at embryonic day 10.5 in scattered cells of the outbuldging cortical vesicles. By embryonic day 12.5, D6 activity expands throughout the developing neocortex and the hippocampus. In the adult mouse brain, D6 enhancer is active in neurons of the cortical plate, in the CA1 layer of the hippocampus and in cells of the subventricular zone and the ventricular ependymal zone. Adult mice also show D6 activity in the olfactory bulb and in the mamillary nucleus. Cultured D6-positive cells, which were derived from embryonic and postnatal brains, show characteristics of neural stem cells. They form primary and secondary neurospheres that differentiate into neurons and astrocytes as examined by cell-specific markers.Our results show that D6 enhancer exerts highly tissue-specific activity in the neurons of the neocortex and hippocampus and in neural stem cells. Moreover, the fluorescence cell sorting of D6-GFP cells from embryonic and postnatal stages allows specific selection of primary neural progenitors and their analysis.  相似文献   

13.
The layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain. Biphasic Ki67 expression defines the classical VZ, in which there is clear separation of the mitotic and interphase zones. Next, we mapped the distribution of immature neurons to the defined layers, based on markers for glutamatergic and GABAergic lineage. Interestingly, Tbr2 and Neurog2 were expressed in the postmitotic neurons. We also report that active (phosphorylated) JNK is a useful marker to demarcate layers during the embryonic stage. Finally, we validated the final arrival layers of the migratory glutamatergic and GABAergic neurons. These results form a foundation for analyses of brain development, especially in the proliferation and migration of excitatory and inhibitory neurons in the dorsal midbrain.  相似文献   

14.
一种鸡胚发育过程脊髓神经纤维投射研究方法的建立   总被引:2,自引:2,他引:0  
目的建立一种鸡胚发育过程脊髓神经纤维投射的研究方法。方法采用鸡胚带壳开窗培养技术,在鸡胚胚龄3d(E3),通过活体电转基因技术将携带有报告基因绿色荧光蛋白(GFP)的质粒(pCAGGS-GFP)准确注射到脊髓腔进行定时定位活体电转,转染后3d在体视荧光显微镜下进行观察;取出GFP阳性表达的胚胎,剥离出脊髓,从顶板处破开之后将脊髓展开,用4%多聚甲醛固定1h后,对神经钙黏蛋白(N-cadherin)进行免疫荧光染色,用4’6-二脒基-2-苯基吲哚(DAPI)染细胞核;封片后在荧光显微镜下观察神经纤维投射情况。结果对比横向切片和脊髓展开标本,两者均观察到GFP阳性转染侧的神经元纤维穿过底板沿对侧脊髓白质区边缘投射到神经结节,在脊髓展开标本中还可观察到神经纤维穿过底板再纵向向脑部投射;而N-cadherin免疫荧光染色结果表明,GFP基因的转染对机体正常的发育无明显影响。结论本实验建立了一种鸡胚发育过程脊髓神经纤维投射的研究方法。  相似文献   

15.
GABAergic neurons of the amygdala are thought to play a critical role in establishing networks for feedback and feedforward inhibition and in mediating rhythmic network activity patterns relevant for emotional behavior, determination of stimulus salience, and memory strength under stressful experiences. These functions are typically fulfilled in interplay of amygdala and hippocampus. Therefore, we explored the putative connectivity of GABAergic neurons with the hippocampo-amygdalar projection with the anterograde tracers Phaseolus vulgaris leucoagglutinin (Phal) and Miniruby injected to GAD67-GFP knock-in mice in which GABAergic neurons are labeled by the expression of the gene for green fluorescent protein (GFP) inserted to the GAD1 gene locus (Tamamaki et al. J Comp Neurol 467:60–79, 2003). We found that, while hippocampal axons target all nuclei of the amygdala, the densest fiber plexus was found in the posterior basomedial nucleus. Electron microscopy revealed that the vast majority of contacts in this nucleus were formed by thin fibers making small asymmetrical contacts, predominantly on GFP-negative profiles. However, several asymmetrical contacts could also be seen on GFP-positive profiles. A surprising result was the occasional occurrence of anterogradely labeled symmetrical synapses indicating a GABAergic contribution to the projection from the hippocampus to the amygdala. While hippocampal input to the amygdala appears to be largely excitatory and targets non-GABAergic neurons, our data provide evidence for a direct involvement of GABAergic neurons in the interplay of these regions, either as target in the amygdala or as projection neurons from the hippocampus. These particular “interface neurons” may be of relevance for the information processing in the amygdalo-hippocampal system involved in emotional behavior and memory formation.  相似文献   

16.
γ-氨基丁酸 (GABA)是脊髓背角、前角内主要的抑制性神经递质。为了更好地观察脊髓背角内 GABA能神经元的形态和功能 ,本研究使用了两种谷氨酸脱羧酶 67-绿色荧光蛋白 (GAD67-GFP)基因敲入小鼠 ,并观察了敲入小鼠脊髓内的 GFP表达状况。用免疫荧光组织化学双标记方法显示脊髓内所有的 GF P阳性神经元基本上都呈 GAD67和 GABA阳性 ;GFP阳性神经元在脊髓背角的 ~ 层最为密集 ,背角深层内侧部及中央管周围呈中等密度分布 ,而在脊髓背角其它部位及前角则呈散在分布。脊髓内 GFP阳性神经元的分布与 GABA能神经元的分布一致。本文作者等还进一步在 GAD67-GFP敲入小鼠中观察了 GFP和神经元标志物神经元核蛋白 (Neu N )的共存状况。脊髓背角内 GFP阳性神经元分别占 、 和 层的 Neu N阳性神经元的 3 1.5 %、3 3 .3 %和 44 .7% ,与以往的 GABA免疫组化研究结果基本一致。本研究表明 GAD67-GFP基因敲入小鼠脊髓内的 GFP在GAD67启动子的调节下正确地表达于 GABA能神经元 ,该基因敲入小鼠可用于脊髓 GABA能神经元的形态学特征和生理学特性及其发育规律等方面的研究  相似文献   

17.
Summary Radial glial cells (epithelial cells of Ramón y Cajal) impregnated by a modified del Rio Hortega rapid Golgi method were studied in the occipital lobes of 38 rhesus monkeys from embryonic day 48 (E48) to birth which occurs at E165 and in 27 postnatal animals to day 365 (P365). Some radial glial cells are already recognized at E48 by their bipolar shape and elongated radial fiber, which terminates with characteristic endfeet on the walls of blood vessels or at the pial surface. At slightly older ages-between E60 and E70-all cells spanning the cerebral wall develop lamellate expansions along their radial fiber and their endfeet become PAS positive. After E60, some radial glia detach from the ventricular surface and their somas become displaced outwards in the cerebral wall. After this age, radial glial cells are easily distinguished from migrating neurons by their larger oval nucleus located in the ventricular or subventricular zone, radial fiber extending outwards to the pial surface where it terminates in one or more endfeet, and the delicate lamellate expansions on both radial fiber and soma.Displaced radial glial cells have more closely packed lamellate expansions and display a range of transitional shapes leading to either fibrous or protoplasmic astrocytes. Between E95 and E140, when neuron migration to the visual cortex tapers off, perikarya of displaced radial glial cells form a conspicuous band at the outer border of the subventricular zone. Numerous transitional forms are present in the cortical plate at this age. After birth, fewer radial glial fibers are present in occipital lobe and their length is difficult to determine in the convoluted lateral cerebral wall expanded up to 10–20 mm. However, at P7 and P20, many radial fibers still span the medial cerebral wall in the depth of the calcarine fissure where it remains less than 2 mm thick. Even here, no fibers spanning the cerebral wall were seen in 17 animals from P50 to P200 despite the presence of well-impregnated transitional forms situated near the lateral ventricle and myriad astrocytes dispersed throughout the hemisphere. By P365, end of the first year, the few short remaining radial fibers belong to ependymal cells or mature astrocytes while all immature transitional forms have disappeared.  相似文献   

18.
Summary The expression of a highly polysialylated form of the neural cell adhesion molecule (NCAM-H) has been investigated in the neocortex and piriform cortex of the developing and the adult rat by using a monoclonal antibody 12E3, which has been found to recognize the polysialic acid portion of NCAM-H. Immunoblot analysis of the cortical homogenates showed that NCAM-H was temporarily expressed during the late embryonic and early postnatal stages. Further, immunohistochemical observations revealed that NCAM-H appeared at embryonic day 13 (E13) in the plexiform primordium in horizontally-oriented cells, probably Cajal-Retzius cells, which are the first neurons to differentiate. During the late embryonic stage, the marginal zone, subplate, and intermediate zone strongly stained, whereas the ventricular zone stained weakly. After birth, the NCAM-H expression was progressively attenuated from a week onwards, and almost vanished in the adult neocortex. In the primordium of the piriform cortex, NCAM-H immunoreactivity also became positive at E13. The time sequences of the NCAM-H expression in these neurons were similar to those of the neurons in the neocortical area. In the piriform cortex, however, the expression remained in a number of neurons in the layer II, which receives a large number of olfactory fibers from the olfactory bulb, where prolonged neurogenesis and construction of neural circuits take place in adulthood. These results suggest that NCAM-H not only plays an important role in the developing rat cortex, but also may be involved in some functions related to reorganization in the adult piriform cortex.  相似文献   

19.
We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti--calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and -horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC -expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the superficial layers of the dog SC originate from small class retinal ganglion cells. The expression of calretinin might be changed by the cellular activity of selective superficial collicular neurons. These results are valuable in delineating the basic neurochemical architecture of the dog visual system.  相似文献   

20.
Reelin调节小鼠喙端迁移流发育的形态学观察   总被引:1,自引:1,他引:0  
目的 探讨小鼠室管膜下区(SVZ)的神经干细胞孵育成熟以及沿喙端迁移流(RMS)切线迁移至嗅球(OB)的过程,尤其是Reelin对细胞迁移和细胞分化的影响。方法 选用野生型(WT)小鼠50只和纯合reeler小鼠23只胚胎16 d至生后90 d的各年龄点小鼠大脑,应用尼氏染色、免疫荧光染色、墨汁灌注及电子显微镜技术标记并观察小鼠大脑的神经干细胞、胶质细胞以及血管发生之间的相互关系,比较两组小鼠RMS的发育情况。结果 胚胎后期至出生早期,在SVZ分布着大量的胶质细胞、神经干细胞和血管网,它们相互联系构成SVZ神经干细胞孵育的血管龛(niche);神经干细胞在niche中孵育成熟后可以进入RMS,切线迁移至嗅球,到达嗅球后转变为放射状迁移,分化为各种神经元整合入嗅球;神经干细胞在RMS的迁移过程中,放射状胶质细胞协同血管为其提供支架引导;reeler小鼠也能形成RMS,但形态有所改变,主要在嗅球处,神经干细胞失去规律排列,呈散乱分布。结论 室管膜下区的niche是神经干细胞的主要来源;血管协同放射状胶质细胞为RMS中的神经干细胞提供支架引导作用;作为调节细胞迁移的重要信号,Reelin可以通过其交互作用影响血管的发育,Reelin缺失导致嗅球处神经干细胞放射状迁移的转变障碍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号