首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
HYPOTHESIS: Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. METHODS: MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days. Cells were grown in media containing either normal or charcoal-stripped fetal calf serum to limit exposure to exogenous estrogen. Thus, an increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. RESULTS: Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions. Binding assays demonstrated that alc-GE, but not w-GE, was able to bind ERalpha and ERbeta. Alc-GE (50 microg/mL) also induced an approximate 2.5-fold increase in expression of the estrogen-responsive pS2 gene, as well as progesterone receptor (PgR) gene expression, whereas w-GE was without effect. CONCLUSION: These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity.  相似文献   

5.
Farnesoid X receptor (FXR) is a metabolic nuclear receptor expressed in the liver and traditionally considered as a bile acid sensor. Yet, FXR has been recently demonstrated in other tissues and cells, such as the kidneys, the adrenals, and arterial smooth muscle cells. Immunohistochemical data reported in this study point to the expression of FXR in human breast cancer. In addition, FXR expression was also found by Western blotting and immunofluorescence microscopy in breast-cancer-derived cell lines MCF-7 (estrogen receptor [ER]-positive) and MDA-MB-231 (ER-negative). The FXR activator farnesol, a mevalonate pathway intermediate, exerts a mitogenic effect on MCF-7 cells. The growth stimulation is completely suppressed by antiestrogens. In contrast, MDA-MB-231 cells appear farnesol-insensitive, suggesting an involvement of ER in farnesol mitogenicity. In accordance with this interpretation, farnesol induces in MCF-7 cells a decrease of ER level, consistent with a phenomenon of receptor downregulation. Farnesol also increases progesterone receptor (PgR) expression in MCF-7 cells and stimulates ER-mediated gene transactivation in MVLN cells (MCF-7 cells stably transfected with an ER reporter gene). Of note, both effects of farnesol on ER expression and activity are completely suppressed by antiestrogens. In addition, farnesol-induced PgR is markedly reduced by FXR gene silencing (siRNA), demonstrating the involvement of FXR in the estrogenic effects of farnesol. Finally, coimmunoprecipitation experiments (FXR immunoprecipitation followed by Western blot analysis of ER in the immunoprecipitate) produced definite evidence that FXR interacts with ER. Altogether, these observations reveal the hitherto unreported presence of FXR in breast cancer and show that the latter receptor functionally interacts with ER. The occurrence of such a crosstalk calls for some caution regarding the pharmacological use of FXR agonists. Fabrice Journe and Guy Laurent contributed equally to this work and should be considered as joint first authors.  相似文献   

6.
Apoptosis induction by the pure antiestrogen faslodex, also known as ICI 182780 (ICI), is associated with an effective down-regulation of Bcl-2 expression in the human breast cancer cell line MCF-7. Recent observations point out that beside members of the Bcl-2 family also the TNFR1 signaling pathway may be involved in apoptosis induction by antiestrogens. In this report we have analyzed the expression of members of the TNFR1 signaling pathway during the apoptotic process induced by the pure antiestrogen faslodex and by tamoxifen (Tam) in MCF-7 breast cancer cells. Treatment with 10–7M ICI or 10–7M Tam leads to a time dependent increase of TNFR1 and TRADD steady-state mRNA levels in MCF-7 cells. In contrast, Bcl-2 expression was strongly decreased following administration of ICI but only weakly after administration of Tam. Western blot analysis and studies by the use of fluorescence microscopy and flow cytometry revealed a time dependent induction of TNFR1 protein and cell surface expression in MCF-7 cells in response to treatment with ICI. To investigate if TNFR1 is functionally involved in apoptosis induction by antiestrogens, we tested whether TNFR1 blocking antibodies can counteract the growth inhibitory action of Tam and ICI. Coincubation of MCF-7 cells with antiestrogens (ICI or Tam) and blocking TNFR1 antibodies lead to an increase in cell viability. Our results provide evidence for a cross talk between the TNFR1 signaling pathway and antiestrogens during the process of apoptosis induction in MCF-7 breast cancer cells. The superiority of the pure antiestrogen ICI to induce apoptosis in MCF-7 cells may result from its capability to modulate the induction of apoptosis via Bcl-2 as well as TNF-associated signal transduction pathways.  相似文献   

7.
8.
9.
A naturally occurring mutation at amino acid 351 (D351Y) in the human estrogen receptor (ER) can change the pharmacology of antiestrogens. Raloxifene is converted from an antiestrogen to an estrogen, whereas the biological properties of the steroidal pure antiestrogen ICI 182,780 are not affected by the D351Y ER (Levenson, A. S., and Jordan, V. C. Cancer Res., 58: 1872-1875, 1998). We propose an assay system that can be used to classify antiestrogens by determining their ability to up-regulate transforming growth factor alpha (TGF-alpha) mRNA in MDA-MB-231 cells stably transfected with either wild-type or D351Y ER. The novel compound EM-800 and its active metabolite, EM-652, have been reported to be p.o. active nonsteroidal pure antiestrogens. Using the D351Y cell line, EM-652 is able to up-regulate TGF-alpha mRNA in a dose-dependent manner and to a similar extent as estradiol, whereas in the wild-type cell line, it acts as an antiestrogen. In addition, the pure antiestrogen ICI 182,780 is capable of inhibiting EM-652-induced TGF-alpha mRNA expression at the D351Y ER. In MCF-7 cells expressing wild-type ER, it has previously been shown that ICI 182,780 decreases ER only at the protein level. EM-652 treatment does not decrease ER protein levels to a similar extent as ICI 182,780 treatment, and, in addition, EM-652 has no effect on ER mRNA levels. In proliferation assays, EM-652 is as effective as raloxifene in inhibiting cell growth. From these studies, we conclude that the reason the pharmacology of EM-652 is similar to that of raloxifene is because they both fit the ER in the same manner, and their biology depends on an interaction of the antiestrogenic side chain with amino acid 351.  相似文献   

10.
BACKGROUND: The effects of antiestrogens on angiogenesis in breast cancer are not fully defined. In this study we investigated the in vitro effects of antiestrogens at different concentrations on vascular endothelial growth factor (VEGF) production in estrogen receptor (ER)-positive breast cancer cells. METHODS: The dose-dependent effects of 17beta-estradiol (E2), 4-hydroxytamoxifen (4OHT), and ICI182,780 were analyzed both with reference to growth rates and VEGF protein production using enzyme-linked immunosorbent assay (ELISA) in MCF-7 cells. RESULTS: E2 stimulated both the growth rates and VEGF production of MCF-7 cells in the same manner. Although 4OHT stimulated the growth rates as an agonistic effect in an estrogen-free media at levels ranging from 1 nM to 1 micro M, it did not stimulate VEGF expression at the same levels except for at 1 micro M. Although 4OHT had a weak agonistic effect on VEGF production at 1 micro M in an estrogen-free media, it significantly inhibited E2-stimulated VEGF production at the same level. A cytotoxic effect was observed with 10 micro M 4OHT that paradoxically caused a prominent increase in VEGF production. ICI182,780 had no significant effects on the growth rates or VEGF production in this cell line. CONCLUSIONS: These results support the hypothesis that tamoxifen could inhibit angiogenesis induced by estrogens in ER-positive breast cancer cells.  相似文献   

11.
12.
7Alpha-[9-(4,4,5,5,5-pentafluoropentylsulfinyl)-nonyl]estra-1,3,5, (10)-triene-3,17beta-diol (ICI 182,780; Faslodex) is a novel steroidal antiestrogen. This partially blind, randomized, multicenter study compared the effects of single doses of long-acting ICI 182,780 with tamoxifen or placebo on estrogen receptor (ERalpha) and progesterone receptor (PgR) content, Ki67 proliferation-associated antigen labeling index (Ki67LI), and the apoptotic index in the primary breast tumors of postmenopausal women. Previously untreated patients (stages T(1)-T(3); ER-positive or -unknown) were randomized and received a single i.m. dose of ICI 182,780 50 mg (n = 39), ICI 182,780 125 mg (n = 38), or ICI 182,780 250 mg (n = 44) or oral tamoxifen 20 mg daily (n = 36) or matching tamoxifen placebo (n = 43) for 14-21 days before tumor resection surgery with curative intent. The ER and PgR H-scores, together with the Ki67LI were determined immunohistochemically in the matched pretreatment biopsy and the posttreatment surgical specimens. The apoptotic index was determined by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling on the same samples. The effects of treatment on each of these parameters were compared using analysis of covariance. ICI 182,780 produced dose-dependent reductions in ER and PgR H-scores and in the Ki67LI. The reductions in ER expression were statistically significant at all doses of ICI 182,780 compared with placebo (ICI 182,780 50 mg, P = 0.026; 125 mg, P = 0.006; 250 mg, P = 0.0001), and for ICI 182,780 250 mg compared with tamoxifen (P = 0.024). For PgR H-score, there were statistically significant reductions after treatment with ICI 182,780 125 mg (P = 0.003) and 250 mg (P = 0.0002) compared with placebo. In contrast, tamoxifen produced a significant increase in the PgR H-score relative to placebo, and consequently, all doses of ICI 182,780 produced PgR values that were significantly lower than those in the tamoxifen-treated group. All doses of ICI 182,780 significantly reduced Ki67LI values compared with placebo (ICI 182,780 50 mg, P = 0.046; 125 mg, P = 0.001; 250 mg, P = 0.0002), but there were no significant differences between any doses of ICI 182,780 and tamoxifen. ICI 182,780 did not alter the apoptotic index when compared with either placebo or tamoxifen. Short-term exposure to ICI 182,780 reduces the ERalpha in breast tumor cells in a dose-dependent manner by down-regulating ER protein concentration. The reductions in tumor PgR content by ICI 182,780 demonstrate that ICI 182,780, unlike tamoxifen, is devoid of estrogen-agonist activity. Reductions in tumor cell proliferative activity (as indicated by Ki67LI) show that ICI 182,780 is likely to have antitumor activity in the clinical setting.  相似文献   

13.
14.
15.
Molecular aspects of estrogen receptor variants in breast cancer   总被引:1,自引:0,他引:1  
Summary Measurements of the estrogen receptor (ER) and the estrogen-induced progesterone receptor (PgR) are used by most clinicians as indicators of both overall prognosis and likelihood of response to endocrine therapy. Patients with ER+/PgR+ tumors have the highest likelihood of response; conversely, patients with ER-/PgR- tumors have the lowest likelihood of response. Unfortunately, most patients treated successfully with endocrine therapy eventually develop endocrine-resistant disease recurrence. In an effort to study potential mechanisms of endocrine resistance, we have studied discordant ER-/PgR+ tumors, in which the normally estrogen-regulated PgR gene is induced in the apparent absence of ER. Our laboratory has previously cloned, from ER-/PgR+ tumors, a variant ER mRNA precisely missing the sequence corresponding to ER exon 5, and has demonstrated that the truncated protein product translated from this variant RNA is capable of constitutively inducing the expression of an estrogen-responsive reporter gene in a yeast expression vector system (Fuqua et al, Cancer Res 51:105-109, 1991). In the present report we describe further experiments to characterize the activity and biological consequences of expression of this variant ER in human breast cancer cells. We have stably transfected MCF-7 human breast cancer cells with a mammalian expression vector for the exon 5 deletion variant ER. These transfected cells produce a truncated ER protein of the expected 40 kDa size. Cells expressing the exon 5 ER deletion variant constitutively express PgR, and manifest increased anchorage-independent colony formation in the absence of estrogen. Furthermore, the anchorage-dependent growth of these cells was not inhibited by the triphenylethylene antiestrogens tamoxifen or 4-hydroxytamoxifen, unlike MCF-7 cells transfected with a control plasmid, which were growth inhibited by both of these compounds. Interestingly, the pure antiestrogen ICI 164,384 did inhibit the growth of exon 5 ER deletion variant-expressing transfectants. The implications of these results with regard to the treatment of tamoxifen-resistant disease are discussed.  相似文献   

16.
Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as tamoxifen or the selective ER down-regulators such as ICI 182,780) are key treatment regimens for hormone receptor-positive breast cancers. While these drugs are very effective in controlling ER-positive breast cancer, many tumors that initially respond well to treatment often acquire drug resistance, which is a major clinical problem. In clinical practice, hormonal therapy agents are commonly used in combination or sequence with radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor control and patient survival. However, tamoxifen treatment may render cancer cells less responsive to radiation therapy.Only a handful of data exist on the effects of radiation on cells resistant to hormonal therapy agents. These scarce data show that cells that were resistant to tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of cross-resistance to endocrine therapy and radiation therapy need to be established.Here, we for the first time examined and compared radiation responses of MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAMR-1 and ICI 182,780 resistant MCF-7/182R-6 cell lines. Specifically, we analyzed the radiation-induced changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle regulation. We found that the tamoxifen-resistant cell line in contrast to the parental and ICI 182,780-resistant cell lines displayed a significantly less radiation-induced decrease in the expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAMR-1 and MCF-7/182R-6 cells were less susceptible to radiation-induced apoptosis as compared to the parental line. These data indicate that tamoxifen-resistant breast cancer cells have a reduced sensitivity to radiation treatment. The current study may therefore serve as a roadmap to the future analysis of the mechanisms of cross-resistance between hormonal therapy and radiation.  相似文献   

17.
SummaryBackground People diagnosed with cancer often self-administer complementary and alternative medicines (CAMs) to supplement their conventional treatments, improve health, or prevent recurrence. Flor-Essence? and Essiac? Herbal Tonics are commercially available complex mixtures of herbal extracts sold as dietary supplements and used by cancer patients based on anecdotal evidence that they can treat or prevent disease. In this study, we evaluated Flor-Essence? and Essiac? for their effects on the growth of human tumor cells in culture.Methods The effect of Flor-Essence? and Essiac? herbal tonics on cell proliferation was tested in MCF-7, MDA-MB-436, MDA-MB-231, and T47D cancer cells isolated from human breast tumors. Estrogen receptor (ER) dependent activation of a luciferase reporter construct was tested in MCF-7 cells. Specific binding to the ER was tested using an ICI 182,780 competition assay.Results Flor-Essence? and Essiac? herbal tonics at 1%, 2%, 4% and 8% stimulated cell proliferation relative to untreated controls in both estrogen receptor positive (MCF-7 and T47D) and estrogen receptor negative (MDA-MB-231 and MDA-MB-436) cell lines. Exposure to the tonics also produced a dose-dependent increase in ER dependent luciferase activity in MCF-7 cells. A 10−7 M concentration of ICI 182,780 inhibited the induction of ER dependent luciferase activity by Flor-Essence? and Essiac?, but did not affect cell proliferation.Conclusion Flor-Essence? and Essiac? Herbal Tonics can stimulate the growth of human breast cancer cells through ER mediated as well as ER independent mechanisms of action.  相似文献   

18.
Summary The rationale for seeking to identify new pure antiestrogens was based on the recognition that existing antiestrogens, exemplified by tamoxifen, all possess partial agonist (estrogenic) activity. Conceptually, pure antiestrogens should be more effective than tamoxifen in ablating the mitogenic action of estrogens on breast tumor growth. The discovery and properties of the pure antiestrogens ICI 164,384 and ICI 182,780 are described and contrasted with those of tamoxifen. Key characteristics of these compounds which may be of particular relevance to their therapeutic application in the treatment of breast cancer are described. These include experimental data which predict efficacy in patients whose disease recurs during tamoxifen treatment, and the potential for pure antiestrogens to demonstrate greater efficacy than tamoxifen in first-line treatment of advanced breast cancer. The data imply that gains in efficacy could emerge as more rapid, more complete, or longer-lasting tumor remissions. Clinical trials with ICI 182,780 will reveal whether one or more of these predictions is correct.  相似文献   

19.
An interaction between cellular estrogen response and melatonin signaling mediated by G-protein coupled receptors is present in breast cancer cells. In this study, the effect of antiestrogens on basal and melatonin-modulated expression of MT1 melatonin receptor in breast and ovarian cancer cells was examined. For this purpose, the effects of the selective estrogen receptor modulator tamoxifen and pure antiestrogen ICI 182,780 on MT1 expression in estrogen receptor (ER) alpha-positive and -negative breast and ovarian cancer cell lines cultured in medium supplemented with 1 nM 17-beta estradiol were assessed by Western blot analysis. We were able to detect expression of the MT1 receptor in SK-OV-3 and OVCAR-3 cells and report its up-regulation by melatonin in both ovarian cancer cell lines. MT1 expression was observed to be significantly weaker in ERalpha-positive MCF-7 and OVCAR-3 cells than in ERalpha-negative MDA-MB-231 and SK-OV-3 cells. Treatment with the pure antiestrogen ICI 182,780 increased MT1 receptor expression in OVCAR-3 ovarian cancer cells, but decreased MT1 expression in MCF-7 breast cancer cells. No effect of ICI 182,780 on MT1 expression was observed in the ERalpha-negative cell lines SK-OV-3 and MDA-MB-231. After treatment with 4-OH tamoxifen, down-regulation of basal MT1 receptor expression in ERalpha-positive MCF-7 cells and inhibition of melatonin-induced up-regulation of MT1 in OVCAR-3 ovarian cancer cells were observed. In contrast, treatment with 4-OH tamoxifen increased the MT1 receptor level in ERalpha-negative SK-OV-3 ovarian cancer cells. Our findings support the existence of close interaction between estrogen and melatonin signaling. Moreover, our data suggest that melatonin signaling is modulated by antiestrogens in breast and ovarian cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号