首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study has further investigated the pharmacological profile of the GR127935-sensitive 5-HT(1) receptors mediating vasoconstriction in the internal carotid bed of anaesthetized vagosympathectomized dogs. One-minute intracarotid infusions of the agonists 5-hydroxytryptamine (5-HT; 0.1 - 10 microg min(-1); endogenous ligand) and sumatriptan (0.3 - 10 microg min(-1); 5-HT(1B/1D)), but not PNU-142633 (1 - 1000 microg min(-1); 5-HT(1D)) or LY344864 (1 - 1000 microg min(-1); 5-ht(1F)), produced dose-dependent decreases in internal carotid blood flow without changing blood pressure or heart rate. The responses to 5-HT were apparently resistant to blockade by i.v. administration of the antagonists SB224289 (300 microg kg(-1); 5-HT(1B)), BRL15572 (300 microg kg(-1); 5-HT(1D)) or ritanserin (100 microg kg(-1); 5-HT(2)). In contrast, the responses to sumatriptan were antagonized by SB224289, but not by BRL15572. In the animals receiving SB224289, but not those receiving BRL15572, the subsequent administration of ritanserin abolished the 5-HT-induced vasoconstriction and unmasked a vasodilator component. Similarly, in ritanserin-treated animals, the subsequent administration of SB224289, but not BRL15572, completely blocked the 5-HT-induced vasoconstriction, revealing vasodilatation. In animals receiving initially BRL15572, the subsequent administration of SB224289 did not affect (except at 10 microg min(-1)) the vasoconstrictor responses to 5-HT. Notably, in animals pretreated with 1000 microg kg(-1) of mesulergine, a 5-HT(2/7) receptor antagonist, 5-HT produced a dose-dependent vasoconstriction, which was practically abolished by SB224289. After BRL15572, no further blockade was produced and the subsequent administration of ritanserin was similarly inactive. These results suggest that the GR127935-sensitive 5-HT(1) receptors mediating canine internal carotid vasoconstriction resemble the 5-HT(1B) but not the 5-HT(1D) or 5-ht(1F), receptor subtype.  相似文献   

2.
The effects of selective serotonin re-uptake inhibitor (SSRI), paroxetine, and 5-HT1A, 5-HT1B and 5-HT1B/1D receptor antagonists on in vivo extracellular 5-HT levels in the guinea-pig frontal cortex and dorsal hippocampus were investigated using the technique of microdialysis. The aim of the study was to further investigate the autoreceptor roles of the 5-HT1A, 5-HT1B and 5-HT1D receptors in the median vs dorsal raphe nuclei. In the frontal cortex, 5-HT1A (WAY 100635, 1 mg/kg i.p.) or 5-HT1B (SB-224289, 4 mg/kg i.p.) receptor antagonists had no effect on extracellular levels of 5-HT, whilst the mixed 5-HT1B/1D receptor antagonist (GR 127935, 0.3 mg/kg i.p) produced a significant decrease in extracellular 5-HT levels. Paroxetine (10 microM) significantly increased extracellular 5-HT levels when perfused locally into the cortex. Administration of SB-224289, followed 120 min later by WAY 100635, had no effect on extracellular 5-HT levels. In contrast, sequential administration of either WAY 100635 and GR 127935, or SB-224289 and paroxetine significantly increased extracellular 5-HT levels. In the dorsal hippocampus, whilst 5-HT1A receptor antagonism elicited by administration of WAY 100635 had no effect, both 5-HT1B and mixed 5-HT1B/1D receptor blockade significantly increased extracellular 5-HT levels. Administration of SB-224289 followed 120 min later with WAY 100635, or WAY 100635 followed 30 min later with GR 127935, potentiated the effect of the three compounds alone, significantly increasing extracellular 5-HT levels. These data demonstrate that to simultaneously increase extracellular 5-HT in both frontal cortex and dorsal hippocampus of the guinea-pig brain concurrent 5-HTA1A, 5-HT1B and 5-HT1D receptor blockade is required. Whereas in the dorsal hippocampus, 5-HT1B receptor blockade is sufficient to elicit an increase in extracellular 5-HT levels.  相似文献   

3.
The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1 - 10 microg min(-1)), sumatriptan (0.3 - 10 microg min(-1); 5-HT(1B/1D)), 5-methoxytryptamine (1 - 100 microg min(-1); 5-HT(1), 5-HT(2), 5-HT(4), 5-ht(6) and 5-HT(7)) or DOI (0.31 - 10 microg min(-1); 5-HT(2)), but not 5-carboxamidotryptamine (0.01 - 0.3 microg min(-1); 5-HT(1), 5-ht(5A) and 5-HT(7)), 1-(m-chlorophenyl)-biguanide (mCPBG; 1 - 1000 microg min(-1); 5-HT(3)) or cisapride (1 - 1000 microg min(-1); 5-HT(4)), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 microg kg(-1); 5-HT(2A/2B/2C)) in combination with tropisetron (3000 microg kg(-1); 5-HT(3/4)) or the cyclo-oxygenase inhibitor, indomethacin (5000 microg kg(-1)), but were abolished by the 5-HT(1B/1D) receptor antagonist, GR127935 (30 microg kg(-1)). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 microg kg(-1)) or ketanserin (100 microg kg(-1); 5-HT(2A)), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT(1B/1D) and 5-HT(2A) receptors.  相似文献   

4.
Serotonin (5-hydroxytryptamine; 5-HT) is capable of inhibiting the tachycardic responses elicited by sympathetic stimulation, but not by exogenous noradrenaline, in pithed rats pre-treated with desipramine. More recently, it has been shown that this cardiac sympatho-inhibitory response to 5-HT, mediated by prejunctional 5-HT1 receptors as well as putative 5-ht5A/5B receptors, is mimicked dose-dependently by the agonists CP 93,129 (r5-HT1B), sumatriptan (5-HT1B/1D) and PNU-142633 (5-HT1D). This study analysed further the pharmacological profile of the above 5-HT1 receptors.Continuous i.v. infusions of CP 93,129, sumatriptan or PNU-142633 (30 µg kg–1min–1 each) failed to modify the tachycardic responses to exogenous noradrenaline but inhibited those elicited by preganglionic (C7–T1) stimulation of the cardiac sympathetic outflow. These sympatho-inhibitory responses were unaltered after i.v. administration of physiological saline (1 ml kg–1) or the 5-HT1A receptor antagonist WAY 100635 (10 µg kg–1). In contrast, the antagonist GR 127935 (5-HT1B/1D; 100 µg kg–1, i.v.) abolished the responses to CP 93,129, sumatriptan and PNU-142633, whilst SB224289 (5-HT1B; 300 µg kg–1, i.v.) abolished the responses to CP 93,129 without affecting those to sumatriptan and PNU-142633. Interestingly, BRL15572 (5-HT1D; 300 µg kg–1, i.v.) abolished the responses to PNU-142633 and attenuated those to sumatriptan, but not those to CP 93,129.WAY 100635, GR 127935, SB224289 and BRL15572, given alone at the above doses, failed to modify the sympathetically induced tachycardic responses. The 5-HT1 receptors producing cardiac sympatho-inhibition in pithed rats thus display the pharmacological profile of the 5-HT1B and 5-HT1D receptor subtypes.  相似文献   

5.
Indorenate (5-methoxytryptamine beta-methylcarboxylate, INDO) is a serotonin (5-hydroxytryptamine, 5-HT) agonist that has affinity for 5-HT(1A/1B/2C) receptors. Unlike other anxiolytics such as 5-HT receptor agonists, INDO may not share tolerance or dependency with the benzodiazepine anxiolytics. It has been reported that the discriminative stimulus properties of 5-HT(1A/1B/2C) agonists, but not those of 5-HT(3/4) agonists, generalize to INDO. Therefore, the aim of the present study was to obtain further evidence on the differential involvement of 5-HT(1A/1B/2C) receptors in the discriminative stimulus properties of INDO by evaluating its interactions with antagonists of the 5-HT(1A), 5-HT(1B), 5-HT(2C), and 5-HT(3/4) receptor subtypes. Rats were trained to discriminate INDO from saline in a conditioned taste aversion paradigm. For Group D(+)S(-), administration of INDO signalled that saccharin flavour was followed by LiCl, while injection of vehicle signalled safe consumption of saccharin solution. Group D(-)S(+) had the contingencies reversed. After this training, rats had generalization tests where INDO administration was preceded by different doses of the following antagonists: WAY100635 (5-HT(1A)), NAN190 (5-HT(1A)), methiothepin (5-HT(1A/1B/2C)), GR127935 (5-HT(1B/1D)), ketanserin (5-HT(2A/2C)), ritanserin (5-HT(2C/2A)), mesulergine (5-HT(2C/2A)), metergoline (5-HT(2C/2A)), SB206553 (5-HT(2B/2C)), and tropisetron (5-HT(3/4)). In Group D(+)S(-), the order of potency to block the discriminative stimulus properties of INDO was WAY100635>ketanserin>ritanserin>GR127935>mesulergine congruent with SB206553>metergoline>methiothepin>NAN190, while in Group D(-)S(+), the order was WAY100635>GR127935>ketanserin>ritanserin>mesulergine congruent with SB206553>metergoline>methiothepin>NAN190. Tropisetron did not produce any alteration of the discriminative control by INDO. These results suggest that the discriminative signal of INDO is mediated by 5-HT(1A/2C/1B) receptors and that blockade of any of its components produces a degradation of its discriminative effects.  相似文献   

6.
We have previously shown that 5-HT(1B) receptors inhibit prejunctionally the rat vasodepressor CGRPergic sensory outflow. Since 5-HT(1) receptors comprise 5-HT(1A), 5-HT(1B), 5-HT(1D) and 5-HT(1F) functional subtypes, this study has further investigated the role of 5-HT(1A), 5-HT(1D) and 5-HT(1F) receptor subtypes in the inhibition of the above vasodepressor sensory outflow. Pithed rats were pretreated with i.v. continuous infusions of hexamethonium and methoxamine, followed by 5-HT(1) receptor agonists. Then electrical spinal stimulation (T(9)-T(12)) or i.v. bolus injections of exogenous α-CGRP produced frequency-dependent or dose-dependent vasodepressor responses. The electrically-induced vasodepressor responses remained unchanged during infusions of the 5-HT(1A) receptor agonists 8-OH-DPAT and NN-DP-5-CT. In contrast, these responses were inhibited by the agonists sumatriptan (5-HT(1A/1B/1D/1F)), indorenate (5-HT(1A)), PNU-142633 (5-HT(1D)) or LY344864 (5-HT(1F)), which did not affect the vasodepressor responses to exogenous CGRP (implying a prejunctional sensory-inhibition). When analysing the effects of antagonists: (i) 310 μg/kg (but not 100 μg/kg) GR127935 (5-HT(1A/1B/1D/1F)) abolished the inhibition to sumatriptan, indorenate, PNU-142633 or LY344864; (ii) 310 μg/kg SB224289 (5-HT(1B)) or BRL15572 (5-HT(1D)) failed to block the inhibition to sumatriptan or PNU-142633, whereas SB224289+BRL15572 partly blocked the inhibition to sumatriptan; and (iii) 10 μg/kg WAY100635 (5-HT(1A)) failed to block the inhibition to indorenate. These results suggest that 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), receptor subtypes inhibit the vasodepressor sensory CGRPergic outflow although, admittedly, no selective 5-HT(1F) receptor agonist is available yet. The pharmacological profile of these receptors resembles that shown in rat dorsal root ganglia by molecular biology techniques.  相似文献   

7.
Bovine pulmonary supernumerary arteries are more sensitive to 5-hydroxtryptamine (5-HT) (pD(2) 6.43+/-0.25) than conventional arteries (pD(2) 5.32+/-0.16). This study investigated receptors for 5-HT in ring segments of these arteries. The 5-HT(2) receptor agonist, 2,5 dimethoxy-4-iodoamphetamine hydrobromide (DOI) constricts both arteries. The selective 5-HT(2) receptor antagonist ritanserin produced insurmountable antagonism of 5-HT concentration-response curves in both arteries, whereas the 5-HT(1B/1D) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'(5-methyl- 1,2,4-oxadiazol-3-yl[1,1,-biphenyl]-4-carboxamide hydrochloride (GR127935) produced much greater antagonism in supernumerary arteries. In rings preconstricted with 9,11-dideoxy-9, 11-methanoepoxy prostalagdin F(2alpha) (U46619) and relaxed with the adenylyl cyclase activator forskolin, the selective 5-HT(ID) receptor agonist 2-[5-[3-(4-methylsulphonylamino) benzyl-1,2, 4-oxadiazol-5-yl]-1H-indole-3-yl] ethylamine (L694247) reversed the relaxation. Concentration-response curves for L694247-induced reversal of forskolin-relaxation were antagonised by GR127935 in supernumerary (pK(B) 8.6) and conventional (pK(B) 8.4) arteries, whereas concentration-response curves to 5-HT-were less sensitive to antagonism by GR127935T and this was more obvious in conventional (pK(B) 7.6) than supernumerary (pK(B) 8.1) arteries. Neither the selective 5-HT(1D) receptor antagonist (1-(3-chlorophenyl)-4-[3, 3-diphenyl (2-(S,R) hydroxypropanyl)piperazine] hydrochloride (BRL15572) nor the 5-HT(1B) receptor antagonist (2,3,6, 7-tetrahydro-1'-methyl-5-[2'methyl-4'5-(methyl-1,2,4-oxadiazol-3-y l) biphenyl-4-carbonyl]furo[2,3-f]indole-3-spiro-4'-piperidine hydrochloride (SB224289) antagonised concentration-response curves induced by 5-HT or 5-HT(1)-receptor-selective agonists. In addition to the 5-HT(2A) receptor, 5-HT activates a GR127935-sensitive and a GR127935-insensitive receptor in these arteries. Supernumerary arteries have a greater proportion of GR127935-sensitive receptors, which display only some of the pharmacological characteristics of the cloned 5-HT(ID) receptor. It is possible that the GR127935-sensitive receptor could be a species homologue of the human 5-HT(1B) receptor that is insensitive to SB224289.  相似文献   

8.
This study set out to analyse the potential ability of some 5-hydroxytryptamine (5-HT) receptor ligands widely used in cardiovascular experimental models to interact with vascular alpha1-adrenoceptors in the pithed rat. These ligands included: methiothepin, methysergide and metergoline (5-HT(1)/5-HT2); WAY-100635, buspirone, ipsapirone and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (5-HT(1A)); GR127935 (5-HT(1B/1D)); ketanserin, ritanserin, spiperone and pizotifen (5-HT2); granisetron and metoclopramide (5-HT3); tropisetron (5-HT3/5-HT4); ergotamine (5-HT(1B/1D), 5-ht(5A/5B)); clozapine (5-HT6/5-HT7); as well as LY215840 and mesulergine (5-HT2/5-HT7). For this purpose, the increases in diastolic blood pressure produced by the selective alpha1-adrenoceptor agonist, phenylephrine, were analysed before and after the above antagonists or saline. The adrenoceptor antagonist properties of prazosin (alpha1) and yohimbine (alpha2) were also analysed for comparison. Thus, the phenylephrine-induced vasopressor responses were dose-dependently antagonised with the following apparent rank order of potency by: prazosin > or = methiothepin > ketanserin > clozapine > or = lisuride > buspirone; this potency correlates with the affinity of these compounds for alpha1-adrenoceptor binding sites. In contrast, the other compounds were either devoid of any blocking effect on--or even potentiated (i.e. lisuride, methysergide, 8-OH-DPAT, granisetron and GR127935)--the responses to phenylephrine. These results show that methiothepin, ketanserin, clozapine, lisuride and buspirone can block alpha1-adrenoceptors in the rat systemic vasculature.  相似文献   

9.
G-protein activation mediated by 5-HT1B receptors was studied in human brain by [35S]GTPgammaS autoradiographic methods. 5-HT (10 microM) increased [35S]GTPgammaS binding in caudate-putamen nucleus, globus pallidus, dentate gyrus, CA1, entorhinal cortex and substantia nigra. In basal ganglia and midbrain, this effect was blocked by GR 127935 (5-HT(1B/1D) antagonist). In contrast, WAY 100635 (selective 5-HT1A antagonist) reversed the effect of 5-HT in hippocampus and entorhinal cortex. Therefore, a detailed pharmacological study was carried out in basal ganglia and substantia nigra using 5-HT and the 5-HT(1B/1D) agonists GTI and CP 93129. In these areas, these agonists stimulated [35S]GTPgammaS binding in a concentration-dependent manner, with no significant differences in the potency for a given structure. Furthermore, GTI was more potent in the putamen than in globus pallidus. In caudate-putamen, the three agonists showed the same efficacy, while in globus pallidus and substantia nigra the efficacy of 5-HT was higher than GTI and CP 93129. The selective 5-HT1B antagonist SB-224289 inhibited GTI- and CP 93129-stimulated [35S]GTPgammaS binding in basal ganglia and substantia nigra, while coincubation with BRL 15572 (selective 5-HT1D antagonist) did not result in any significant change. Here we report the anatomical pattern of distribution of 5-HT1B-dependent functionality by using specific pharmacological tools in human brain sections.  相似文献   

10.
It has been suggested that the external carotid vasodilatation produced by serotonin (5-hydroxytryptamine; 5-HT) in anaesthetised dogs with intact vagosympathetic trunks is mediated by sympatho-inhibitory '5-HT1D' receptors and musculotropic '5-HT1-like' receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors. In pentobarbital-anaesthetised dogs with intact vagosympathetic trunks, 1-min intracarotid (i.c.) infusions of 5-carboxamidotryptamine (5-CT; 0.01-0.3 microg/min), 5-HT (0.3-30 microg/ min), 5-methoxytryptamine (5-MeO-T; 1-100 microg/min) or sumatriptan (1-100 microg/min) dose-dependently increased the external carotid blood flow without affecting blood pressure or heart rate. The selective 5-HT1D receptor agonist, PNU-142633 (1-1000 microg/min), was essentially inactive. After mesulergine (300 microg/kg, i.v.), an antagonist at cardiovascular 5-HT7 receptors, the above responses to 5-HT, 5-CT and 5-MeO-T were blocked, whilst those to sumatriptan remained unaffected. In contrast, after the 5-HT1B/1D receptor antagonist, GR127935 (10 microg/kg, i.v.), the responses to 5-HT, 5-CT and 5-MeO-T were not affected, but those to sumatriptan were abolished. Furthermore, after the selective 5-HT1B receptor antagonist, SB224289 (300 microg/kg, i.v.), the responses to 5-HT, 5-CT and 5-MeO-T were significantly enhanced, whereas those to sumatriptan were abolished. Interestingly, the responses to all these agonists remained unmodified after the selective 5-HT1D receptor antagonist, BRL15572 (300 microg/kg, i.v.). The above results suggest that the '5-HT1-like' receptors, which mediate canine external carotid vasodilatation, display the pharmacological profile of sympatho-inhibitory 5-HT1B receptors and musculotropic 5-HT7 receptors, and confirm the existence of vasoconstrictor 5-HT1B receptors.  相似文献   

11.
Serotonin 5-HT1A and 5-HT1B/1D receptors control serotonin (5-HT) release and are targets for the pharmacological treatment of psychiatric disorders. We investigated effects of the 5-HT1B/1D antagonist GR127935, the 5-HT1A antagonist WAY 100635 and a combination of both in guinea pigs on the behaviour in the forced swimming test and on extracellular 5-HT in the hippocampus and the prefrontal cortex using in vivo microdialysis. Tissue content of 5-HT, 5-HIAA and 5-HT turnover (ratio 5-HIAA/5-HT) were determined in a sample containing i) the median and dorsal raphe nuclei, ii) the frontal cortex, or iii) the ventral hippocampus ex vivo. BEHAVIOUR: Administration of WAY 100635 (0.3-3.0 mg/kg, i.p.) or GR127935 (1.0-10.0 mg/kg, i.p.) or the combination of both delayed immobility in the forced swim test. MICRODIALYSIS: Systemic administration of WAY 100635 (1 mg/kg i.p.), perfusion with GR127935 (10 microM perfused into the frontal cortex) in the medial prefrontal cortex or the combination of both treatments had no significant effect on extracellular 5-HT. 5-HT TISSUE CONTENT AND 5-HT TURNOVER IN THE TISSUE: Compared to controls, WAY 100635, GR127935 and the combination thereof, decreased cortical 5-HT (-30%), increased 5-HIAA and consequently 5-HT turnover in the cortex threefold and the raphe nuclei twofold. WAY 100635 decreased 5-HT in the hippocampus (-40%), too. WAY 100635 and GR127935 and their combination increased hippocampal 5-HIAA and 5-HT turnover twofold, compared to controls. The results suggest that both 5-HT1 antagonists have subtle effects on 5-HT function under resting conditions; combined treatment has no superior effects compared to solitary treatment.  相似文献   

12.
The vasoconstrictor effects of 5-hydroxytryptamine (5-HT) in the internal carotid bed of anaesthetised dogs with bilateral vagosympathectomy are mainly mediated by both 5-HT1B and 5-HT2 receptors. The blockade of this vasoconstrictor effect of 5-HT by the combined use of the antagonists, GR127935 (5-HT1B/1D) and ritanserin (5-HT2), unmasks a dose-dependent vasodilator effect of 5-HT, but not of sumatriptan. Therefore, the present study set out to analyse the pharmacological profile of this vasodilator 5-HT receptor in the internal carotid bed of vagosympathectomized dogs systematically pretreated with intravenous (i.v.) injections of GR127935 (30 microg/kg) and ritanserin (100 microg/kg). One-minute (1-min) intracarotid (i.c.) infusions of 5-HT (0.1-10 microg/min), 5-carboxamidotryptamine (5-CT; 0.01-0.3 microg/min), 5-methoxytryptamine (5-MeO-T; 1-100 microg/min) and acetylcholine (ACh; 0.003-0.1 microg/min) resulted in dose-dependent increases in internal carotid blood flow (without changes in blood pressure or heart rate) with a rank order of agonist potency of ACh > 5-CT > 5-HT > or =5-MeO-T. The internal carotid vasodilator responses to 5-HT, 5-CT and 5-MeO-T, which remained unaffected after saline (0.03 ml/kg and 0.1 ml/kg, i.v.), were specifically and dose-dependently blocked by i.v. administration of lisuride (10 microg/kg and 30 microg/kg), clozapine (1000 microg/kg), mesulergine (300 microg/kg and 1000 microg/kg) and LY215840 (300 microg/kg and 1000 microg/kg) with the following apparent rank order of potency: lisuride > mesulergine = LY215840 > or = clozapine. The above results suggest that the 5-HT receptor mediating internal carotid vasodilatation in vagosympathectomized dogs pretreated with GR127935 and ritanserin is operationally similar to other 5-HT7 receptors mediating vascular and non-vascular responses.  相似文献   

13.
5—羟色胺受体介导迷走交感神经切断犬颈外血管收缩   总被引:2,自引:0,他引:2  
One specific example reflecting the complexity of cardiovascular responses induced by serotonin (5-hydroxytryptamine; 5-HT) and the progress achieved in the pharmacological characterization of the receptors involved can be illustrated by the effects of 5-HT on the canine external carotid artery bed. Within this framework, it has been shown that the external carotid vasoconstrictor response to 5-HT in the dog is mediated by '5-HT1-like' receptors, which being blocked by the 5-HT1B/1D receptor antagonist GR127935, resemble 5-HT1B/1D (previously called 5-HT1D beta/1D alpha) receptors. It was proposed that these receptors could belong to the 5-HT1B, rather than the 5-HT1D, subtype on the basis of their resistance to blockade by a high dose of ritanserin (a potential 5-HT1D receptor antagonist) and the presence of mRNA for 5-HT1B(5-HT1D beta) receptors, but not for 5-HT1D(5-HT1D alpha) receptors, in vascular smooth muscle. With the advent of subtype-selective antagonists it was subsequently shown that external carotid vasoconstriction to 5-HT and sumatriptan is dose-dependently antagonized by the selective 5-HT1B receptor antagonist SB224289 (2,3,6,7-tetrahydro-1'-methyl-5-[2'-methyl-4' (5-methyl-1,2,4-oxadiazol-3-yl) biphenyl-4-carbonyl] furo [2,3-f] indole-3-spiro-4'-piperidine hydrochloride), whereas the selective 5-HT1D receptor antagonist BRL15572 (1-(3-chlorophenyl)-4-[3,3-diphenyl (2-(S,R) hydroxypropanyl) piperazine] hydrochloride) was ineffective. These findings represent the first in vivo evidence showing that vascular constriction induced by 5-HT and sumatriptan is mediated primarily via 5-HT1B, but not 5-HT1D receptors. The pharmacological profile of these receptors could be similar (isolated human temporal artery and porcine carotid arteriovenous anastomoses) to other putative 5-HT1B receptors mediating vasoconstrictor responses. In view of the putative pathophysiologic role of external carotid (and extracerebral) vasodilation in migraine, the constriction of these blood vessels by sumatriptan via 5-HT1B receptors may be, at least partly, responsible for its therapeutic efficacy in migraine.  相似文献   

14.
The releases of [3H]5-hydroxytryptamine ([3H]5-HT) and of endogenous glutamic acid and their modulation through presynaptic h5-HT1B autoreceptors and h5-HT1D heteroreceptors have been investigated in synaptosomal preparations from fresh neocortical samples obtained from patients undergoing neurosurgery. The inhibition by 5-HT of the K+ (15 mM)-evoked overflow of [3H]5-HT was antagonized by the 5-HT1B/5-HT1D receptor ligand GR 127935, which was ineffective on its own; this drug was previously found to behave as a full agonist at the h5-HT1D heteroreceptor regulating glutamate release. The recently proposed selective h5-HT1B receptor ligand SB-224289 also prevented the effect of 5-HT at the autoreceptor, being inactive on its own; in contrast, SB-224289, at 1 microM, was unable to interact with the h5-HT1D heteroreceptor. The inhibitory effect of 5-HT on the K+-evoked overflow of glutamate was antagonized by the h5-HT1D receptor ligand BRL-15572; added in the absence of 5-HT the compound was without effect. BRL-15572 (1 microM) was unable to modify the effect of 5-HT at the autoreceptor regulating [3H]5-HT release. The selective 5-HT1A receptor antagonist (+)-WAY 100135, previously found to be an agonist at the h5-HT1D heteroreceptor regulating glutamate release, could not interact with the h5-HT1B autoreceptor when added at 1 microM. It is concluded that native h5-HT1B and h5-HT1D receptors exhibit a hitherto unexpected pharmacological diversity.  相似文献   

15.
5-HT(1B/D) receptor agonists such as GR46611 (3-[3-(2-Dimethylaminoethyl)-H-indol-5-yl]-N-(4-methoxybenzyl)acrylamide ) are known to lower body temperature in guinea pigs. Although stimulation of their functional analogs in rats, the 5-HT1B receptor induces hyperlocomotion, this effect has yet to be demonstrated with 5-HT(1B/D) receptor agonists in the guinea pig. Previous studies have shown that 5-HT1A agonists increase locomotor activity in guinea pigs. The current study set out to examine the effects of 5-HT(1B/D) receptor stimulation on locomotor activity in the guinea pig and to examine the interaction between 5-HT1A and 5-HT(1B/D) receptor stimulation on locomotor activity in that species. The full agonist at 5-HT1A receptors, 8-OH-DPAT (R(+)-8-Hydroxy-dipropylaminotetralin HBr) dose-dependently increased locomotor activity in guinea pigs (0.3-1.25 mg kg(-1) s.c.), as to a lesser extent, did the partial agonist, buspirone (8-[4-[4-(2-Pyramidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5 ]decane-7,9-dione HCl) (5.0-20.0 mg kg(-1) s.c.). The 5-HT(1B/D) receptor agonist GR46611 had no effect on locomotor activity in guinea pigs at doses up to 40 mg kg(-1) s.c. 8-OH-DPAT-induced behavioural activation was reversed by the selective 5-HT1A receptor antagonist WAY100635 (N-[-2-[4-(-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyrinidyl) cyclo hexanocarboxamide trihydro-chloride), with a minimum effective dose of 0.006 mg kg(-1), but not by the 5-HT(1B/D) receptor antagonist GR127935 (2'-methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxyli c acid [4-methoxy-3-(4-methyl-piperazin-1-yl)phenyl]-amide) (0.25-1.0 mg kg(-1)). GR46611, at doses that were without effect given alone (0.5-2.5 mg kg(-1)), significantly enhanced the locomotor response to subthreshold doses of 8-OH-DPAT (0.5 mg kg(-1)) and buspirone (10 mg kg(-1)). The effect of GR46611 on 8-OH-DPAT-induced hyperactivity was reversed by pretreatment with GR127935 and with WAY 100635 indicating that activation of both receptors was required for the expression of locomotor hyperactivity. These findings suggest that activation of 5-HT(1B/D) receptors alone may not stimulate locomotor activity but it does potentiate the locomotion induced by 5-HT1A receptor stimulation in guinea pigs.  相似文献   

16.
In the mammalian brain 5-HT(1B) receptors are present as autoreceptors regulating the release of serotonin (5-HT) by inhibitory feedback. The antagonistic properties of NAS-181 ((R)-(+)-2-[[[3-(Morpholinomethyl)-2H-chromen-8-yl]oxy]methyl] morpholine methane sulfonate), a new selective antagonist for the rodent 5-HT(1B) receptor, were determined by using an agonist-induced decrease of extracellular 5-HT. The 5-HT(1B) receptor agonist CP93129 (0.030.3 microM) applied by reversed microdialysis, dose-dependently reduced 5-HT levels in rat frontal cortex. The suppressant effect of CP93129 (0.1 microM) was smaller in the presence of fluvoxamine (3-10 microM), a 5-HT reuptake inhibitor. The effects of NAS-181 on CP93129 were compared with GR127935, a mixed 5-HT (1B/1D) receptor antagonist, and SB224289, a 5-HT(1B) receptor antagonist. Both in the presence and absence of fluvoxamine, the suppressant effect of CP93129 on extracellular 5-HT was attenuated by NAS-181 (1 microM) and GR127935 (10 microM), but not by SB224289 (1 microM). In the absence of fluvoxamine, GR127935, SB224289 and NAS-181 all reduced 5-HT levels, suggesting partial agonistic properties of these compounds. In conclusion, the results show that NAS-181 is a potent 5-HT(1B) receptor antagonist.  相似文献   

17.
In the present study we attempted to characterise the responses and receptors involved in the effects of 5-hydroxytryptamine (5-HT, serotonin) in in situ autoperfused rat hindquarters. Intra-arterial administration of the lowest doses of 5-HT used (0.12-12.5 ng/kg) induced vasodilator responses, whereas the highest doses (25-1000 ng/kg) produced vasoconstriction. The vasodilator effect was inhibited by methiothepin (a non-specific 5-HT(1,2,5,6,7) receptor antagonist) and by a 5-HT(1D/1B) receptor antagonist, i.e., 3-[4-(4-chlorophenyl)piperazin-1-yl]-1,1-diphenyl-2-propanolol (BRL 15572), but not by ritanserin (a selective 5-HT(2) receptor antagonist), 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f] indole (SB 206553, a selective 5-HT(2B/2C) receptor antagonist) or mesulergine (a non-specific serotonergic antagonist that shows affinity to the 5-HT(7) receptor). This vasodilator effect was mimicked by administration of a selective 5-HT(1) receptor agonist - 5-carboxamidotryptamine (5-CT) - and by 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-1 H-indol-3-yl]ethanamine (L-694,247, a selective 5-HT(1D/1B) receptor agonist). Methiothepin, but not mesulergine, inhibited 5-CT-induced vasodilatation and the selective 5-HT(1D/1B) receptor antagonist (BRL 15572) inhibited the vasodilator action induced by L-694,247.The vasoconstrictor effect of 5-HT was significantly decreased by methiothepin, ritanserin and SB 206553, and was mimicked by alpha-methyl-5-HT (a selective 5-HT(2) receptor agonist) but not by administration of BW 723C86, a selective 5HT(2B) receptor agonist. Ritanserin, SB 206553 and spiperone (a non-specific 5-HT(1/2A) receptor antagonist) inhibited the alpha-methyl-5HT-induced vasoconstriction.Our data suggest that the vasodilator response induced by 5-HT in autoperfused rat hindquarters is mainly mediated by 5-HT(1D/1B) receptors, whereas the vasoconstrictor effect is mainly due to the activation of 5-HT(2A) receptors.  相似文献   

18.
Some clinical evidence has suggested that (+/-)pindolol can be effective at producing a shortened time to onset of antidepressant activity when co-administered with a serotonin specific reuptake inhibitor (SSRI). This effect has been attributed to the antagonist effects of pindolol at the 5-HT(1A) receptor. In the present study, we compared the pharmacology of (+/-)pindolol, WAY-100635 (a 5-HT(1A) antagonist), GR127935 (a 5-HT(1B/1D) antagonist), and isamoltane (a 5-HT(1B) antagonist), when given acutely in combination with fluoxetine, using in vivo microdialysis in the frontal cortex of the freely moving rat. We have determined that the acute fluoxetine-induced increases in extracellular 5-HT can be augmented by (+/-)pindolol, WAY100635, GR127935 and isamoltane with maximum increases of 216+/-32%, 235+/-49%, 240+/-18% and 171+/-47% of preinjection control levels, respectively. Combination of both 5-HT(1A) and 5-HT(1B/1D) autoreceptor antagonists with fluoxetine produced additive increases in extracellular 5-HT (i.e. WAY100635+GR127935+fluoxetine and WAY100635+isamoltane+fluoxetine produced a four- and five-fold potentiation, respectively), suggesting that this strategy may be useful in further augmenting the action of a SSRI in the treatment of depression. In addition, by comparing the combined administration of (+/-)pindolol with either WAY100635, GR127935 or isamoltane, we have determined that (+/-)pindolol produces much of its acute potentiation of fluoxetine-induced increases in extracellular 5-HT via its action at the 5-HT(1B/D) receptor in addition to any activity it has at the presynaptic 5-HT(1A) receptor.  相似文献   

19.
1. Using brain microdialysis, we compared the relative role of 5-hydroxytryptamine (5-HT; serotonin) blockade and somatodendritic 5-HT(1A) and/or terminal 5-HT(1B) autoreceptor activation in the control of 5-HT output. 2. Fluoxetine (10 mg kg(-1) i.p.) doubled the 5-HT output in frontal cortex and dorsal hippocampus. The 5-HT(1A) receptor antagonist WAY 100635, (0.3 mg kg(-1) s.c.) potentiated the effect of fluoxetine only in frontal cortex (to approximately 500 % of baseline). 3. Methiothepin (10 mg kg(-1) s.c.) further enhanced the 5-HT rise induced by fluoxetine+WAY 100635, to 835+/-179% in frontal cortex and 456+/-24% in dorsal hippocampus. Locally applied, methiothepin potentiated the fluoxetine-induced 5-HT rise more in the former area. 4. The selective 5-HT(1B) receptor antagonist SB-224289 (4 mg kg(-1) i.p.) enhanced the effect of fluoxetine (10 mg kg(-1) i.p.) in both areas. As with methiothepin, SB-224289 (4 mg kg(-1) i.p.) further enhanced the 5-HT increase produced by fluoxetine+WAY 100635 more in frontal cortex (613+/-134%) than in dorsal hippocampus (353+/-59%). 5. Locally applied, fluoxetine (10 - 300 microM; EC(50)=28 - 29 microM) and citalopram (1 - 30 microM; EC(50)=1.0 - 1.4 microM) increased the 5-HT output two to three times more in frontal cortex than in dorsal hippocampus. These data suggest that the comparable 5-HT increase produced by systemic fluoxetine in frontal cortex and dorsal hippocampus results from a greater effect of reuptake blockade in frontal cortex that is offset by a greater autoreceptor-mediated inhibition of 5-HT release. As a result, 5-HT autoreceptor antagonists preferentially potentiate the effect of fluoxetine in frontal cortex.  相似文献   

20.
In the present study, we examined effects of the selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor citalopram, the 5-HT/noradrenaline reuptake inhibitor imipramine, the selective noradrenaline reuptake inhibitor desipramine or the monoamine oxidase-A inhibitor moclobemide, administered in combination with the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridynyl)cyclohexanecarboxamide (WAY 100635) or the 5-HT(1B/1D) receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)1,1'-biphenyl-4-carboxamide (GR 127935) and the 5-HT(1B) receptor antagonist N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide (SB 216641) in the forced swimming test in rats. When given alone, citalopram (20 and 30 mg/kg), imipramine (20 mg/kg), desipramine (20 mg/kg), moclobemide (20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), GR 127935 (10 and 20 mg/kg) or SB 216641 (2 mg/kg) did not shorten the immobility time of rats. Co-administration of WAY 100635 (0.1 and 1 mg/kg) and citalopram (20 mg/kg), or imipramine (20 mg/kg), or moclobemide (20 mg/kg) did not affect the immobility time of rats, whereas WAY 100635 given jointly with desipramine (20 mg/kg) induced a weak anti-immobility effect. GR 127935 (10 and 20 mg/kg) or SB 216641 (2 mg/kg) co-administered with imipramine, desipramine or moclobemide, but not citalopram, produced a significant anti-immobility action in the forced swimming test in rats. These results indicate that the blockade of 5-HT(1B) rather than 5-HT(1A) receptors may facilitate the anti-immobility effect of imipramine, desipramine or moclobemide in the forced swimming test. No interaction was observed between 5-HT(1A) or 5-HT(1B/1D) receptor antagonists and citalopram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号