共查询到20条相似文献,搜索用时 15 毫秒
1.
Pituitary glands and hypothalami from broiler fowl were incubated in medium containing testosterone, and prolactin and GH release were determined. Pituitary glands were also preincubated for 20 h in medium containing testosterone, and then in medium containing various secretagogues. Testosterone inhibited the release of prolactin directly from the pituitary gland in a concentration-related manner. The hypothalamus stimulated the release of prolactin, but by a lesser amount in the presence of testosterone. When pituitary glands were preincubated with testosterone, subsequent release of prolactin was inhibited, except with the highest concentration which stimulated prolactin release. Hypothalamic extract (HE) markedly stimulated prolactin release from control pituitary glands although testosterone-primed glands were less responsive. The stimulation of prolactin release by thyrotrophin releasing hormone (TRH) and prostaglandin E2 (PGE2) was also reduced by preincubation of the pituitary glands with testosterone. Priming with testosterone did not affect the release of GH from pituitary glands alone, but reduced the TRH-, HE- and PGE2-stimulated release of GH. These results demonstrate that testosterone directly inhibits prolactin secretion and reduces the sensitivity of pituitary lactotrophs and somatotrophs to provocative stimuli. 相似文献
2.
The basal release of prolactin from cockerel anterior pituitary glands in vitro declined between 1 and 7 weeks of age, to a level less than that released by pituitary glands from 18 week old (adult) cockerels and hens. Basal growth hormone (GH) release increased between 1 and 7 weeks of age but had declined in adults to a level similar to that released from 4 weeks old cockerels. The responsiveness of the pituitary gland to hypothalamic stimulation, using hypothalami from 8 week old broiler fowl, was also age-related. Prolactin release was considerably higher from pituitaries of 1 week old cockerels compared to the other age groups. Stimulation of GH release by the hypothalamus was higher from pituitaries of both 1 and 7 week old cockerels compared to the other groups of birds. The increase in release of prolactin following incubation with thyrotrophin releasing hormone (TRH) declined between 1 and 7 weeks, but increased slightly in adult birds, whereas the increase in release of GH following TRH was higher from pituitaries of both 1 and 7 week old cockerels. Hypothalamic prolactin (Prl) releasing activity, measured as the ability of the hypothalamus to stimulate hormone release from 8 week old broiler fowl anterior pituitary glands, declined with the age of the donor cockerels. The hypothalami from adult hens secreted significantly more Prl releasing activity than did adult cockerel hypothalami. The secretion of GH releasing activity decreased markedly with the age of the donor bird. These results suggest that maturational patterns of hormone secretion in fowl are partly due to changes in autonomous hormone release, to changing patterns of hypothalamic activity and to differences in pituitary responsiveness to provocative stimuli. 相似文献
3.
4.
The biologically active phospholipid (platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) stimulated PRL release from dispersed rat anterior pituitary cells in culture. PAF-induced PRL release was dose dependent, with threshold stimulation at 1 nM and maximal stimulation at 100 nM. Stimulation occurred as early as 1 min of incubation and persisted for 2 h. The action of PAF on PRL release is consistent with a receptor-mediated mechanism based on the observations that the action of PAF is blocked by dopamine agonists and the PAF receptor antagonists L 652731 and SRI 63072. The structural analogs 1-O-alkyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine, which lack the biological activity of PAF, are not able to stimulate PRL release over the dose range 0.2-2 microM. In addition, the PAF precursor lyso PAF and diacyl-sn-glycero-3-phosphocholine (phosphatidylcholine) were ineffective in stimulating PRL release. PAF induced the secretion of PRL and GH but not that of LH or TSH from hemipituitaries in short term incubations. PAF did not effect PRL release from GH3 cells. In conclusion, these data indicate that PAF stimulates PRL release from primary cultures of rat anterior pituitary cells in a dose-related, rapid, and specific manner. 相似文献
5.
Effect of serotonin on basal and TRH-induced release of prolactin from rat pituitary glands in vitro
M E Apfelbaum 《Acta endocrinologica》1987,114(4):565-571
The effect of serotonin on the release of prolactin (PRL) was studied in vitro. Anterior hemipituitary glands from ovariectomized rats were incubated for 1 h in the presence of different doses of serotonin. Serotonin added into the culture medium caused a significant increase in basal PRL release. The effect was dose-related between 10 and 30 nmol/l serotonin, but responsiveness declined towards basal levels with higher concentrations. When studied as a function of incubation time, basal release of PRL was significantly increased up to 1 h but decreased thereafter. Serotonin also enhanced the release of prolactin induced by 30 nmol/l thyrotropin-releasing hormone (TRH), at all doses tested. A serotonin concentration of as little as 30 nmol/l was already effective. A significant response was seen at 15 min and further increases occurred during the following incubation periods. Serotonin (approximately EC50 4.6 X 10(-8) mol/l) was less potent than TRH (EC50 about 1.2 X 10(-8) mol/l) to increase basal PRL release. On the other hand, the indole amine appeared to act with similar potency in stimulating PRL release both basal and TRH-induced. In addition, the combined effect of the releasing agents was found to be additive. These results suggest that serotonin and TRH could act through separate mechanisms. Methysergide, a serotoninergic blocking agent, had no effect on the in vitro PRL release either basal or TRH-induced, but it completely blocked that evoked by serotonin suggesting that serotonin may interact with specific receptors on the lactotropes. These findings clearly demonstrate that serotonin may stimulate the release of PRL by acting directly at the pituitary gland level. 相似文献
6.
Anterior pituitary glands from broiler fowl were incubated alone or with hypothalamic tissue in medium containing either serotonin or serotoninergic drugs, acetylcholine or cholinergic drugs, and the release of prolactin (Prl) and growth hormone (GH) measured by homologous radioimmunoassays. The neurotransmitters and drugs affected the release of hormones from the pituitary gland only when hypothalamic tissue was also present. Serotonin and its agonist quipazine stimulated the release of Prl and inhibited release of GH in a concentration-related manner. The antagonist methysergide blocked the effects of serotonin and quipazine on Prl. Acetylcholine and its agonist pilocarpine also stimulated release of Prl and inhibited release of GH in a concentration-related manner. Atropine blocked these responses. The results show that serotonin and acetylcholine affect pituitary hormone secretion by acting on the hypothalamus. They may stimulate the secretion of a Prl releasing hormone and somatostatin. 相似文献
7.
8.
9.
The release of PRL from the pituitary of a teleost fish, the tilapia (Oreochromis mossambicus), has been previously shown to be dependent on calcium. However, the source(s) and specific action(s) of calcium in the secretory process have not been identified. Also undefined are the mechanisms by which regulators of PRL cell function may alter calcium distribution. In the present investigation, the elevation of medium K+ concentration during static incubations to a depolarizing concentration (56 mM) produced no change in cumulative PRL release over control levels during the 18-20 h of incubation. During perifusion incubation, exposure to high K+ concentrations briefly stimulated (less than or equal to 10 min) and then depressed PRL release. In contrast, reduced medium osmotic pressure elicited a rapid elevation in PRL release that was sustained for 2 h or more. D600, a calcium entry blocker, at 10(-5) M diminished the K+-induced pulses of PRL release. The same concentration, however, did not alter the release of PRL evoked by reduced osmotic pressure. In contrast, CoCl2, which blocks a range of calcium-mediated processes in addition to calcium influx, suppressed PRL release during perifusion and static incubations in hyposmotic medium. These findings suggest that while PRL secretion from the tilapia pituitary is calcium dependent, calcium entry through voltage-regulated plasmalemma channels may not be a prerequisite to the actions of reduced osmotic pressure. 相似文献
10.
The enzymatic breakdown of phospholipids to form arachidonic acid and its subsequent conversion to metabolites produced via the lipoxygenase pathway in anterior pituitary cells may contribute to the process of PRL release. The incubation of primary cultures of pituitary cells from female rats with the lipoxygenase product 5-hydroxyeicosatetraenoic acid (5-HETE; 5-100 microM) significantly increased PRL release in a concentration-dependent manner. The release of PRL induced by 45 microM 5-HETE was completely blocked by 1 microM dopamine. Penfluridol, an agent that binds to and inactivates several Ca+2-binding proteins, including calmodulin, decreased (P less than 0.01) basal and 5-HETE-stimulated PRL release. Similarly, 50 microM D-600, a Ca+2 channel antagonist, significantly (P less than 0.01) reduced basal and 5-HETE-induced PRL release. BW755c or RHC 80267, both of which reduce the production of arachidonic acid metabolites, including 5-HETE, significantly reduced basal PRL release. The inhibitory effects of BW755c and RHC 80267 on PRL release, however, could be overcome by the addition of 5-HETE. In conclusion, 5-HETE or similar lipoxygenase metabolites may be important cellular components in the process of PRL release, and the inhibitory action of dopamine on PRL would seem to be mediated at some step after stimulation by these metabolites. 相似文献
11.
12.
R Drouhault P Vacher J P David A M Courtes N Vilayleck B Dufy 《Neuroendocrinology》1989,50(5):513-518
The imidazole derivative ketoconazole (1-100 microM) was shown to stimulate the release of prolactin (PRL) from rat anterior pituitary cells in vitro. In contrast, this drug did not affect growth hormone (GH) release from the same cells. In addition, ketoconazole was found to have no effect on PRL or GH release from a tumoral pituitary cell clone (GH3). Treatment of normal pituitary cells with ketoconazole (10 microM) for more than 20 min abolished TRH-induced hormone release. TRH-stimulated release was both attenuated and delayed in the ketoconazole-treated tumoral cells. Ketoconazole (10 microM) did not affect the basal electrophysiological properties of GH3 cell membranes, although it did affect the TRH-induced response. The action of ketoconazole of the spontaneous release of PRL by normal cells and the TRH-stimulated release of PRL and GH is consistent with an interference with arachidonic acid metabolism. 相似文献
13.
14.
G Schettini E L Hewlett M J Cronin K Koike T Yasumoto R M MacLeod 《Neuroendocrinology》1986,44(1):1-7
The dopaminergic inhibition of anterior pituitary adenylate cyclase activity, cAMP accumulation, and prolactin release was studied in the presence of the Ca2+ channel activator, maitotoxin. In isobutylmethylxanthine (IBMX)-treated cells, maitotoxin stimulated prolactin secretion within 30 s and cAMP accumulation within 1 min. Although dopamine reduced cAMP accumulation and prolactin release, the effectiveness of the catecholamine was reduced in the presence of maitotoxin. When hemipituitary glands were exposed for 10 min to 100 ng maitotoxin/ml, their membranes showed increased adenylate cyclase activity. The hypothesis that maitotoxin stimulates adenylate cyclase activity by increasing Ca2+ availability was supported by the observation that, at concentrations up to 100 microM, Ca2+-stimulated anterior pituitary adenylate cyclase activity. Although dopamine decreased basal and maitotoxin-stimulated pituitary cAMP accumulation, via changes in adenylate cyclase activity, the decrement in cyclic nucleotide production, but not prolactin release, can be ascribed to the effect of the catecholamine on the basal activities of these parameters. These data provide additional evidence that an increased Ca2+ flux is stimulating to cAMP generation and prolactin release, whereas dopamine is inhibitory to these processes. 相似文献
15.
16.
Pulsatile release of growth hormone and prolactin from the primate pituitary in vitro 总被引:1,自引:0,他引:1
Perifused anterior hemipituitaries from one male and 4 female monkeys released GH and PRL in a pulsatile pattern, with mean +/- SE interpulse intervals of 8.2 +/- 0.4 and 8.5 +/- 0.3 min, as determined by a cycle detection computer algorithm. Mean hormone concentrations in the perifusate fractions collected at 2-min intervals were 435 +/- 89 (GH) and 515 +/- 262 (PRL) ng/ml. Pulse amplitudes averaged 74 +/- 16 ng/ml for GH and 189 +/- 89 ng/ml for PRL. These findings suggest the presence of a high frequency pulsatile secretory mechanism within the primate pituitary. 相似文献
17.
The influence of calcium on the basal and stimulated release of growth hormone (GH) from chicken pituitary glands has been determined in vitro. Basal GH release occurred in Ca2+ deficient media, although it was increased in proportion to the medium Ca2+ concentration. Growth hormone release was stimulated by 10(-7)-10(-9) M thyrotrophin-releasing hormone (TRH), maximal stimulation being observed in the presence of 10(-8) M TRH and 1.5 mM Ca2+. Decreases in the Ca2+ concentration (to 0.75, 0.375, or 0 mM) suppressed the GH response to 10(-8) M TRH, as did increases (to 3.0 and 6.0 mM) in the Ca2+ concentration. These results suggest that GH release in chickens is regulated by Ca2+-dependent mechanisms. 相似文献
18.
Acute exposure to footshock stress increased the pituitary level of cyclic adenosine monophosphate (AMP) in vivo and sharply increased plasma levels of adrenocorticotropic hormone, beta-endorphin and beta-lipotrophic hormone, as well as prolactin. Seven days after bilateral lesions of the paraventricular nucleus of the hypothalamus, the pituitary cyclic AMP response to stress was totally eliminated and the increases in plasma levels of these pituitary hormones were blunted. We conclude that while the pituitary hormonal responses to stress might be mediated by several neurohumoral factors, the stress-induced increases in pituitary levels of cyclic AMP in vivo are mediated largely via corticotropin-releasing factor, released from neurons which project from the paraventricular nucleus to the median eminence. 相似文献
19.
Somatostatin inhibits vasoactive intestinal peptide-stimulated cyclic adenosine monophosphate accumulation in GH pituitary cells 总被引:7,自引:0,他引:7
Somatostatin (SRIF) has previously been shown to inhibit both basal and hormone-stimulated PRL secretion from GH4C1 cells, a clonal strain of rat pituitary tumor cells. In this study we examined the ability of SRIF to modulate cAMP accumulation in GH4C1 cells to determine whether such alterations mediate its biological effects. SRIF did not cause statistically significant changes in basal cAMP accumulation. Of six PRL secretagogues examined, only vasoactive intestinal peptide (VIP) increased cAMP accumulation significantly: TRH, bombesin, epidermal growth factor, insulin, and the tumor promoter, phorbol-12,13-dibutyrate were without effect. When SRIF was added simultaneously with VIP, it inhibited maximal VIP-stimulated cAMP accumulation (55 +/- 3%, mean +/- SE) without changing the ED50 for VIP (3.0 +/- 0.2 nM). Inhibition by SRIF was not due to altered kinetics of VIP stimulation, since the half-time for VIP-stimulated cAMP accumulation was 2 min both in the absence and presence of 100 nM SRIF. SRIF did not inhibit isobutylmethylxanthine-stimulated cAMP accumulation, and the presence of 0-10 mM isobutylmethylxanthine did not alter the inhibitory effect of SRIF on VIP-stimulated cAMP accumulation. Therefore, SRIF must act primarily to modulate VIP activation of adenylate cyclase activity. Inhibition of VIP-stimulated cAMP accumulation occurred at concentrations of SRIF (ID50 = 1.2 +/- 0.1 nM) close to the equilibrium dissociation constant for receptor binding (Kd = 0.6 +/- 0.2 nM). Furthermore, the potencies of a series of SRIF analogs to inhibit VIP-stimulated cAMP accumulation correlated with the apparent Kd of each peptide for binding to the SRIF receptor. In addition, SRIF did not reduce VIP-stimulated cAMP accumulation in GH(1)2C1 cells, which lack SRIF receptors. We conclude that SRIF inhibits VIP-stimulated cAMP accumulation by a receptor-mediated process that may be causally related to the ability of SRIF to inhibit VIP-dependent PRL secretion. 相似文献
20.
Chicken pituitary glands were incubated in medium containing oestradiol 17 beta (E2), alone or together with single whole hypothalami. E2 stimulated prolactin release from the pituitary and increased the prolactin releasing activity of the hypothalamus, but did not affect growth hormone release. Preincubation of pituitaries with E2 dramatically stimulated subsequent prolactin release. Pituitaries primed with E2 were more responsive to the prolactin-stimulating effects of hypothalamic extract (HE) and thyrotrophin-releasing hormone (TRH) and more sensitive to the prolactin-inhibiting effect of dopamine. E2-primed pituitaries were much less sensitive to the growth hormone releasing activity of TRH and HE. These results show that E2 may regulate pituitary function by direct effects on hormone release by modifying pituitary sensitivity to stimulatory or inhibitory influences and by altering hypothalamic releasing activity. 相似文献