首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Aim:

Proteasome inhibitors have been found to suppress glioma cell proliferation and induce apoptosis, but the mechanisms are not fully elucidated. In this study we investigated the mechanisms underlying the apoptosis induced by the proteasome inhibitor MG-132 in glioma cells.

Methods:

C6 glioma cells were used. MTT assay was used to analyze cell proliferation. Proteasome activity was assayed using Succinyl-LLVY-AMC, and intracellular ROS level was evaluated with the redox-sensitive dye DCFH-DA. Apoptosis was detected using fluorescence and transmission electron microscopy as well as flow cytometry. The expression of apoptosis-related proteins was investigated using Western blot analysis.

Results:

MG-132 inhibited C6 glioma cell proliferation in a time- and dose-dependent manner (the IC50 value at 24 h was 18.5 μmol/L). MG-132 (18.5 μmol/L) suppressed the proteasome activity by about 70% at 3 h. It induced apoptosis via down-regulation of antiapoptotic proteins Bcl-2 and XIAP, up-regulation of pro-apoptotic protein Bax and caspase-3, and production of cleaved C-terminal 85 kDa PARP). It also caused a more than 5-fold increase of reactive oxygen species. Tiron (1 mmol/L) effectively blocked oxidative stress induced by MG-132 (18.5 μmol/L), attenuated proliferation inhibition and apoptosis in C6 glioma cells, and reversed the expression pattern of apoptosis-related proteins.

Conclusion:

MG-132 induced apoptosis of C6 glioma cells via the oxidative stress.  相似文献   

3.

Aim:

Expression of liver low-density lipoprotein receptor (LDLR), a determinant regulator in cholesterol homeostasis, is tightly controlled at multiple levels. The aim of this study was to examine whether proteasome inhibition could affect LDLR expression and LDL uptake in liver cells in vitro.

Methods:

HepG2 cells were examined. Real-time PCR and Western blot analysis were used to determine the mRNA and protein levels, respectively. DiI-LDL uptake assay was used to quantify the LDLR function. Luciferase assay system was used to detect the activity of proprotein convertase subtilisin/kexin type 9 (PCSK9, a major protein mediating LDLR degradation) promoter. Specific siRNAs were used to verify the involvement of PCSK9.

Results:

Treatment of HepG2 cells with the specific proteasome inhibitor MG132 (0.03–3 μmol/L) dose-dependently increased LDLR mRNA and protein levels, as well as LDL uptake. Short-term treatment with MG132 (0.3 μmol/L, up to 8 h) significantly increased both LDLR mRNA and protein levels in HepG2 cells, which was blocked by the specific PKC inhibitors GF 109203X, Gö 6983 or staurosporine. In contrast, a longer treatment with MG132 (0.3 μmol/L, 24 h) did not change LDLR mRNA, but markedly increased LDLR protein by reducing PCSK9-mediated lysosome LDLR degradation. Furthermore, MG132 time-dependently suppressed PCSK9 expression in the HepG2 cells through a SREBP-1c related pathway. Combined treatment with MG132 (0.3 μmol/L) and pravastatin (5 μmol/L) strongly promoted LDLR expression and LDL uptake in HepG2 cells, and blocked the upregulation of PCSK9 caused by pravastatin alone.

Conclusion:

Inhibition of proteasome by MG132 in HepG2 cells plays dual roles in LDLR and PCSK9 expression, and exerts a beneficial effect on cholesterol homeostasis.  相似文献   

4.
5.

Purpose

Proteasome inhibition induces endoplasmic reticulum (ER) stress and compensatory autophagy to relieve ER stress. Disturbance of intracellular calcium homeostasis can lead to ER stress and alter the autophagy process. It has been suggested that inhibition of the proteasome disrupts intracellular calcium homeostasis. However, it is unknown if intracellular calcium affects proteasome inhibitor-induced ER stress and autophagy.

Methods

Human colon cancer HCT116 Bax positive and negative cell lines were treated with MG132, a proteasome inhibitor. BAPTA-AM, a cell permeable free calcium chelator, was used to modulate intracellular calcium levels. Autophagy and cell death were determined by fluorescence microscopy and immunoblot analysis.

Results

MG132 increased intracellular calcium levels in HCT116 cells, which was suppressed by BAPTA-AM. MG132 suppressed proteasome activity independent of Bax and intracellular calcium levels in HCT116 cells. BAPTA-AM inhibited MG132-induced cellular vacuolization and ER stress, but not apoptosis. MG132 induced autophagy with normal autophagosome-lysosome fusion. BAPTA-AM seemed not to affect autophagosome-lysosome fusion in MG132-treated cells but further enhanced MG132-induced LC3-II levels and GFP-LC3 puncta formation, which was likely via impaired lysosome function.

Conclusions

Blocking intracellular calcium by BAPTA-AM relieved MG132-induced ER stress, but it was unable to rescue MG132-induced apoptosis, which was likely due to impaired autophagic degradation.  相似文献   

6.
Aim: To investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human U87MG glioma cells in vitro. Methods: The viability of human U87MG glioma cells was evaluated using MTT assay. Cell cycle was detected with flow cytometry analysis. The levels of Bcl-2, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase (PARP), phosphor-AMPK and phosphor-p27 at Thr198 were measured using immunoblot analyses. Caspase-3 activity was determined with spectrophotometer. To determine autopha~Lv, LC3 cleavage and punctate patterns were examined. Results: Punicalagin (1-30 pp=VmL) dose-dependently inhibited the cell viability in association with increased cyclin E level and decreased cyclin B and cyclin A levels. The treatment also induced apoptosis as shown by the cleavage of PARP, activation of caspase-9, and increase of caspase-3 activity in the cells. However, pretreatment of the cells with the pan-caspase inhibitor z-DEVD- fmk (50 pmol/L) did not completely prevent the cell death. On the other hand, punicalagin treatment increased LC3-11 cleavage and caused GFP-LC3-11-stained punctate pattern in the cells. Suppressing autopha~, of cells with chloroquine (1-10 pmol/L) dose- dependently alleviated the cell death caused by punicalagin. Punicalagin (1-30 pp=VmL) also increased the levels phosphor-AMPK and phosphor-p27 at Thr198 in the cells, which were correlated with the induction of autophagic cell death. Conclusion: Punicalagin induces human U87MG glioma cell death through both apoptotic and autophagic pathways.  相似文献   

7.
The proteasome inhibitor MG132 has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). Here, we investigated the molecular mechanisms of MG132 in As4.1 juxtaglomerular cell death in relation to apoptosis and levels of ROS and glutathione (GSH). MG132 inhibited the growth of As4.1 cells with an IC50 of approximately 0.3–0.4 μM at 48 h and induced cell death, accompanied by the loss of mitochondrial membrane potential (MMP; ∆Ψm), Bcl-2 decrease, activations of caspase-3 and caspase-8, and PARP cleavage. MG132 increased intracellular ROS levels and GSH-depleted cell numbers. However, caspase inhibitors, especially Z-VAD (pan-caspase inhibitor) intensified cell growth inhibition, cell death, MMP (∆Ψm) loss, and Bcl-2 decrease in MG132-treated As4.1 cells. Z-VAD also slightly intensified increases in ROS levels and GSH depletion in MG132-treated As4.1 cells. In conclusion, MG132 reduced the growth of As4.1 cells via caspase-independent apoptosis. The changes in ROS and GSH levels by MG132 and caspase inhibitors partially influenced the growth inhibition and death of As4.1 cells.  相似文献   

8.
9.

Aim:

Huntingtin protein (Htt) was a neuropathological hallmark in human Huntington''s Disease. The study aimed to investigate whether the macroautophagy regulator, Beclin1, was involved in the degradation of Htt.

Methods:

PC12 cells and primary cultured brain neurons of rats were examined. pDC316 adenovirus shuttle plasmid was used to mediate the expression of wild-type Htt-18Q-552 or mutant Htt-100Q-552 in PC12 cells. The expression of the autophagy-related proteins LC3 II and Beclin1, as well as the lysosome-associated enzymes Cathepsin B and L was evaluated using Western blotting. The locations of Beclin1 and Htt were observed with immunofluorescence and confocal microscope.

Results:

Htt552 expression increased the expression of LC3 II, Beclin1, cathepsin B and L in autophagy/lysosomal degradation pathway. Treatment with the autophagy inhibitor 3-MA or the proteasome inhibitors lactacystin and MG-132 increased Htt552 levels in PC12 cells infected with Ad-Htt-18Q-552 or Ad-Htt-100Q-552. The proteasome inhibitor caused a higher accumulation of Htt552-18Q than Htt552-100Q, and the autophagy inhibitor resulted in a higher accumulation of Htt552-100Q than Htt552-18Q. Similar results were observed in primary cultured neurons infected with adenovirus. In Htt552-expressing cells, Beclin1 was redistributed from the nucleus to the cytoplasm. Htt siRNA prevented Beclin1 redistribution in starvation conditions. Blockade of Beclin1 nuclear export by leptomycin B or Beclin1 deficiency caused by RNA interference induced the formation of mHtt552 aggregates.

Conclusion:

Beclin1 regulates the accumulation of Htt via macroautophagy.  相似文献   

10.

Aim:

Probucol, an anti-hyperlipidemic drug, has been reported to exert antitumor activities at various stages of tumor initiation, promotion and progression. In this study we examined whether the drug affected glioma cell growth in vitro and the underlying mechanisms.

Methods:

Human glioma U87 and glioblastoma SF295 cell lines were used. Cell proliferation was accessed using the cell proliferation assay and BrdU incorporation. The phosphorylation of AMPK, liver kinase B1 (LKB1) and p27Kip1 was detected by Western blot. The activity of 26S proteasome was assessed with an in situ fluorescent substrate. siRNAs were used to suppress the expression of the relevant signaling proteins.

Results:

Treatment of U87 glioma cells with probucol (10–100 μmol/L) suppressed the cell proliferation in dose- and time dependent manners. Meanwhile, probucol markedly increased the ROS production, phosphorylation of AMPK at Thr172 and LKB1 at Ser428 in the cells. Furthermore, probucol significantly decreased 26S proteasome activity and increased p27Kip1 protein level in the cells in an AMPK-dependent manner. Probucol-induced suppression of U87 cell proliferation could be reversed by pretreatment with tempol (a superoxide dismutase mimetic), MG132 (proteasome inhibitor) or compound C (AMPK inhibitor), or by gene silencing of LKB1, AMPK or p27Kip1. Similar results were observed in probucol-treated SF295 cells.

Conclusion:

Probucol suppresses human glioma cell proliferation in vitro via ROS production and LKB1-AMPK activation, which reduces 26S proteasome-dependent degradation of p27Kip1.  相似文献   

11.
12.

BACKGROUND AND PURPOSE

Follicular lymphoma is the second most common non-Hodgkin''s lymphoma and, despite the introduction of rituximab for its treatment, this disease is still considered incurable. Besides genetic alterations involving Bcl-2, Bcl-6 or c-Myc, follicular lymphoma cells often display altered B-cell receptor signalling pathways including overactive PKC and PI3K/Akt systems.

EXPERIMENTAL APPROACH

The effect of enzastaurin, an inhibitor of PKC, was evaluated both in vitro on follicular lymphoma cell lines and in vivo on a xenograft murine model. Using pharmacological inhibitors and siRNA transfection, we determined the different signalling pathways after enzastaurin treatment.

KEY RESULTS

Enzastaurin inhibited the serine-threonine kinase p90RSK which has downstream effects on GSK3β. Bad and p70S6K. These signalling proteins control follicular lymphoma cell survival and apoptosis; which accounted for the inhibition by enzastaurin of cell survival and its induction of apoptosis of follicular lymphoma cell lines in vitro. Importantly, these results were replicated in vivo where enzastaurin inhibited the growth of follicular lymphoma xenografts in mice.

CONCLUSIONS AND IMPLICATIONS

The targeting of p90RSK by enzastaurin represents a new therapeutic option for the treatment of follicular lymphoma.  相似文献   

13.
14.

Aim:

To examine the effects of a mixed formulation composed of prostaglandin E1 and lithium (PGE1+Li mixture) on brain damage after cerebral ischemia. The effects of the mixture on protein expression of heat shock proteins (HSPs), p53, and Bcl-2 were also determined.

Methods:

Brain ischemia was induced with a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were treated with a single intravenous administration of PGE1, lithium or a PGE1+Li mixture immediately after the ischemic insult. The infarct volume and motor behavior deficits were analyzed 24 h after the ischemic insult. The protein levels of HSP70, glucose-regulated protein 78 (GRP78), HSP60, Bcl-2, and p53 in the striatum of the ipsilateral hemisphere were examined using immunoblotting.

Results:

The mixture (PGE1 22.6 nmol/kg+Li 0.5 mmol/kg) reduced infarct volume and neurological deficits induced by focal cerebral ischemia. Moreover, the mixture had a greater neuroprotective effect against cerebral ischemia compared with PGE1 or lithium alone. The mixture was effective even if it was administered 3 h after ischemia. PGE1+Li also significantly upregulated cytoprotective HSP70, GRP78, HSP60, and Bcl-2 protein levels, while decreasing p53 expression.

Conclusion:

These results demonstrated a PGE1+Li mixture with a therapeutic window of up to 3 h for clinical treatment of cerebral ischemia. The PGE1+Li mixture potentially exerts a protective effect after stroke through the induction of HSPs and Bcl-2 proteins.  相似文献   

15.

Aim:

To examine the antitumor effect of 4′-chloro-3,5-dihydroxystilbene, a resveratrol derivative, on lung adenocarcinoma A549 cells.

Methods:

The cytotoxic IC50 was determined by direct cell counting. Flow cytometry, monodansylcadaverine (MDC) staining, transfection, Western blot and a proteasome activity assay were used to study the cellular mechanism of 4′-chloro-3,5-dihydroxystilbene. A xenograft nude mouse model was used to analyze the antitumor effect in vivo.

Results:

4′-Chloro-3,5-dihydroxystilbene induced a rapid and persistent increase in the intracellular reactive oxygen species in the cells, but the cell death could not be inhibited by two antioxidant agents. The derivative caused sub-G1 formation, a decrease in the mitochondria membrane potential and poly (ADP-ribose) polymerase degradation, and the caspase inhibitor Z-VAD-FMK could partially prevent cell death. It also induced a significant increase in intracellular acidic vacuoles, LC3-II formation and intracellular GFP-LC3 aggregation. An autophagic inhibitor partially reversed cell death. Additionally, 4′-chloro-3,5-dihydroxystilbene induced the accumulation of ubiquitinated conjugates and inhibited proteasome activity in cells. In an in vivo study, 4′-chloro-3,5-dihydroxystilbene retarded tumor growth in nude mice.

Conclusion:

These data suggest that the resveratrol derivative 4′-chloro-3,5-dihydroxystilbene could be developed as an anti-tumor compound.  相似文献   

16.

BACKGROUND AND PURPOSE

Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and is thought to promote Bax/Bak-induced cytochrome c release during apoptosis. Conformationally active Bax, Bak and Bax/Bak-activating BH3-only proteins, such as Bim, are restrained by anti-apoptotic Bcl-2 proteins in cells that are ‘primed for death’. Inhibition of Bcl-2/Bcl-xL/Bcl-w by the antagonist ABT-737 causes rapid apoptosis of primed cells. Hence, we determined whether Drp1 is required for cytochrome c release, respiratory alterations and apoptosis of cells that are already primed for death.

EXPERIMENTAL APPROACH

We tested the Drp1 inhibitor mdivi-1 for inhibition of cytochrome c release in MCF10A cells primed by Bcl-2 overexpression. We measured ATP synthesis-dependent,-independent and cytochrome c-limited maximal oxygen consumption rates (OCRs) and cell death of immortalized wild-type (WT) and Drp1 knockout (KO) mouse embryonic fibroblasts (MEFs) treated with ABT-737.

KEY RESULTS

Mdivi-1 failed to attenuate ABT-737-induced cytochrome c release. ABT-737 decreased maximal OCR measured in the presence of uncoupler in both WT and Drp1 KO MEF, consistent with respiratory impairment due to release of cytochrome c. However, Drp1 KO MEF were slightly less sensitive to this ABT-737-induced respiratory inhibition compared with WT, and were resistant to an initial ABT-737-induced increase in ATP synthesis-independent O2 consumption. Nevertheless, caspase-dependent cell death was not reduced. Pro-apoptotic Bax was unaltered, whereas Bak was up-regulated in Drp1 KO MEF.

CONCLUSIONS AND IMPLICATIONS

The findings indicate that once fibroblast cells are primed for death, Drp1 is not required for apoptosis. However, Drp1 may contribute to ABT-737-induced respiratory changes and the kinetics of cytochrome c release.

LINKED ARTICLES

This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8  相似文献   

17.

Background and purpose:

Bepridil is an anti-arrhythmic agent with anti-electrical remodelling effects that target many cardiac ion channels, including the voltage-gated Na+ channel. However, long-term effects of bepridil on the Na+ channel remain unclear. We explored the long-term effect of bepridil on the Na+ channel in isolated neonatal rat cardiomyocytes and in a heterologous expression system of human Nav1.5 channel.

Experimental approach:

Na+ currents were recorded by whole-cell voltage-clamp technique. Na+ channel message and protein were evaluated by real-time RT-PCR and Western blot analysis.

Key results:

Treatment of cardiomyocytes with 10 µmol·L−1 bepridil for 24 h augmented Na+ channel current (INa) in a dose- and time-dependent manner. This long-term effect of bepridil was mimicked or masked by application of W-7, a calmodulin inhibitor, but not KN93 [2-[N-(2-hydroxyethyl)-N-(4-methoxy benzenesulphonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine], a Ca2+/calmodulin-dependent kinase inhibitor. During inhibition of protein synthesis by cycloheximide, the INa increase due to bepridil was larger than the increase without cycloheximide. Bepridil and W-7 significantly slowed the time course of Nav1.5 protein degradation in neonatal cardiomyocytes, although the mRNA levels of Nav1.5 were not modified. Bepridil and W-7 did not increase INa any further in the presence of the proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucyl-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide]. Bepridil, W-7 and MG132 but not KN93 significantly decreased 20S proteasome activity in a concentration-dependent manner.

Conclusions and implications:

We conclude that long-term exposure of cardiomyocytes to bepridil at therapeutic concentrations inhibits calmodulin action, which decreased degradation of the Nav1.5 α-subunit, which in turn increased Na+ current.  相似文献   

18.

BACKGROUND AND PURPOSE

Endothelial dysfunction is a feature of hypertension and diabetes. Methylglyoxal (MG) is a reactive dicarbonyl metabolite of glucose and its levels are elevated in spontaneously hypertensive rats and in diabetic patients. We investigated if MG induces endothelial dysfunction and whether MG scavengers can prevent endothelial dysfunction induced by MG and high glucose concentrations.

EXPERIMENTAL APPROACH

Endothelium-dependent relaxation was studied in aortic rings from Sprague-Dawley rats. We also used cultured rat aortic and human umbilical vein endothelial cells. The MG was measured by HPLC and Western blotting and assay kits were used.

KEY RESULTS

Incubation of aortic rings with MG (30 µM) or high glucose (25 mM) attenuated endothelium-dependent, acetylcholine-induced relaxation, which was restored by two different MG scavengers, aminoguanidine (100 µM) and N-acetyl cysteine (NAC) (600 µM). Treatment of cultured endothelial cells with MG or high glucose increased cellular MG levels, effects prevented by aminoguanidine and NAC. In cultured endothelial cells, MG and high glucose reduced basal and bradykinin-stimulated nitric oxide (NO) production, cGMP levels, and serine-1177 phosphorylation and activity of endothelial NO synthase (eNOS), without affecting threonine-495 and Akt phosphorylation or total eNOS protein. These effects of MG and high glucose were attenuated by aminoguanidine or NAC.

CONCLUSIONS AND IMPLICATIONS

Our results show for the first time that MG reduced serine-1177 phosphorylation, activity of eNOS and NO production. MG caused endothelial dysfunction similar to that induced by high glucose. Specific and safe MG scavengers have potential to prevent endothelial dysfunction induced by MG and high glucose concentrations.  相似文献   

19.
20.

AIMS

We aimed to investigate the effects of tyrosine kinase inhibitors (TKIs) on paracetamol (acetaminophen) glucuronidation.

METHODS

The inhibition of nine small molecule TKIs on paracetamol glucuronidation was investigated in human liver microsomes (HLMs) and recombinant human UDP-glucuronosyltransferases (UGTs).

RESULTS

Sorafenib, dasatinib and imatinib exhibited mixed inhibition against paracetamol glucuronidation in pooled HLMs, and potent inhibition in UGT1A9 and UGT2B15. Dasatinib and imatinib also inhibited UGT1A1-mediated paracetamol glucuronidation. Axitinib, erlotinib, gefitinib, lapatinib, nilotinib and vandetanib exhibited weak inhibition of paracetamol glucuronidation activity in HLMs.

CONCLUSIONS

The inhibition of paracetamol glucuronidation by TKIs might be of particular concern when they are co-administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号