首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.  相似文献   

2.
Cantharidin (CTD) is an effective antitumor agent. However, it exhibits significant hepatotoxicity, the mechanism of which remains unclear. In this study, biochemical and histopathological analyses complemented with ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS)-based targeted metabolomic analysis of bile acids (BAs) were employed to investigate CTD-induced hepatotoxicity in rats. Sixteen male and female Sprague–Dawley rats were randomly divided into two groups: control and CTD (1.0 mg/kg) groups. Serum and liver samples were collected after 28 days of intervention. Biochemical, histopathological, and BA metabolomic analyses were performed for all samples. Further, the key biomarkers of CTD-induced hepatotoxicity were identified via multivariate and metabolic pathway analyses. In addition, metabolite–gene–enzyme network and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to identify the signaling pathways related to CTD-induced hepatotoxicity. The results revealed significantly increased levels of biochemical indices (alanine aminotransferase, aspartate aminotransferase, and total bile acid). Histopathological analysis revealed that the hepatocytes were damaged. Further, 20 endogenous BAs were quantitated via UHPLC-MS/MS, and multivariate and metabolic pathway analyses of BAs revealed that hyocholic acid, cholic acid, and chenodeoxycholic acid were the key biomarkers of CTD-induced hepatotoxicity. Meanwhile, primary and secondary BA biosynthesis and taurine and hypotaurine metabolism were found to be associated with the mechanism by which CTD induced hepatotoxicity in rats. This study provides useful insights for research on the mechanism of CTD-induced hepatotoxicity.  相似文献   

3.
4.
Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum.  相似文献   

5.
Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC). We showed that CYP3A4 was a crucial step for the metabolism of several BAs and their taurine and glycine conjugated forms and quantitatively described their metabolites. Glucuronidation and sulfation were also identified as important drivers of the BA detoxification process in humans. Moreover, lithocholic acid (LCA), the most hydrophobic BA with the highest toxicity potential, was a substrate for all investigated processes, demonstrating the importance of hepatic metabolism for its clearance. Collectively, this study identified CYP3A4, UGT1A3, UGT2B7 and SULT2A1 as the major contributing (metabolic) processes in the BA detoxification network. Inhibition of these enzymes by drug candidates is therefore considered as a critical mechanism in the manifestation of drug-induced cholestasis in humans and should be addressed during the pre-clinical development.  相似文献   

6.
Cholestatic drug-induced liver injury (DILI) is a type of hepatotoxicity. Its underlying mechanisms are dysfunction of bile salt export pump (BSEP) and multidrug resistance-associated protein 2/3/4 (MRP2/3/4), which play major roles in bile acid (BA) excretion into the bile canaliculi and blood, resulting in accumulation of BAs in hepatocytes. The sandwich-cultured hepatocyte (SCH) model can simultaneously analyze hepatic uptake and biliary excretion. Therefore, we investigated whether sandwich-cultured human induced pluripotent stem cell (iPS cell)-derived hepatocytes (SCHiHs) are suitable for evaluating cholestatic DILI. Fluorescent N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2′-aminoethanesulfonate (tauro-nor-THCA-24-DBD, a BSEP substrate) was accumulated in bile canaliculi, which supports the presence of a functional bile canaliculi lumen. MRP2 was highly expressed in the Western blot analysis, whereas the mRNA expression of BSEP was hardly detectable. MRP3/4 mRNA levels were maintained. Of the 22 compounds known to cause DILI with BAs, 7 showed significant cytotoxicity. Most high-risk drugs were detected using the developed SCHiH system. However, a shortcoming was the considerably low expression level of BSEP, which prevented the detection of some relevant drugs whose risks should be detected in primary human hepatocytes.  相似文献   

7.

Background

The search for an optimal experimental model in pharmacology is recently focused on (mini)pigs as they seem not only to be an alternative source of cells and tissues for xenotherapy but also an alternative species for studies on drug metabolism in man due to similarities between (mini) pig and human drug metabolizing systems. The purpose of this work is to characterize minipig liver microsomal cytochromes P450 (CYPs) by comparing their N-terminal sequences with corresponding human orthologs.

Results

The microsomal CYPs exhibit similar activities to their human orthologous enzymes (CYP3A4, nifedipine oxidation; 2A6, coumarin 7-hydroxylation; 2D6, bufuralol 1'-hydroxylation; 2E1, p-nitrophenol hydroxylation; and 2C9, tolbutamide hydroxylation). Specific minipig CYP (2A, 2C and 3A) enzymes were partially purified and proteins identified by immunostaining (using antibodies against the respective human CYPs) were used for N-terminal amino acid sequencing. From comparisons, it can be concluded that the sequence of the first 20 amino acids at the N-terminus of minipig CYP2A is highly similar to human CYP2A6 (70% identity). The N-terminal sequence of CYP2C shared about 50% similarity with human 2C9. The results on the minipig liver microsomal CYP3A yielded identical data with those obtained for amino acid sequences of the pig CYP3A29 showing 60% identity with human CYP3A4.

Conclusions

Thus, our results further support the view that minipigs may serve as model animals in pharmacological/toxicological studies with substrates of human CYP enzymes, namely, of the CYP3A and CYP2A forms.  相似文献   

8.
《Toxicology in vitro》2014,28(2):218-230
Excessive intrahepatic accumulation of bile acids (BAs) is a key mechanism underlying cholestasis. The aim of this study was to quantitatively explore the relationship between cytotoxicity of BAs and their intracellular accumulation in sandwich-cultured rat hepatocytes (SCRH). Following exposure of SCRH (on day-1 after seeding) to various BAs for 24 h, glycine-conjugated BAs were most potent in exerting toxicity. Moreover, unconjugated BAs showed significantly higher toxicity in day-1 compared to day-3 SCRH. When day-1/-3 SCRH were exposed (0.5–4 h) to 5–100 μM (C)DCA, intracellular levels of unconjugated (C)DCA were similar, while intracellular levels of glycine conjugates were up to 4-fold lower in day-3 compared to day-1 SCRH. Sinusoidal efflux was by far the predominant efflux pathway of conjugated BAs both in day-1 and day-3 SCRH, while canalicular BA efflux showed substantial interbatch variability. After 4 h exposure to (C)DCA, intracellular glycine conjugate levels were at least 10-fold higher than taurine conjugate levels. Taken together, reduced BA conjugate formation in day-3 SCRH results in lower intracellular glycine conjugate concentrations, explaining decreased toxicity of (C)DCA in day-3 versus day-1 SCRH. Our data provide for the first time a direct link between BA toxicity and glycine conjugate exposure in SCRH.  相似文献   

9.
The metabolism and pharmacokinetics of DSP‐0565 [2‐(2′‐fluoro[1,1′‐biphenyl]‐2‐yl)acetamide], an antiepileptic drug candidate, was investigated in rats, dogs, and humans. In human hepatocytes, [14C]DSP‐0565 was primarily metabolized via amide bond hydrolysis to (2′‐fluoro[1,1′‐biphenyl]‐2‐yl)acetic acid (M8), while in rat and dog hepatocytes, it was primarily metabolized via both hydrolysis to M8 and hydroxylation at the benzene ring or the benzyl site to oxidized metabolites. After single oral administration of [14C]DSP‐0565 to rats and dogs, the major radioactivity fraction was recovered in the urine (71–72% of dose) with a much smaller fraction recovered in feces (23–25% of dose). As primary metabolites in their excreta, M8, oxidized metabolites, and glucuronide of DSP‐0565 were detected. The contribution of metabolic pathways was estimated from metabolite profiles in their excreta: the major metabolic pathway was oxidation (57–62%) and the next highest was the hydrolysis pathway (23–33%). These results suggest that there are marked species differences in the metabolic pathways of DSP‐0565 between humans and animals. Finally, DSP‐0565 human oral clearance (CL/F) was predicted using in vitroin vivo extrapolation (IVIVE) with/without animal scaling factors (SF, in vivo intrinsic clearance/in vitro intrinsic clearance). The SF improved the underestimation of IVIVE (fold error = 0.22), but the prediction was overestimated (fold error = 2.4–3.3). In contrast, the use of SF for hydrolysis pathway was the most accurate for the prediction (fold error = 1.0–1.4). Our findings suggest that understanding of species differences in metabolic pathways between humans and animals is important for predicting human metabolic clearance when using animal SF.  相似文献   

10.
1.?In recent years, the minipig is increasingly used as a test species in non-clinical assessment of drug candidates. While there is good scientific evidence available concerning cytochrome P450-mediated metabolism in minipig, the knowledge of other metabolic pathways is more limited.

2.?The aim of this study was to provide an understanding of when, why, and how drug metabolism in minipig differs from other species commonly used in non-clinical studies. In-house cross-species metabolite profile comparisons in hepatocytes and microsomes of 38 Roche development compounds were retrospectively analyzed to compare the metabolism among minipig, human, rat, dog, monkey, rabbit and mouse.

3.?A significant contributor to the elevated metabolism observed for certain compounds in minipig was identified as amide hydrolysis. The hepatic amide hydrolysis activity in minipig was further investigated in subcellular liver fractions and a structure–activity relationship was established. When structural motifs according to the established SAR are excluded, coverage of major human metabolic pathways was shown to be higher in minipig than in dog, and only slightly lower than in cynomolgus monkey.

4.?A strategy is presented for early identification of drug compounds which might not be suited to further investigation in minipig due to excessive hydrolytic metabolism.  相似文献   

11.
Sulfation is a major metabolic pathway involved in the elimination and detoxification of bile acids (BAs). Several lines of evidence are available to support the role of sulfation as a defensive mechanism to attenuate the toxicity of accumulated BAs during hepatobiliary diseases. Individual BAs and their sulfate metabolites vary markedly in their physiological roles as well as their toxicities. Therefore, analytical techniques are required for the quantification of individual BAs and BA-sulfates in biological fluids and tissues. Here we report a simple, sensitive, and validated LC-MS/MS method for the simultaneous quantification of major BAs and BA-sulfates in mouse liver, plasma, bile, and urine. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for liver and plasma) was used to extract BAs and BA-sulfates. Base-line separation of all analytes (unsulfated- and sulfated BAs) was achieved in 25min with a limit of quantification of 1ng/ml. This LC-MS/MS method was applied to simultaneously quantify BAs and BA-sulfates in both male and female mouse tissues and fluids. Less than 3% of total BAs are present in the sulfate form in the mouse liver, plasma, and bile, which provides strong evidence that sulfation is a minor metabolic pathway of BA elimination and detoxification in mice. Furthermore, we report that the marked female-predominant expression of Sult2a1 is not reflected into a female-predominant pattern of BA-sulfation.  相似文献   

12.
Objectives Glycyrrhetinic acid is the main metabolite of glycyrrhizin and the main active component of Licorice root. This study was designed to investigate the in‐vitro metabolism of glycyrrhetinic acid by liver microsomes and to examine possible metabolic interactions that glycyrrhetinic acid may have with other cytochrome P450 (CYP) substrates. Methods Glycyrrhetinic acid was incubated with rat liver microsomes (RLM) and human liver microsomes (HLM). Liquid chromatography tandem mass spectrometry was used for glycyrrhetinic acid or substrates identification and quantification. Key findings The Km and Vmax values for HLM are 33.41 µm and 2.23 nmol/mg protein/min, respectively; for RLM the Km and Vmax were 24.24 µm and 6.86 nmol/mg protein/min, respectively. CYP3A4 is likely to be the major enzyme responsible for glycyrrhetinic acid metabolism in HLM while CYP2C9 and CYP2C19 are considerably less active. Other human CYP isoforms have minimal or no activity toward glycyrrhetinic acid. The interactions of glycyrrhetinic acid and six CYP substrates, such as phenacetin, diclofenac, (S)‐mephenytoin, dextromethorphan, chlorzoxazone and midazolam were also investigated. The inhibitory action of glycyrrhetinic acid was observed in CYP2C9 for 4‐hydroxylation of diclofenac, CYP2C19 for 4′‐hydroxylation of (S)‐mephenytoin and CYP3A4 for 1′‐hydroxylation of midazolam with half maximal inhibitory concentration (IC50) values of 4.3‐fold, 3.8‐fold and 9.6‐fold higher than specific inhibitors in HLM, respectively. However, glycyrrhetinic acid showed relatively little inhibitory effect (IC50 > 400 µm ) on phenacetin O‐deethylation, dextromethorphan O‐demethylation and chlorzoxazone 6‐hydroxylation. Conclusions The study indicated that CYP3A4 is likely to be the major enzyme responsible for glycyrrhetinic acid metabolism in HLM while CYP2C9 and CYP2C19 are considerably less active. The results suggest that glycyrrhetinic acid has the potential to interact with a wide range of xenobiotics or endogenous chemicals that are CYP2C9, CYP2C19 and CYP3A4 substrates.  相似文献   

13.
Drug‐induced liver injury (DILI) is one of the most common adverse drug reactions. DILI is often accompanied by skin reactions, including rash and pruritus. However, it is still unknown whether DILI‐associated genes such as S100 calcium‐binding protein A and interleukin (IL)‐1β are involved in drug‐induced skin toxicity. In the present study, most of the tested hepatotoxic drugs such as pioglitazone and diclofenac induced DILI‐associated genes in human and mouse keratinocytes. Keratinocytes of mice at higher risk for DILI exhibited an increased IL‐1β basal expression. They also showed a higher inducibility of IL‐1β when treated by pioglitazone. Mice at higher risk for DILI showed even higher sums of DILI‐associated gene basal expression levels and induction rates in keratinocytes. Our data suggest that DILI‐associated genes might be involved in the onset and progression of drug‐induced skin toxicity. Furthermore, we might be able to identify individuals at higher risk of developing DILI less invasively by examining gene expression patterns in keratinocytes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The db/db mouse is one of the most popular animal models for type 2 diabetes mellitus, but changes in the activities of important P450s and UGTs are still not completely clear. This study was designed to investigate the alterations of major hepatic cytochrome P450s and UDP‐glucuronyltransferase enzymes in db/db mice. Mouse liver microsomes (MLMs) were obtained from male db/db mice and their wild type littermates. After incubation of the substrates separately with MLMs, the samples were pooled and analysed by high‐throughput liquid chromatography–tandem mass spectrometry system for the simultaneous study of nine phase I metabolic reactions and three glucuronidation conjugation reactions to determine the activity of the metabolic enzymes. Compared with normal controls, the Clint estimate for testosterone‐6β‐hydroxylation was lower (46%) (p < 0.05), while the Vmax and Clint estimates for propofol O‐glucuronidation were 5‐fold higher (p < 0.01) in the liver microsomes from db/db mice. There was no significant difference in phase I metabolic reactions of phenacetin‐O‐deethylation, coumarin‐7‐hydroxylation, bupropion‐hydroxylation, omeprazole‐5‐hydroxylation, dextromethorphan‐O‐demethylation, tolbutamide‐4‐hydroxylation, chlorzoxazone‐6‐hydroxylation and midazolam‐1‐hydroxylation and in glucuronidation reactions of estradiol 3‐O‐glucuronidation, and 3‐azido‐3‐deoxythymidine glucuronidation. The data suggest that, in db/db mice, the activity of Cyp3a11, catalysing testosterone‐6β‐hydroxylation, decreased, while the activity of UGT1a9, catalysing propofol O‐glucuronidation, increased. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
New psychoactive substances (NPS) are an important issue in clinical/forensic toxicology. 7’N‐5F‐ADB, a synthetic cannabinoid derived from 5F‐ADB, appeared recently on the market. Up to now, no data about its mass spectral fragmentation pattern, metabolism, and thus suitable targets for toxicological urine screenings have been available. Therefore, the aim of this study was to elucidate the metabolic fate of 7’N‐5F‐ADB in rat, human, and pooled human S9 (pS9). The main human urinary excretion products, which can be used as targets for toxicological screening procedures, were identified by Orbitrap (OT)‐based liquid chromatography–high resolution‐tandem mass spectrometry (LC–HRMS/MS). In addition, possible differentiation of 7’N‐5F‐ADB and 5F‐ADB via LC–HRMS/MS was studied. Using the in vivo and in vitro models for metabolism studies, 36 metabolites were tentatively identified. 7’N‐5F‐ABD was extensively metabolized in rat and human with minor species differences observed. The unchanged parent compound could be found in human urine but metabolites were far more abundant. The most abundant ones were the hydrolyzed ester (M5), the hydrolyzed ester in combination with hydroxylation of the tertiary butyl part (M11), and the hydrolyzed ester in addition to glucuronidation (M30). Besides the parent compound, these metabolites should be used as targets for urine‐based toxicological screening procedures. Two urine‐paired human plasma samples contained mainly the parent compound (c = 205 μg/L, 157 μg/L) and, at a higher abundance, the compound after ester hydrolysis (M5). In pS9 incubations, the parent compound, M5, and M30 were detectable among others. Furthermore, a differentiation of both compounds was possible due to different retention times and fragmentation patterns.  相似文献   

17.
Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism.  相似文献   

18.
《药学学报(英文版)》2021,11(12):3847-3856
Bile acids (BAs) are amphipathic molecules important for metabolism of cholesterol, absorption of lipids and lipid soluble vitamins, bile flow, and regulation of gut microbiome. There are over 30 different BA species known to exist in humans and mice, which are endogenous modulators of at least 6 different membrane or nuclear receptors. This diversity of ligands and receptors play important roles in health and disease; however, the full functions of each individual BA in vivo remain unclear. We generated a mouse model lacking the initiating enzymes, CYP7A1 and CYP27A1, in the two main pathways of BA synthesis. Because females are more susceptible to BA related diseases, such as intrahepatic cholestasis of pregnancy, we expanded this model into female mice. The null mice of Cyp7a1 and Cyp27a1 were crossbred to create double knockout (DKO) mice. BA concentrations in female DKO mice had reductions in serum (63%), liver (83%), gallbladder (94%), and small intestine (85%), as compared to WT mice. Despite low BA levels, DKO mice had a similar expression pattern to that of WT mice for genes involved in BA regulation, synthesis, conjugation, and transport. Additionally, through treatment with a synthetic FXR agonist, GW4064, female DKO mice responded to FXR activation similarly to WT mice.  相似文献   

19.
Synthetic cannabimimetic agents are a large group of diverse compounds which act as agonists at cannabinoid receptors. Since 2004, synthetic cannabinoids have been used recreationally, although several of the compounds have been shown to cause severe toxicity in humans. In this study, the metabolism of two indazole carboxamide derivatives, AB‐PINACA and AB‐FUBINACA, was investigated by using human liver microsomes (HLM). For both compounds, a major metabolic pathway was the enzymatic hydrolysis of the primary amide, resulting in the major metabolites AB‐PINACA‐COOH and AB‐FUBINACA‐COOH. Other major metabolic pathways were mono‐hydroxylation of the N‐pentyl chain in AB‐PINACA and mono‐hydroxylation of the 1‐amino‐3‐methyl‐1‐oxobutane moiety in AB‐FUBINACA. To identify the enzyme(s) responsible for the amide hydrolysis, incubations with recombinant carboxylesterases and human serum, as well as inhibition studies in HLM and human pulmonary microsomes (HPM) were performed. Carboxylesterase 1 (CES1) was identified as the major human hepatic and pulmonary enzyme responsible for the amide hydrolysis.We employed similar studies to identify the esterase(s) involved in the previously described hydrolytic metabolism of two quinolineindole synthetic cannabinoids, PB‐22 and 5F‐PB‐22, as well as the closely related compound, BB‐22. Our investigations again revealed CES1 to be the key enzyme catalyzing these reactions. The identified major metabolites of AB‐PINACA and AB‐FUBINACA are likely to be useful in documenting drug usage in forensic and clinical screening. Additionally, the identification of CES1 as the main enzyme hydrolyzing these compounds improves our knowledge in the emerging field of xenobiotic metabolism by esterases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Benzbromarone (BBR) is metabolized to 1′‐hydroxy BBR and 6‐hydroxy BBR in the liver. 6‐Hydroxy BBR is further metabolized to 5,6‐dihydroxy BBR. The aim of this study was to identify the CYP isozymes involved in the metabolism of BBR to 1′‐hydroxy BBR and 6‐hydroxy BBR and in the metabolism of 6‐hydroxy BBR to 5,6‐dihydroxy BBR in human liver microsomes. Among 11 recombinant P450 isozymes examined, CYP3A4 showed the highest formation rate of 1′‐hydroxy BBR. The formation rate of 1′‐hydroxy BBR significantly correlated with testosterone 6β‐hydroxylation activity in a panel of 12 human liver microsomes. The formation of 1′‐hydroxy BBR was completely inhibited by ketoconazole in pooled human liver microsomes. On the other hand, the highest formation rate of 6‐hydroxy BBR was found in recombinant CYP2C9. The highest correlation was observed between the formation rate of 6‐hydroxy BBR and diclofenac 4′‐hydroxylation activity in 12 human liver microsomes. The formation of 6‐hydroxy BBR was inhibited by tienilic acid in pooled human liver microsomes. The formation of 5,6‐dihydroxy BBR from 6‐hydroxy BBR was catalysed by recombinant CYP2C9 and CYP1A2. The formation rate of 5,6‐dihydroxy BBR was significantly correlated with diclofenac 4′‐hydroxylation activity and phenacetin O‐deethylation activity in 12 human liver microsomes. The formation of 5,6‐dihydroxy BBR was inhibited with either tienilic acid or α‐naphthoflavone in human liver microsomes. These results suggest that (i) the formation of 1′‐hydroxy BBR and 6‐hydroxy BBR is mainly catalysed by CYP3A4 and CYP2C9, respectively, and (ii) the formation of 5,6‐dihydroxy BBR is catalysed by CYP2C9 and CYP1A2 in human liver microsomes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号