首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the molecular mechanisms involved in the adaptive response to cadmium (Cd)-induced apoptosis in human myelomonocytic lymphoma U937 cells. When U937 cells were treated with 50 μM cadmium chloride (CdCl2) for 12 h, significant apoptosis occurred. This was associated with an increase in intracellular reactive oxygen species (ROS), sustained phosphorylation of JNK, activation of caspase-3, a decrease in Mcl-1 (anti-apoptotic Bcl-2 proteins), and increases in Bim, Noxa and tBid (a pro-apoptotic protein under the Bcl-2 family). No apoptosis occurred when the cells were treated with 1 μM CdCl2 for 72 h. However, pretreatment with low-dose CdCl2 dramatically altered the sensitivity of the cells to 50 μM CdCl2 with inhibition of apoptosis. Concomitantly, there were significant decreases in the generation of intracellular ROS and the activation of JNK. Pretreatment with 1 μM CdCl2 also attenuated the decrease in Mcl-1 and the increases in Bim, Noxa and tBid induced by 50 μM CdCl2. In conclusion, pretreatment with low-dose Cd inhibited apoptosis induced by high-dose Cd. The mechanism involves inhibition of intracellular ROS generation and JNK activation, and modulating the balance between the expression of Mcl-1 and its binding partners, Bim, Noxa and tBid.  相似文献   

2.
Population surveys and animal experiments have shown that rare earth elements (REEs) cause neurological defects. However, the detailed mechanisms underlying these effects are still unclear. Given that lanthanum is commonly used for investigating into REEs‐induced neurological defects, this study chose lanthanum chloride (LaCl3) to show that LaCl3 promotes mitochondrial apoptotic pathway in primary cultured rat astrocytes by regulating expression of Bcl‐2 family proteins. The main findings of this study are (1) LaCl3 treatment (0.25, 0.5, and 1.0 mM for 12–48 h) induced the astrocytes damages with a concentration‐dependent manner, which were confirmed with methyl thiazolyl tetrazolium and lactate dehydrogenase release assays, and morphological examination. (2) A 24 h treatment of LaCl3 concentration‐dependently decreased mitochondrial membrane potential, increased cytochrome c release from mitochondria into cytosol, elevated caspase 9 and 3 expression, and promoted astrocyte apoptosis. (3) LaCl3 treatment increased the ratio of pro‐apoptotic Bax and antiapoptotic Bcl‐2 proteins, which in turn broke the balance among pro‐apoptotic and antiapoptotic Bcl‐2 family proteins, leading to astrocyte apoptosis. Our results indicate that LaCl3 alters Bcl‐2 family protein expressions, which in turn promote mitochondrial apoptotic pathway, and thus astrocytic damage. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28: 489–497, 2013.  相似文献   

3.
4.
Nimbolide is one of the major compounds from the leaves and flowers of the neem tree and exhibits antitumor properties on various cancer cells. However, no report has shown that nimbolide induces apoptosis in vitro and in vivo in human hepatocellular carcinoma cells. Our results indicated that it inhibited cell growth in Huh‐7 and PLC/PRF/5 cells. We also found that nimbolide induced cell death through the induction of G2/M phase arrest and mitochondrial dysfunction, accompanied by the increased expression of cleaved caspase‐7, caspase‐9, caspase‐3, caspase‐PARP, and Bax and decreased expression of Mcl‐1 and Bcl‐2. A human apoptosis antibody array analysis demonstrated that inhibition of the apoptosis family proteins (XIAP, c‐IAP1, and c‐IAP2) was one of the major targets of nimbolide. Additionally, nimbolide sustained activation of ERK expression. Moreover, pretreatment with U0126 (MEK inhibitor) markedly abolished nimbolide‐inhibited cell viability, induced cell apoptosis, ERK phosphorylation, cleaved caspase‐9, caspase‐3, cleaved‐PARP activation, and increased c‐IAP1 expression in Huh‐7 cells. An in vivo study showed that nimbolide significantly reduced Huh‐7 tumor growth and weight in a xenograft mouse model. This study indicated the antitumor potential of nimbolide in human hepatocellular carcinoma cells.  相似文献   

5.
Coronarin D, a diterpene derived from the rhizomes of Hedychium coronarium, has been used to treat inflammatory diseases. Coronarin D can exert strong anticancer effects through cell growth prevention and cell cycle arrest in many cancer cells. In this study, we investigated the molecular mechanism through which coronarin D suppresses cell proliferation and triggers cell death in human hepatocellular carcinoma (HCC) cells. Treatment of Huh7 and Sk‐hep‐1 cells with coronarin D resulted in a significantly increased loss of mitochondrial membrane potential, leading to the cleavage and activation of caspase‐9, caspase‐8, and caspase‐3 and changes in Bax, Bcl‐2, and Bcl‐xL protein levels. Coronarin D significantly induced autophagy by increasing the expression of Beclin‐1 and LC3‐II and reducing the expression of p62. Moreover, Huh7 and Sk‐hep‐1 cells exposed to coronarin D had decreased expression of phosphorylated AKT, p38, and ERK and increased expression of phosphorylated JNK. Exposure of cells to the JNK‐specific inhibitor SP600125 attenuated the apoptotic effects of coronarin D. Taken together, this is the first study to report that coronarin D may effectively inhibit cell growth through apoptosis. We have provided evidence indicating that coronarin D induces cell death through the upregulation of JNK mitogen‐activated protein kinases in human HCC cells.  相似文献   

6.
Aim: To investigate the molecular mechanisms of ZD 1839-induced apoptosis in human leukemic U937 cells. Methods: The inhibition of human leukemic U937 cell growth was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphnyl-2H-tetrazolim bromide (MTT) assays, lactate dehydrogenase (LDH) release, and cell cycle distribution. The expression of anti- and pro-apoptotic proteins was detected by Western blot analysis. Results: This study demonstrated that ZD1839 induced apoptosis in leukemic U937 cells by the downregulation of Bcl-2, caspase activation and subsequent apoptotic features. Cotreatment with ZD 1839 and the caspase- 3 inhibitor z-DEVD-fmk blocked apoptosis, indicating that caspase-3 activation is at least partially responsible for ZD 1839-induced apoptosis. The ectopic expression of Bcl-2 attenuated caspase-3 activation, PARP cleavage, and subsequent indicators of apoptosis, including sub-G1 DNA content and LDH release. These results indicate that the downregulation of Bcl-2 plays a major role in the initiation of ZD1839-induced apoptosis, and that the activation of a caspase cascade is involved in the execution of apoptosis. Furthermore, ZD1839 treatment triggered the activation of p38 mitogen-activated protein kinase (MAPK) and the downregulation of c-Jun-N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and phosphatidyl inositol 3-kinase (PI3K)/Akt. The inhibition of the ERK and PI3K/Akt pathways also significantly increased cellular death. Conclusion: ZD 1839 activated caspase-3 and the inhibited Bcl-2 in human leukemic U937 cells through the downregulation of the ERK and PI3K/Akt pathways.  相似文献   

7.
Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.  相似文献   

8.
9.
Nanoparticle realgar powders (NRP) inhibited U937 cell growth in a time and dose-dependent manner. U937 cells treated with NRP showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-8, -9 inhibitor (z-IETD-fmk, Ac-LEHD-CHO, respectively) and caspase-3 inhibitor (z-DEVD-fmk) partially prevented NRP -induced apoptosis. Moreover, the classical substrates of caspase-3, poly-ADP ribose polymerase (PARP) was degraded after U937 cells treatment with NRP. In addition, NRP increased the ratio of Bax/Bcl-2 protein expression. Although p38 inhibitor (SB203580) and ERK inhibitor (PD98059) failed to block cell death, JNK inhibitor (SP600125) had marked inhibitory effects on NRP -induced apoptosis. Furthermore, the phosphorylation of JNK was up-regulated, suggesting that JNK was responsible for NRP -induced apoptosis in U937 cells. These results suggested that the caspase, mitochondria and MAPK signal pathways were involved in NRP-induced U937 apoptosis.  相似文献   

10.
11.
Leptomycin B (LMB), which is originally isolated from Streptomyces, possesses anti-tumor properties in vivo and in vitro. Though it was previously reported that LMB induces cell cycle arrest and p53-mediated apoptosis in certain cancer cells, however, the mechanism by which LMB induces apoptosis remains poorly understood. Here, we investigated the mechanisms of apoptosis induced by LMB in U937 cells. Treatment with LMB concentration-dependently induced cytotoxicity and apoptosis in U937 cells that correlated temporally with activation of caspases and down-regulation of Mcl-1 and XIAP. LMB did not change the expressions of Bcl-2 or Bax. A broad spectrum caspase inhibitor, z-VAD-fmk, blocked caspase-3 activation and elevated the survival in LMB-treated U937 cells, suggesting that caspase-3 activation is critical for LMB-induced apoptosis. Interestingly, Bcl-2 overexpression that blocked cytochrome c release by LMB effectively attenuated the apoptotic response to LMB, suggesting that LMB-induced apoptosis is mediated through the mitochondrial pathway. Antioxidants or antioxidant enzymes had no effects on LMB-induced apoptosis. Data of flow cytometry analysis using 2',7'-dichlorofluorescein-diacetate further revealed no reactive oxygen species (ROS) generation by LMB, indicating that apoptosis induced by LMB is ROS-independent. However, the apoptotic response to LMB was not shown in U937 cells pretreated with the sulfhydryl group-containing antioxidant N-acetylcysteine (NAC). Further analysis suggested that NAC directly binds LMB and abolishes the apoptotic effects of LMB. Collectively, these findings suggest that LMB potently induces apoptosis in U937 cells, and LMB-induced apoptosis in U937 cells is related with cytochrome c release, activation of caspases, and selective down-regulation of Mcl-1 and XIAP.  相似文献   

12.
Cadmium is one of the most toxic elements to which man can be exposed at work or in the environment. By far, the most salient toxicological property of Cd is its exceptionally long half-life in the human body. Once absorbed, Cd accumulates in the human body, particularly in the liver and other vital organs. The cellular actions of Cd are extensively documented, but the molecular mechanisms underlying these actions are still not resolved. It is known that Cd activates the activator protein-1 (AP-1), but no data about the pathway involved are reported for liver. The objective was to provide a greater insight into the effect of cadmium on mitogen-activated protein kinases (MAPK’s) involved in signal transduction, its relationship with AP-1 activation, and heat shock protein (Hsp) 70 expression, in HepG2 cells. AP-1 activation as a result of 5 μM CdCl2 exposure was increased 24.5-fold over control cells after 4?h treatment. To investigate the role of the extracellular signal-regulated protein kinases (ERK’s), c-Jun N-terminal kinases (JNK’s) and p38 kinases in cadmium-induced AP-1 activation, specific MAPKs inhibitors were used. AP-1 activation decreased by 74% with ERK inhibition, by 83% with p38 inhibition, while inhibition of JNK decreased by 70%. Only ERK and JNK participated in Hsp70 production, conferring cell protection against cadmium damage.  相似文献   

13.
14.
《Toxicology in vitro》2010,24(2):486-494
In the present study, we reported that apoptosis induced by esculetin, a phenolic compound with apoptotic activity in cancer cells, was markedly blocked by Bcl-2-overexpression, but restored by HA14-1, a small-molecule Bcl-2 inhibitor, in human leukemic U937 cells. The combined use of esculetin and HA14-1 effectively induced Bid cleavage and loss of mitochondrial membrane potential (MMP, Δψm) leading to the activation of caspases and cleavage of poly(ADP-ribose) polymerase (PARP) in Bcl-2-overexpressing (U937/Bcl-2) cells. Combined treatment with esculetin and HA14-1 upregulated the expression of death receptor 4 (DR4), and activation of extracellular-regulated kinase (ERK) in a time-dependent manner. In addition, esculetin and HA14-1-mediated apoptosis was reduced by ERK inhibitors through inhibition of DR4 expression, suggesting that the synergistic effect was at least partially mediated through ERK-dependent induction of DR4 expression. The results indicate that HA14-1-induced reversal of the anti-apoptotic effect of Bcl-2 confers apoptosis sensitivity to esculetin by a mitochondrial amplification step and through the ERK-dependent induction of DR4 expression in U937/Bcl-2 cells. Thus, HA14-1 reversal of Bcl-2-mediated esculetin resistance suggests a novel strategy for increasing esculetin sensitivity in Bcl-2-overexpressing leukemia cells.  相似文献   

15.
The aim of the present study is to investigate anticancer effect and mechanism of regorafenib in bladder cancer in vitro and in vivo. Human bladder cancer TSGH 8301 cells were treated with regorafenib, NF‐κB, AKT, or mitogen‐activated protein kinase (MAPK) inhibitors for different time. The changes of cell viability, NF‐κB activation, apoptotic signaling transduction, and expression of tumor progression‐associated proteins were evaluated with MTT, NF‐κB reporter gene assay, flow cytometry, and Western blotting assay. TSGH 8301 tumor bearing mice were established and treated with vehicle (140 μL of 0.1% DMSO) or regorafenib (10 mg/kg/day by gavage) for 15 days. The changes of tumor volume, body weight, NF‐κB activation, MAPK activation, and tumor progression‐associated proteins (MMP‐9, XIAP, VEGF, and Cyclin‐D1) after regorafenib treatment were evaluated with digital caliper, digital weight, and ex vivo Western blotting assay. Our results demonstrated NF‐κB activation and protein levels of MMP‐9, XIAP, VEGF, and Cyclin‐D1 were significantly reduced by NF‐κB (QNZ), ERK (PD98059), and P38 (SB203580) inhibitors. Regorafenib also significantly induced extrinsic and intrinsic apoptotic signaling transduction in bladder cancer in vitro. In addition, regorafenib significantly inhibited tumor growth, NF‐κB, p38, ERK activation and expression of tumor progression‐associated proteins in bladder cancer in vitro and in vivo. Taken together, these results proved that regorafenib not only induced apoptosis through extrinsic and intrinsic pathways and but suppressed MAPK/ NF‐κB‐modulated tumor progression in bladder cancer.  相似文献   

16.
Tetrandrine, which is isolated from Chinese herb Stephania tetrandrae, possesses anti-inflammatory, immunosuppressive, and cytoprotective properties. Though it was previously shown that tetrandrine causes a G1 blockade and apoptosis in various cell types, however, the mechanism by which tetrandrine initiates apoptosis remains poorly understood. In present study, we investigated the mechanisms of apoptosis induced by tetrandrine in U937 leukemia cells. Tetrandrine inhibited U937 cell growth by inducing apoptosis. After treatment of U937 cells with tetrandrine (10microM) for 24h, alteration of cell morphology, chromatin fragmentation, cytochrome c release, and caspase activation were observed. Tetrandrine also induced early oxidative stress, which resulted in activation of JNK, but not ERK and p38 MAPK. A broad-spectrum caspase inhibitor and antioxidants significantly blocked tetrandrine-induced caspase-3 activation. However, inhibition of the JNK activity with SP600125 did not block tetrandrine-induced apoptosis. Tetrandrine-induced apoptosis of U937 cells also required activity of PKC-delta, because pretreatment with a specific PKC-delta inhibitor greatly blocked tetrandrine-induced caspase-3 activation. In addition, the apoptotic response to tetrandrine was significantly attenuated in dominant-negative PKC-delta transfected MCF-7 cells, suggesting that PKC-delta plays an important role in tetrandrine-induced apoptosis and can induce caspase activation. These results suggest that tetrandrine induces oxidative stress, JNK activation, and caspase activation. However, JNK activation by ROS is not involved in the tetrandrine-induced apoptosis. In addition, tetrandrine induces caspase-dependent generation of a catalytically active fragment of PKC-delta, and this fragment also appears to play a role in the activation of caspases.  相似文献   

17.
Bee venom (BV) has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in BV-induced apoptosis are still uncharacterized in human leukemic cells. In the present study, we report that BV induces apoptosis in leukemic U937 cells through downregulation of ERK and Akt signal pathway. Furthermore, BV-induced apoptosis was accompanied by downregulation of Bcl-2, activation of caspase-3 and a subsequent poly(ADP-ribose)polymerase (PARP) cleavages. The induction of apoptosis also was accompanied by the downregulation of the inhibitor of apoptosis protein (IAP) family proteins. Caspase-3 inhibitor, z-DEVD-fmk, was significantly capable of restoring cell viability and BV-induced apoptosis through caspase-3 activation was significantly attenuated in Bcl-2-overexpressing cells. These results indicate that downregulation of Bcl-2 plays a major role in the initiation as an activator of a caspase-3 involved with BV-induced apoptosis. BV also triggered the activation of p38 MAPK and JNK, and downregulation of ERK and Akt. PD98059 (an inhibitor of ERK) or LY294002 (an inhibitor of Akt), but not an inhibitor of p38 MAPK and JNK, significantly decreased cell viability and increased lactate dehydrogenase (LDH) release. The results indicated that key regulators in BV-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of the ERK and Akt signal pathway.  相似文献   

18.
The aim of this study was to explore the intracellular mechanisms underlying the cardiovascular toxicity of air particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) in a human umbilical vein cell line, EA.hy926. We found that PM2.5 exposure triggered reactive oxygen species (ROS) generation, resulting in a significant decrease in cell viability. Data from Western blots showed that PM2.5 induced phosphorylation of Jun N‐terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen‐activated protein kinase (MAPK) and protein kinase B (AKT), and activation of nuclear factor kappa B (NF‐κB). We further observed a significant increase in expressions of intercellular adhesion molecule‐1 (ICAM‐1) and vascular adhesion molecule‐1 (VCAM‐1) in a time‐ and dose‐dependent manner. Moreover, the adhesion of monocytic THP‐1 cells to EA.hy926 cells was greatly enhanced in the presence of PM2.5. However, N‐acetylcysteine (NAC), a scavenger of ROS, prevented the increase of ROS generation, attenuated the phosphorylation of the above kinases, and decreased the NF‐κB activation as well as the expression of ICAM‐1 and VCAM‐1. Furthermore, ERK inhibitor (U0126), AKT inhibitor (LY294002) and NF‐κB inhibitor (BAY11‐7082) significantly down‐regulated PM2.5‐induced ICAM‐1 and VCAM‐1 expression as well as adhesion of THP‐1 cells, but not JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580), indicating that ERK/AKT/NF‐κB is involved in the signaling pathway that leads to PM2.5‐induced ICAM‐1 and VCAM‐1 expression. These findings suggest PM2.5‐induced ROS may function as signaling molecules triggering ICAM‐1 and VCAM‐1 expressions through activating the ERK/AKT/NF‐κB‐dependent pathway, and further promoting monocyte adhesion to endothelial cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Intrinsically cancer cells have higher basal levels of reactive oxygen species (ROS), which when augmented by pro-oxidants such as Malabaricone-A (MAL-A) triggers apoptotic cell death, secondary to ‘turning on’ of the apoptosis related cell signaling pathways. The effects of MAL-A upon key inflammation related signaling molecules were evaluated by western blotting in U937, a histiocytic lymphoma derived cell line. The impact of inhibitors of the pro-apoptotic MAPK and anti-apoptotic PI3K/AKT signaling pathways upon MAL-A induced cytotoxicity and generation of ROS was evaluated by a cell viability assay and flow cytometry respectively in two hematopoietic cell lines, U937 and MOLT3. MAL-A enhanced phosphorylation of the components of the pro-apoptotic pathway, namely ASK1, p38 and JNK. Alongside, MAL-A decreased the phosphorylation of AKT and mTOR. The cytotoxicity of MAL-A was attenuated by inhibitors of p38 and JNK, whereas its cytotoxic potential was enhanced in the presence of a PI3K/AKT inhibitor. Similarly, MAL-A mediated generation of ROS was decreased by inhibitors of p38MAPK and JNK, whereas the PI3K/AKT inhibitor potentiated its generation of ROS. Taken together, MAL-A mediated its cytotoxicity by enhanced generation of ROS via modulation of the apoptosis related cellular signaling pathways and tilting the balance towards a pro-apoptotic scenario. This was achieved via an up-regulation of MAPK (p38 and JNK) along with down-regulation of the PI3K/AKT/mTOR pathway indicating that manipulation of these pathways by compounds such as MAL-A are promising therapeutic targets, worthy of future pharmacological consideration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号