共查询到19条相似文献,搜索用时 78 毫秒
1.
目的制备新型可注射用载紫杉醇聚己内酯-聚乙二醇-聚己内酯(PCl-PEG-PCL)胶束,并评价和比较其与市售紫杉醇注射液在大鼠体内的药代动力学性质。方法以PCL-PEG-PCL为载体材料,通过薄膜-水化-超声法制备出载紫杉醇PCl-PEG-PCL胶束,并对其进行表征。以市售紫杉醇注射液为对照.采用SD大鼠尾静脉注射后观察载紫杉醇PCL-PEG-PCL胶束的体内药代动力学.并用DAS2.0药代动力学数据软件计算相关参数。结果载紫杉醇PCL-PEG-PCL胶束呈大小均匀的球形,具有明显的核壳结构;平均粒径为93nm,多分散系数为0.19;载药量为28.98%,药物包封率为94.36%。体外释放研究表明.载紫杉醇PCL-PEG-PCL胶束具有缓释效果。药代动力学研究表明.两种制剂均符合二房室模型.市售紫杉醇注射液和紫杉醇聚合物胶束消除半衰期(t1/2)分别为(1.96±0.27)h和(12.65±1.77)h,平均滞留时间(MRT)分别为(0.93±0.19)h和(11.18±1.41)h,体内总清除率(CL)分别为(0.44±0.05)L·kg/h和(0.10±0.01)L·kg/h,药-时曲线下面积(AUC0-∞)分别为(17.15±2.35)mg·h/L和(73.82±10.38)mg.h/L。结论成功制备了新型可注射用载紫杉醇PCL-PEG-PCL胶束.药代动力学研究表明.所研制的载紫杉醇PCL-PEG-PCL胶束明显延长紫杉醇在血液中的循环时间及消除半衰期.显著提高生物利用度,是一种有潜力的紫杉醇缓控释新剂型。 相似文献
2.
目的 以聚己内酯-b-聚乙二醇-6-聚己内酯(PCEP)两亲性三嵌段共聚物为载体研制紫杉醇聚合物纳米囊泡.方法 以不同分子量的聚乙二醇(PEG)引发合成不同亲水段、疏水段链长的PCEP并进行FT-IR、1H NMR和GPC表征,以合成的嵌段聚合物PCEP为载体,通过薄膜-超声分散法制备紫杉醇聚合物纳米囊泡,用透射电子显微镜(TEM)表征其形态和构造,用粒度分析仪测定其粒径及分布,用高效液相色谱(HPLC)法测定其载药量及包封率,用透析袋法研究药物体外释放;同时,研究不同亲水链长、疏水链长对紫杉醇聚合物囊泡载药量、包封率、粒径及体外释放紫杉醇药物的影响.结果 研制的紫杉醇聚合物囊泡呈核-壳结构球形,粒径为纳米级,随着PCEP共聚物相对分子质量的增加而增大;紫杉醇聚合物囊泡体外释放无突释现象,能稳定缓慢释放紫杉醇,且释放速率随共聚物中亲水段PEG含量增加而增大,随疏水段PCL含量增大而减小.结论 以PCEP两亲性三嵌段共聚物为载体制备的紫杉醇聚合物纳米囊泡,其粒径小且分布均匀,包封率较高,有望成为一种用于提高紫杉醇的药效且降低不良反应的新的紫杉醇缓控释剂型. 相似文献
3.
紫杉醇聚己内酯/泊洛沙姆188载药纳米粒及其抗肿瘤活性 总被引:1,自引:0,他引:1
目的利用聚己内酯(PCL)与亲水性添加剂泊洛沙姆188(F68)共混物作为载体材料与抗癌药物紫杉醇组成纳米粒缓释载药系统,并评价其在裸鼠人乳腺癌B37实体瘤模型中的抗肿瘤效果。方法采用超声乳化/溶剂挥发法制备紫杉醇PCL/F68载药纳米粒:对紫杉醇PCI/F68载药纳米粒进行表征及高压液相色谱法(HPLC)测定包封率和体外释放度:利用差示扫描热分析(DSC)法分析紫杉醇在PCL/F68载药纳米粒中的分散状态;评价紫杉醇PCL/F68载药纳米粒在裸鼠人乳腺癌B37实体瘤模型中的抗肿瘤活性.结果紫杉醇PCL/F68载药纳米粒呈现规整的球形:平均粒径为150.50nm(标准差25.41nm).多分散系数为O.18。紫杉醇PCI仃68纳米粒的载药量为18%,药物包封率为84-36%。紫杉醇PCIJF68载药纳米粒体外药物释放研究表明在50d的释放周期内累计释放量约为49%,接近零级释放(R=0.998)。体内抗肿瘤活性实验研究表明.紫杉醇PCL/F68载药纳米粒对裸鼠人乳腺癌B37实体瘤生长具有明显抑制作用。结论肿瘤局部注射紫杉醇PCL/F68载药纳米粒能够有效地抑制肿瘤的生长, 相似文献
4.
目的本研究首次尝试利用聚己内酯(PCL)与亲水性添加剂泊洛沙姆188(Pluronic F68,F68)共混物作为载体材料与抗癌药物紫杉醇组成微球缓释载药系统。方法采用乳化,溶剂挥发法制备紫杉醇PCL/F68共混微球;考察紫杉醇PCL/F68共混微球的表面形态、平均粒径、包埋率及体外释放性能:利用DSC法分析紫杉醇在PCL/F68共混徽球中的分散状态;考察紫杉醇PCL/F68共混微球在小鼠肝癌H22腹水瘤模型中的抗肿瘤活性。结果表明载体材料中的亲水性添加剂F68可在微球表面形成孔状结构,F68的加入提高了紫杉醇从PCL/F68共混载药微球的释放并获得了接近恒定的释放性能;在小鼠肝癌H22腹水瘤模型中。紫杉醇PCL/F68共混载药微球对肿瘤生长具有抑制作用,荷瘤小鼠生存期明显延长。结论以PCL/F68共混物为载体制备的紫杉醇控释微球具有较高的释放能力和明显的控释效果. 相似文献
5.
Objective To develop paclitaxol (PTX)-loaded polymersomes based on poly (ε-caprolactone)-block-poly (ethylene glycol)-block-poly (ε-caprolactone)(PCL-b-PEG-b-PCL, PCEP) amphiphilic triblock copolymers. Methods A series of PCEP copolymers was synthesized by ring-opening polymerization of ε-caprolactone initiated by PEG. The block copolymers were characterized by FT-IR、1H NMR and GPC. PTX-loaded polymersomes were prepared by thin-film and ultrasonic dispersion method and characterized in terms of morphology,particle size and size distribution, encapsulation efficiency and in vitro release. The effect of different hydrophilic and hydrophobic chain length on the drug-loading content, entrapment efficiency, size and size distribution and in vitro release were also investigated. Results The PTX-loaded polymersomes showed nanometer size and spherical morphology with core and shell. The sizes of PTX-loaded polymersomes increased with the increasing of the molecular weight of PCEP. The PTX-loaded polymersomes showed a continuous and steady release of PTX without initial burst release. The release rate increased with the increasing of hydrophilic PEG chain content and decreased with the increasing of hydrophobic PCL chain content. Conclusion For the first time, a novel PTX-loaded polymersomes was developed based on PCL-b-PEG-b-PCL amphiphilic triblock copolymers. The PTX-loaded polymersomes showed nanometer size, narrow size distribution and high drug encapsulation efficiency.These results indicate that PTX-loaded polymersomes could be a promising novel controlled release dosage form to increase therapeutic effect with decreased toxic and side effect of PTX. 相似文献
6.
Objective To develop paclitaxol (PTX)-loaded polymersomes based on poly (ε-caprolactone)-block-poly (ethylene glycol)-block-poly (ε-caprolactone)(PCL-b-PEG-b-PCL, PCEP) amphiphilic triblock copolymers. Methods A series of PCEP copolymers was synthesized by ring-opening polymerization of ε-caprolactone initiated by PEG. The block copolymers were characterized by FT-IR、1H NMR and GPC. PTX-loaded polymersomes were prepared by thin-film and ultrasonic dispersion method and characterized in terms of morphology,particle size and size distribution, encapsulation efficiency and in vitro release. The effect of different hydrophilic and hydrophobic chain length on the drug-loading content, entrapment efficiency, size and size distribution and in vitro release were also investigated. Results The PTX-loaded polymersomes showed nanometer size and spherical morphology with core and shell. The sizes of PTX-loaded polymersomes increased with the increasing of the molecular weight of PCEP. The PTX-loaded polymersomes showed a continuous and steady release of PTX without initial burst release. The release rate increased with the increasing of hydrophilic PEG chain content and decreased with the increasing of hydrophobic PCL chain content. Conclusion For the first time, a novel PTX-loaded polymersomes was developed based on PCL-b-PEG-b-PCL amphiphilic triblock copolymers. The PTX-loaded polymersomes showed nanometer size, narrow size distribution and high drug encapsulation efficiency.These results indicate that PTX-loaded polymersomes could be a promising novel controlled release dosage form to increase therapeutic effect with decreased toxic and side effect of PTX. 相似文献
7.
形状记忆聚合物及其在生物医学工程中的应用 总被引:4,自引:0,他引:4
朱光明 《生物医学工程学杂志》2005,22(5):1082-1084
介绍了形状记忆聚合物的最新研究进展,从结构角度分析和探讨了聚合物产生形状记忆效应的原理,并对聚氨酯、交联聚酯、聚合物凝胶等形状记忆高分子材料的特性及其在生物医学工程领域的应用进行了介绍和评价。 相似文献
8.
背景:紫杉醇临床用剂型紫素易引起过敏反应,因此研制新的紫杉醇新剂型就显得十分有意义。
目的:研制紫杉醇新剂型,观察其在动物模型上治疗肿瘤的效果。
方法:合成具有自主知识产权的生物可降解材料医用聚己内酯。采用溶剂替代法制备载紫杉醇纳米粒子,对其粒径、形态、紫杉醇含量、体外释放等进行测定。选用TA2系实验小鼠,建立乳腺癌动物模型,随机分为5组,分别局部注射生理盐水、紫素、低剂量、中剂量及高剂量紫杉醇纳米粒子进行治疗。
结果与结论:实验制备的紫杉醇纳米粒子平均粒径约为153.54 nm,包埋率为87.25%,紫杉醇含量19.06%。体外可恒定释放30 d以上。2周药物治疗显示,各治疗组均不同程度上抑制了肿瘤的生长,其中紫杉醇纳米粒子中、高剂量组的抑瘤率明显高于紫素治疗组(P < 0.01)。提示紫杉醇纳米粒子可缓释药物,中剂量组和高剂量组对小鼠乳腺癌的抑瘤率高于紫素组。关键词:紫杉醇;医用聚己内酯;纳米粒子;乳腺癌;缓释药物
缩略语注释:HPLC:high performance liquid chromatography,高效液相色谱
doi:10.3969/j.issn.1673-8225.2012.16.005 相似文献
9.
以甘油为起始原料,通过苄基保护、加氢还原以及酯化等环节得到一系列含有不同长度PEG、不同脂肪酸的磷脂酰聚乙二醇单甲醚。通过溶剂挥发法制备了mPEG-磷脂胶束,并通过荧光探针法、扫描电子显微镜、透射电子显微镜和粒度及电位分析仪等对其进行了表征。结果表明,制备的磷脂酰聚乙二醇单甲醚胶束,具有明显的核-壳球状结构,粒径分布在100~200 nm;文中报道的磷脂酰聚乙二醇单甲醚的临界胶束浓度都在10-6mol/L,与小分子的表面活性剂相比,CMC值较低,在水中的稳定性增强,其中该磷脂胶束受到环境盐浓度/糖浓度的影响时粒径有不同程度的增大。所合成的磷脂酰聚乙二醇单甲醚自组装纳米胶束结构稳定,对于药物而言是一种较好的纳米载体。 相似文献
10.
背景:汉黄芩苷已被证明有抗炎、神经保护等多种药理活性作用,但其半衰期短、难溶于水,有机溶剂溶解后不良反应大.研究发现,聚己内酯-聚乙二醇能够结合高度疏水的药物,解决药物难溶问题且可以达到缓释的效果,但无法精确靶向到达损伤部位,制成胶束后因其尺寸小,可以穿透细胞膜.目的:制备汉黄芩苷聚己内酯-聚乙二醇胶束以及脂肪干细胞携... 相似文献
11.
Doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles (DOX–CSO–SA) was synthesized via cis-aconityl bond between the anticancer drug doxorubicin (DOX) and stearic acid grafted chitosan oligosaccharide (CSO–SA) in this paper. The CSO–SA micelles had been demonstrated faster internalization ability into tumor cells. Here, the CSO–SA with 6.47% amino substituted degree (SD%) was used to synthesize DOX–CSO–SA. The critical micelle concentration (CMC) was about 0.14 mg mL−1. The micelles with 1 mg mL−1 CSO–SA concentration had 32.7 nm number average diameter with a narrow size distribution and 51.5 mV surface potential. After conjugating with doxorubicin, CMC of DOX–CSO–SA descended; the micellar size increased; and the zeta potential decreased. The DOX–CSO–SA micelles indicated pH-dependent DOX release behavior. The release rate of DOX from DOX–CSO–SA micelles increased significantly with the reductions of the pH for release medium from 7.2 to 5.0. In vitro antitumor activity tests of DOX–CSO–SA micelles against human breast carcinoma (MCF-7) cells and their multi-drug resistant (MCF-7/Adr) cells presented the reversal activity against DOX resistance MCF-7 cells (MCF-7/Adr). The in vivo antitumor activity results showed that DOX–CSO–SA micelles treatments effectively suppressed the tumor growth and reduced the toxicity against animal body than commercial doxorubicin hydrochloride injection. 相似文献
12.
目的制备白藜芦醇(RES)聚合物胶束并对其进行质量评价。方法采用薄膜分散法,以聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇接枝共聚物(SPS)和D-α生育酚聚乙二醇1000琥珀酸酯(TPGS)为载体材料,制备白藜芦醇聚合物胶束(RES-SPS-TPGS-PMs);采用纳米粒度分析仪、差示扫描量热法(DSC)及傅立叶变换红外光谱法(FTIR)对其进行表征;采用高效液相色谱法测定聚合物胶束的包封率和载药量;采用动态膜透析法考察载药胶束的体外释放特性。结果制备的胶束平均粒径为(52.4±0.66)nm,多分散指数为0.06±0.01,包封率为(97.12±9.08)%,载药量为(2.37±0.22)%。白藜芦醇在聚合物胶束中可能以无定型或分子的形式存在,且白藜芦醇与载体材料之间形成了氢键。体外释放结果表明白藜芦醇聚合物胶束具有明显的缓释效果。结论该胶束制备工艺简单,其粒径、包封率、载药量可控,具有缓释作用。 相似文献
13.
To reduce the side effects and improve the lack of clinical treatment countermeasures in endometriosis chemotherapy, a polymeric micelle gene delivery system composed of lipid grafted chitosan micelles (CSO-SA) and the pigment epithelium derived factor (PEDF) was designed. Due to the cationic property, the glycolipid-like micelles could compact the PEDF to form complexes nanoparticles. The complexes nanoparticles with an N/P at 9.6 had 135.6 nm volume average hydrodynamic diameters with a narrow size distribution, and 6.4 ± 0.1 mV surface potential. PEDF can be distributed to endometriotic lesions in a rat model of peritoneal endometriosis mediated by CSO-SA via the intravenous injection. It showed that the CSO-SA/PEDF nanoparticles gene therapy caused decrease in the sizes of the endometriotic lesions and atrophy and degeneration of ectopic endometrium significantly. And it showed no toxicity to the reproductive organs under electron microscope observation. In addition, a reduction in microvessel density labeled by Von Willebrand factor was observed and no decrease in α-Smooth Muscle Actine-positive mature vessels. And the index of apoptotic was increased significantly in endometriotic lesions of CSO-SA/PEDF group. So, glycolipid-like structure micelles mediated PEDF gene delivery system could be used as an effective treatment approach for endometriosis disease. 相似文献
14.
Zhao BX Zhao Y Huang Y Luo LM Song P Wang X Chen S Yu KF Zhang X Zhang Q 《Biomaterials》2012,33(8):2508-2520
The acidic pH in tumor tissues could be used for targeting solid tumors. In the present study, we designed a tumor-specific pH-responsive peptide H7K(R2)2, which could respond to the acidic pH in tumor tissues, and prepared H7K(R2)2-modified polymeric micelles containing paclitaxel (PTX-PM-H7K(R2)2) in order to evaluate their potential targeting of tumor cells and tumor endothelial cells and their anti-tumor activity in mice with tumor cells. PTX-PM-H7K(R2)2 was prepared by a thin-film hydration method. The in vitro release of PTX from PTX-PM-H7K(R2)2 was tested. The in vitro targeting characteristics of H7K(R2)2-modified polymeric micelles on HUVEC (human umbilical vein endothelial cells) and MCF-7 (human breast adenocarcinoma cells) were evaluated. The in vivo targeting activity of H7K(R2)2-modified polymeric micelles and the in vivo anti-tumor activity of PTX-PM-H7K(R2)2 were also investigated in MCF-7 tumor-bearing mice. The released PTX from the PTX-PM-H7K(R2)2 was not affected by the pH. The targeting activity of the H7K(R2)2-modified polymeric micelles was demonstrated by in vitro flow cytometry and confocal microscopy as well as in vivo biodistribution. PTX-PM-H7K(R2)2 produced very marked anti-tumor and anti-angiogenic activity in MCF-7 tumor-bearing mice in vivo. 相似文献
15.
Tumor stem cells have emerged as the new targets for anti-cancer therapy, besides tumor cells themselves. To eradicate both breast cancer cells and breast cancer stem cells which can not be eliminated by the conventional chemotherapy, octreotide (Oct)-modified paclitaxel (PTX)-loaded PEG-b-PCL polymeric micelles (Oct-M-PTX) and salinomycin (SAL)-loaded PEG-b-PCL polymeric micelles (M-SAL) were developed and investigated in combination. In this study, Oct that targets somatostatin receptors (SSTR) overexpressed in tumors including breast cancer, was coupled to the PEG end of PEG-b-PCL, and all the micelles were prepared using thin film hydration method. Results showed that the particle size of all the micelles was approximately 25-30 nm, and the encapsulation efficiency was >90%. Quantitative and qualitative analysis demonstrated that Oct facilitates the uptake of micelles in SSTR overexpressed breast cancer MCF-7 cells while free Oct inhibited cellular uptake of Oct-modified micelles, revealing the mechanism of receptor-mediated endocytosis. Breast cancer stem cells (side population cells, SP cells) were sorted from MCF-7 cells and identified with the CD44+/CD24− phenotype. M-SAL was capable of decreasing the proportion of SP cells, and its suppression was more potent in SP cells than that in cancer cells. As compared to PTX-loaded micelles (M-PTX), the inhibition of Oct-M-PTX against MCF-7 cells was stronger while such effect significantly increased when applying Oct-M-PTX in combination with M-SAL. In the MCF-7 xenografts, the combination therapy with Oct-M-PTX plus M-SAL produced the strongest antitumor efficacy, in accord with the combination treatment in vitro. Compared with free SAL, M-SAL was found to be more effective in suppressing breast cancer stem cells in vivo. Thus, this combination therapy may provide a strategy to improve treatment of breast cancers for eradication of breast cancer cells together with breast cancer stem cells. 相似文献
16.
In this study, thioridazine (THZ), which was reported to kill cancer stem cells, was used in a combination therapy with doxorubicin (DOX) to eradicate both cancer cells and DOX-resistant cancer stem cells to mitigate the reoccurrence of the disease. Both THZ and DOX were loaded into micelles with sizes below 100 nm, narrow size distribution and high drug content. The micelles were self-assembled from a mixture of acid-functionalized poly(carbonate) and poly(ethylene glycol) diblock copolymer (PEG-PAC) and urea-functionalized poly(carbonate) (PUC) and PEG diblock copolymer (PEG-PUC). The drug-loaded mixed micelles (MM) were used to target both cancer cells and stem cells via co-delivery. Cancer stem cells were sorted by a side population assay from BT-474 and MCF-7 human breast cancer cell lines, and identified by CD44+/CD24− phenotype. The cytotoxicity of various formulations was evaluated on the sorted cancer stem cells (side population SP cells), sorted non-stem-like cancer cells (non-side population NSP cells) and unsorted cancer cells. Antitumor activity was also evaluated on BT-474 xenografts in nude mice. As compared with NSP cells, DOX suppressed SP cell growth less effectively, while THZ and THZ-MM were more effective in the inhibition of SP cells. A stronger inhibitory effect was observed on SP cells with the co-delivery of free DOX and THZ or DOX-MM and THZ-MM as compared to free DOX or DOX-MM. THZ and THZ-MM were capable of lowering the population of SP cells in unsorted cells. In the BT-474 xenografts, the co-delivery of DOX-MM and THZ-MM produced the strongest antitumor efficacy, and both THZ and THZ-MM showed strong activity against cancer stem cells. This combination therapy may provide a promising strategy for breast cancer treatment by targeting both cancer cells and cancer stem cells. 相似文献
17.
Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid “core”; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. 相似文献
18.
To understand the effect of photosensitizer (PS) release from graft copolymer based micelles in photodynamic therapy (PDT), the two pH-sensitive and non-pH-sensitive graft copolymers, (poly(N-vinyly caprolactam)-g-poly(d,l-lactide) and poly(N-vinyly caprolactam-co-N-vinyl imidazole)-g-poly(d,l-lactide)), were synthesized and utilized for the encapsulation of protoporphyrin IX (PPIX) for in vitro and in vivo PDT studies. Photochemical internalization (PCI) was utilized to study the localization of pH- and non-pH-sensitive micelles uptake in the lysosome. After non-toxic light treatment, PPIX was found in the nucleus with pH-sensitive micelles, while PPIX was still localized in the lysosomal organism with the non-pH-sensitive micelles, as observed by confocal microscopy. Because the formation of singlet oxygen was observed for the block and graft micelles, dramatic differences in the cell viability could be ascribed to the damage occurring at the region where the PPIX was located. An in vivo study revealed that PPIX-loaded graft and diblock micelles presented prolonged blood circulation and enhanced tumor targeting ability. The PPIX released from g-CIM micelles on tumor site was further proved by ex vivo confocal image. In addition, non-pH-sensitive micelle-treated mice showed a better repression of tumor growth than PPIX-treated mice, which was likely due to the larger amount of PS localized in the tumor region still exhibiting therapeutic effects. Finally, effective PDT-induced inhibition of tumor growth was found in pH-sensitive micelle-treated mice. This work provides insight into PS-loaded graft and diblock micelles for the PDT of tumors. 相似文献
19.
Phenylboronic acid-functionalized amphiphilic block copolymer Pluronic-PMCC-BA was synthesized via ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) with fumaric acid as a catalyst followed by the deprotection of carboxyl groups by catalyzed hydrogenation and the condensation of 3-aminophenylboronic acid with the copolymer side groups. Pluronic-PMCC-BA can form stable micelle solution by self-assembly in water. The phenylboronic acid groups are located at the shell of micelle as proved by 1H NMR. The diameter of drug-free micelles is approximate 60 nm. Nano-spheres with narrow size distribution could be observed in the TEM image. MTT assay results show that Pluronic-PMCC-BA exhibits slight cytotoxicity when the polymer concentration is higher than 25 μg mL−1. The toxicities of DOX@Pluronic-PMCC and DOX@Pluronic-PMCC-BA to COS7, HeLa, and HepG2 cell lines are similar with those of free DOX. Interestingly, phenylboronic acid groups located at the surface of Pluronic-PMCC-BA micelles can recognize HepG2 cells and promote the drug uptake of the cells, which are observed by confocal laser scanning microscopy (CLSM). The results imply that Pluronic-PMCC-BA would be a promising material for targeted drug delivery to the cancer cells. 相似文献