首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三种螺距对种植体初期稳定性影响的有限元研究   总被引:10,自引:2,他引:8  
目的:利用即刻负载有限元模型,研究种植体不同螺纹螺距因素对初期稳定性的影响。方法:利用Pro/E软件、Hypermesh软件及ABAQUS有限元软件,建立四类种植体即刻负载的三维有限元模型,比较3种螺纹螺距(0.8mm、1.6mm、2.4mm)在分别垂直和水平加载时,对种植体初期稳定性的影响。结果:对不同螺纹螺距种植体来说,垂直加载和水平加载时0.8mm螺距螺纹种植体微动最小,2.4mm螺距螺纹种植体微动最大。结论:螺纹的螺距对垂直相对位移有影响,对水平相对位移影响不大。随着螺距的增加,种植体对抗垂直向载荷的抵抗力减弱。水平加载时,螺纹的螺距对颈部微动影响不明显。  相似文献   

2.
螺纹种植体螺距的优化设计和应力分析   总被引:10,自引:2,他引:8       下载免费PDF全文
目的应用Ansys Workbench DesignXplorer优化设计模块,探讨圆柱状V形螺纹种植体螺距变化对颌骨和
种植体应力大小的影响,为临床设计和选择最佳的螺纹参数提供理论依据。方法建立了包含圆柱状V形螺纹种植
体的颌骨骨块三维有限元模型,设定螺纹螺距( P)范围为0.5~1.6 mm,观察P变化对颌骨和种植体Equivale(nt EQV)
应力峰值的影响。结果在垂直向加载中皮质骨、松质骨和种植体的EQV应力峰值增幅分别为7.1%、123.4%和
28.7%;在颊舌向加载中皮质骨、松质骨和种植体的EQV增幅分别为2.8%、28.8%和14.9%;在各种加载情况下,当
变量P大于0.8 mm时,对颌骨及种植体的EQV应力峰值响应曲线曲率位于- 1和1之间。结论松质骨的应力大小更
易受到螺距的影响;螺纹对垂直加载时的力学传递影响更明显;螺距在保护种植体垂直受力时起着更为重要的作
用;圆柱状螺纹种植体螺距最佳设计应不小于0.8 mm,但同时应避免过大的螺距。  相似文献   

3.
目的:通过分析种植体颈部螺纹结构,以及Von-Mises应力和应变分布情况,为种植体结构设计提供生物力学实验数据和理论参考依据。方法:本文通过运用三维计算机辅助设计CAD软件,设计建立颈部有螺纹和无螺纹三维种植体模型,利用CT扫描数据重建下颌骨三维模型,牙齿咬合面与上颌骨长轴面形成的倾角为45。,沿此方向施加120N的力作用在牙冠顶部,以模拟实际咬合状态受力。利用有限元分析软件模拟即刻负荷(即骨一种植体之间摩擦系数0.3)和骨愈合后期(即骨一种植体之间为绑定接触)两种加载情况下种植体与周围骨组织之间Von-Mises应力和应变峰值大小及分布状况进行比较和分析。结果:在即刻负荷的条件下,Von-Mises应力、应变在颈部光滑的种植体与皮质骨之间分布均匀,峰值分别为28.654MPa、0.01334mm;而颈部有螺纹种植体与皮质骨之间的Von-Mises应力、应变峰值分别为52.630MPa、0.015864mm。在骨愈合后期,颈部光滑的种植体,在相同咬合力作用下,皮质骨Von-Mises应力、应变峰值分别为36.975MPa、0.010272mm;而具有颈部螺纹设计的种植体所引起的Von-Mises应力、应变峰值分别为35.857MPa、0.010234mm。在骨愈合后期,增加种植体颈部的螺纹设计使得皮质骨所受Von-Mises应力减小1.118MPa、应变峰值也有减小的趋势。结论:即刻负载种植时,增加种植体颈部螺纹结构,在种植体一骨愈合后期,颈部的微螺纹结构可使种植体一骨接触界面的Von-Mises应力和应变峰值有所减小,并且有效改善了接触界面的应力分布状况,有助于其长期稳定性及种植成功率的提高。  相似文献   

4.
目的:利用三维有限元模型,探讨圆柱状反支撑形螺纹种植体螺纹形态变化对周围骨组织应力大小的影响,为临床设计和选择最佳的种植体螺纹参数提供理论依据.方法:利用包含圆柱状反支撑形螺纹种植体的颌骨三维有限元模型,分别设定螺纹宽度恒定(W=0.2)螺纹齿高(H)变化范围为0.2-0.6mm,或螺纹齿高恒定(H=0.4)螺纹宽度(W)范围为0.1-0.4mm.在种植体正中分别加载垂直向100N和颊舌向45°50N的作用力进行分析.观察H和W变化对颌骨平均应力Von-Mises峰值的影响.结果:即刻负载时,垂直向加载(F1)时,齿高及宽度变化时种植体Von-Mises应力峰值增幅分别为68.39%和20.90%;侧向加载(F2)时,种植体应力峰值变化增幅为42.28%和32.51%;结合两种作用力,当螺纹宽度恒定,齿高为0.3-0.5mm时,即刻负载情况下种植体对颌骨产生的应力峰值相对较小;齿高恒定,宽度设计为0.1-0.3mm时,种植体对颌骨产生的应力峰值相对较小.结论:在生物力学方面研究表示,圆柱状反支撑形螺纹种植体最佳的螺纹设计为螺纹齿高在0.3-0.5mm之间,螺纹宽度在0.1-0.3之间;相对于种植体螺纹宽度而言种植体螺纹齿高对应力分布影响更大,种植体螺纹设计时更应重视齿高的设计.  相似文献   

5.
目的研究根据标准螺纹参数设计的不同螺纹形态和螺距的9种牙种植体受载后牙槽骨及整个种植系统的应力变化,为种植体系统的优化设计及临床应用提供理论依据。方法采用Solidworks软件建立了螺纹形态分别为V形、梯形、锯齿形,螺距分别为0.7 mm、0.8 mm、1.0 mm的9种标准螺纹式种植体模型,配以基台、基台螺丝构成整套种植体系统,根据CT扫描数据重建下颌骨模型,在垂直向和与种植体长轴成15°斜向分别加载100 N力,ANSYS有限元分析软件计算比较种植体系统和周围牙槽骨的应力及位移分布状况。结果综合考虑种植体系统各部件和种植体周围牙槽骨所受应力,9种种植体中,螺纹形态为V形、螺距为0.8 mm的种植体在垂直向和斜向加载时应力较小。9种种植体各部件及周围牙槽骨最大位移量垂直向加载时为2.61μm,斜向加载时为23.78μm,9种种植体的位移差异小。结论螺纹形态为V形、螺距为0.8 mm的种植体力学性能较好。螺纹形态和螺距对种植体系统及周围牙槽骨的位移影响不大。  相似文献   

6.
目的利用三维有限元模型研究种植体螺纹的旋转角度和密度对种植体初期稳定性的影响。方法建立即刻负载的5种种植体三维有限元模型(0.8mm、1.6mm和2.4mm螺距单螺纹种植体以及双螺纹和三螺纹种植体),进行垂直和水平加载,分析5种种植体颈部和根部的相对位移。结果在3种不同螺距的单螺纹种植体中,垂直加载时0.8mm螺距单螺纹种植体颈部和根部的综合相对位移最小(分别为1.600μm和1.199μm),2.4mm螺距单螺纹种植体颈部和根部的综合相对位移最大(分别为2.451μm和2.019μm);在螺纹密度相同、旋转角度不同的3种种植体中,0.8mm螺距单螺纹种植体颈部和根部的综合相对位移最小,三螺纹种植体颈部和根部的综合相对位移最大(分别为1.994μm和1.602μm);在螺纹旋转角度相同、密度不同的种植体中,双螺纹种植体颈部和根部的综合相对位移(分别为1.913μm和1.495μm)均比1.6mm螺距单螺纹种植体(分别为2.412μm和1.799μm)小,三螺纹种植体颈部和根部的综合相对位移均比2.4mm螺距单螺纹种植体小。结论随着种植体螺纹螺距的增加,种植体对抗垂直载荷的能力减弱;随着种植体螺纹旋转角度的增加,种植体对抗垂直载荷的能力减弱;随着种植体螺纹密度增加,种植体对抗垂直载荷的能力增加。  相似文献   

7.
目的应用Ansys DesignXplorer模块,分析圆柱形种植体直径和长度同时连续变化时对Ⅲ类骨质的颌骨应力的影响,为临床选择和设计种植体提供理论依据。方法建立包含圆柱状种植体的下颌骨Ⅲ类骨质的骨块三维有限元模型,设定种植体直径变化范围为3.0~5.0mm,种植体长度变化范围为6.0~16.0mm,观察直径和长度变化对颌骨Von Mises应力峰值的影响。同时进行颌骨Von Mises应力峰值对变量的敏感度分析。结果随着直径和长度的增加,垂直向加载时,皮、松质骨的EQV应力峰值分别降低了65.3%和76.8%;颊舌向加载时,皮、松质骨的VonMises应力峰值分别降低了76.1%和78.0%;当直径大于3.95mm,同时长度大于10.5mm时,应力峰值响应曲线的切斜率位于-1和0之间;在垂直向加载和颊舌向加载时,长度和直径分别对皮质骨EQV应力峰值的影响更明显。结论种植体直径增加更有利于改善颌骨颊舌向加载下的应力分布,种植体长度的增加更有利于改善颌骨垂直加载下的应力分布。从生物力学角度而言,对于m类骨质在临床上选择种植体时,种植体的直径应不小于3.95mm。种植体的长度应不小于10.5mm。  相似文献   

8.
目的:建立包含不同长度标准直径种植体的下颌骨三维有限元模型,分析不同长度种植体对即刻负载种植体骨界面应力应变分布的影响.方法:采用薄层CT扫描下颌骨和自主开发的USIS软件建立直径4.1mm不同长度螺纹种植体即刻负载的三维有限元模型,用ANSYS软件分析长度分别为6、8、10、12、14mm的种植体,在垂直和颊舌向45o加载150N力时种植体骨界面的von Mises应力、应变值.结果:随着种植体长度的增加,种植体骨界面的应力和应变值均呈下降趋势.种植体骨界面应力值在长度从6mm增加到8mm时下降最明显,尤其是颊舌向加载时;而种植体长度从8mm增加到10mm及从10mm增加到12mm和从12mm增加到14mm时,骨界面应力值下降并不很明显.种植体骨界面应变值也是在长度从6mm增加到8mm及8mm增加到10mm时下降最明显.结论:种植体长度的增加能降低骨界面应力和应变值,呈负相关关系;但只在长度从6mm增加到8mm时应力值降低才较明显.这提示临床上尽量不要采用长度为6mm的种植体,并应适当地选择足够长度的种植体.  相似文献   

9.
目的:探讨圆柱状V形螺纹种植体螺纹参数变化对骨组织应力大小的影响,为临床设计和选择最佳的螺纹参数提供理论依据.方法:建立了包含圆柱状V形螺纹种植体的颌骨骨块三维有限元模型,设定螺纹齿高(H)范围为0.2~0.6 mm,螺纹宽度(W)范围为0.1~0.4 mm.在修复体正中分别进行垂直向100N和45°颊舌向50N的力学加载.观察H和W变化对颌骨平均主应力(EQV)峰值的影响,同时进行变量对颌骨的敏感度分析.结果:在垂直向加载中皮质骨和松质骨的EQV应力峰值增幅分别为4.3%和63.0%;在颊舌向加载中皮质骨和松质骨的增幅分别为19.3%和118%;在各种加载情况下,当变量H位于0.34~0.50mm,同时变量W位于0.18~0.30 mm之间时,对颌骨的EQV应力峰值响应曲线的切线斜率位于-1~1之间;变量H比W对颌骨的EQV应力峰值的影响更明显.结论:松质骨的应力大小更易受到螺纹的影响;螺纹对侧向力加载时的力学传递影响更明显;生物力学方面的考虑,圆柱状螺纹种植体最佳的螺纹设计为螺纹高度介于0.34~0.50 mm之间,螺纹宽度介于0.18~0.30 mm之间;在圆柱状螺纹种植体设计中,相对于螺纹宽度而言应更重视螺纹高度的设计.  相似文献   

10.
目的:探讨圆柱状V形螺纹种植体螺纹参数变化对骨组织应力大小的影响,为临床设计和选择最佳的螺纹参数提供理论依据。方法:建立了包含圆柱状V形螺纹种植体的颌骨骨块三维有限元模型,设定螺纹齿高(H)范围为0.20-0.60mm,螺纹宽度(W)范围为0.10-0.40mm。在修复体正中分别进行垂直向100N和450颊舌向50N的力学加载。观察H和W变化对颌骨平均主应力(EQV)峰值的影响,同时进行变量对颌骨的敏感度分析。结果:在垂直向加载中皮质骨和松质骨的EQV应力峰值增幅分别为4.3%和63.0%;在颊舌向加载中皮质骨和松质骨的增幅分别为19.3%和118.0%;在各种加载情况下,当变量H位于0.34mm-0.50mm之间,同时变量W位于0.18mm-0.30mm之间时,对颌骨的EQV应力峰值响应曲线的切线斜率位于-1和1之间;变量H比W对颌骨的EQV应力峰值的影响更明显。结论:松质骨的应力大小更易受到螺纹的影响;螺纹对侧向力加载时的力学传递影响更明显;给予生物力学方面的考虑,圆柱状螺纹种植体最佳的螺纹设计为螺纹高度介于0.34mm-0.50mm之间,螺纹宽度介于0.18mm-0.30mm之间;在圆柱状螺纹种植体设计中,相对于螺纹宽度而言应更重视螺纹高度的设计。  相似文献   

11.
目的 研究不同锥度设计的Tension More(TM)种植体对种植体骨界面应力分布的影响。方法 医用纯钛制作5组种植体,分别为圆柱状螺纹种植体、上1/3 TM种植体(锥度长度为3 mm)、中1/2 TM种植体(锥度长度为5 mm)、下1/3 TM种植体(锥度长度为7 mm)、全长变化TM种植体(锥度长度为10 mm)。每组种植体各自包埋于由松质骨及1 mm皮质骨构成的复合光弹模型中,共建立5个复合光弹模型。每一模型先后分别予以垂直及斜向(45°)静态加载力。利用光弹应力分析法比较5组种植体骨界面的生物力学特征。结果 垂直加载下,上1/3 TM种植体、中1/2 TM种植体、下1/3 TM种植体比圆柱状螺纹种植体在皮质骨区及松质骨区的局部应力集中小;斜向加载下,4组TM种植体皮质骨区局部应力集中均低于圆柱状螺纹种植体。无论在垂直、斜向加载下,上1/3 TM种植体皮质骨区局部应力集中均最小。结论 合理锥度设计的TM种植体周围皮质骨、松质骨应力分布均匀合理,在不同载荷条件下,上1/3 TM种植体骨界面生物力学表现最优。  相似文献   

12.
目的:用三维有限元法分析牙种植体即刻负载骨界面的力学特性。方法:采用CT扫描和自主开发的USIS软件建立螺纹种植体即刻负载的三维有限元下颌骨模型,用ANSYS计算垂直加载、颊舌向450及近远中向45°加载150N力时种植体骨界面的Yon Mises应力、应变值。结果:垂直加载时骨界面的Yon Mises应力集中于颈部舌侧骨皮质,应变分布均匀,以颈部骨皮质、底部颊侧骨松质及颊侧螺纹接触部位的松质骨较为集中:颊舌向加载时骨界面的Yon Mises应力也集中于颈部舌侧骨皮质,但最大值是垂直加载时的4.15倍,应变分布不均匀,主要集中于颈部舌侧骨皮质,最大值是垂直加载时的3.98倍;近远中斜向加载时骨界面的Yon Mises应力集中于颈部远中侧骨皮质,最大值是垂直加载时的3.72倍,应变集中于底部近中侧骨松质,最大值是垂直加载时的1.51倍。结论:即刻垂直加载时,种植体周围骨质应力及应变无明显集中,分布较均匀,颊舌向及近远中向加载时应力、应变明显增大,分布不均匀。  相似文献   

13.
种植体直径和长度在Ⅳ类骨质中的优化选择   总被引:1,自引:0,他引:1  
目的:应用Ansys DesignXplorer模块,进行圆柱形种植体直径和长度同时连续变化时对Ⅳ类骨质的颌骨应力影响的分析。方法:建立了包含圆柱状种植体的下颌骨Ⅳ类骨质的骨块三维有限元模型,设定种植体直径(D)变化范围为3.0~5.0mm,种植体长度(L)变化范围为6.0~16.0mm,观察D和L变化对颌骨Von Mises应力峰值的影响。同时进行颌骨Von Mises应力峰值对变量的敏感度分析。结果:随着D和L的增加,垂直向加载时,皮质骨、松质骨的EQV应力峰值分别降低了63.9%和87.9%,颊舌向加载时,皮质骨、松质骨的EQV应力峰值分别降低了76.2%和92.7%;当D>4.0mmL>11.0mm时,应力峰值的响应曲线的切斜率位于-1~0之间;在垂直向加载和颊舌向加载时,变量L和D分别对皮质骨的EQV应力峰值的影响更明显。结论:颊舌向力的力学分布更易受种植体参数影响;松质骨的应力更易受种植体参数影响;种植体直径增加更有利于改善颌骨颊舌向加载下的应力分布,种植体长度的增加更有利于改善皮质骨垂直加载下的应力分布。从生物力学角度而言,对于Ⅳ类骨质在临床上选择种植体时,种植体的直径应≥4.0mm,种植体的长度应≥11.0mm。  相似文献   

14.
目的:用三维有限元方法分析不同螺距种植体-骨界面应力分布状况,确定利于应力均匀分布的最佳螺纹参数设计.方法:建立包含上部结构的牙种植体、局部下颌骨块三维有限元模型,利用Cosmos/works软件分析在垂直、斜向45° 2 种集中载荷下螺距分别为0.6、 0.8、 1.0 mm的3 种种植体与骨界面的应力分布状况.结果:螺距为0.8 mm种植体周围Von-Mises应力、拉应力、压应力峰值较小,应力分布最均匀;同一螺距种植体斜向载荷下应力显著高于垂直载荷;应力集中主要出现于种植体颈部、皮质骨上缘和种植体末端最下一个螺纹处.结论:螺纹种植体螺距影响骨界面的应力分布和(牙合)力传导,为避免应力集中种植体末端螺纹应进行适当的截齿处理,种植义齿设计和修复时应尽可能减小或避免非轴向力.  相似文献   

15.
目的研究微型正畸支抗种植体即刻植入时骨界面应力大小及分布,为微型支抗种植体即刻加载提供参考。方法将局部下颌骨简化成一个等腰梯形,颌骨骨块长20mm,断面高为30mm,上边宽为10mm,底边宽14mm,皮质骨厚度设定为1.6mm;微型种植体直径设定为1.2mm,长6mm。利用ANSYS9.0软件,建立局部微型种植体-骨的三维有限元模型。下颌骨材料属性设定为线性、正交各向异性,种植体-骨界面定义为完全连接。将断端处、下颌骨局部骨块面及底面的所有节点给予刚性约束。模拟种植体即刻植入时的情况,将骨界面初始位移设定为0、0.05、0.1mm,分析各指定初始位移时骨界面应力大小及分布。结果即刻加载时,0mm初始位移下,种植体骨界面无应力分布;初始位移为0.05mm时,骨界面应力集中在骨皮质内,分布较均匀,衰减幅度很小,近远中方向上的VonMises应力为1648MPa,龈向为1782MPa。初始位移为0.1mm时,近远中方向上的VonMises应力为2012MPa,龈向为2110MPa。结论微型种植体挤压植入时会产生较大的初始应力,即刻加载时,应当考虑这种初始应力。  相似文献   

16.
目的 应用三维有限元法分析动态加载下种植体植入位置和直径对悬臂梁种植固定义齿应力的影响。方法 建立左下颌第二前磨牙、第一磨牙、第二磨牙缺失种植固定义齿的三维有限元模型,远中种植体的位置和直径保持不变;近中种植体依次向远中移动形成中轴与第一前磨牙远中面距离D分别为5.5、8.0、10.5、13.0 mm的悬臂梁种植固定义齿,分别采用4.1和4.8 mm两种直径的种植体;以250 N 牙合力模拟咀嚼周期0.875 s的动态载荷加载于颊尖和舌尖上,应用有限元分析软件MSC.Marc和Partran分析种植体-骨组织界面的Von Mises应力情况。结果 随着近中种植体逐渐向远中移动,近远中种植体Von Mises应力均有不同程度增高,近中种植体中轴与第一前磨牙远中面距离D≤8.0 mm范围内种植体最大Von Mises应力增幅缓和,D>8.0 mm时应力急剧加大;近中种植体直径增大,则近远中种植体的应力减小;各加载阶段最大Von Mises应力均处于近远中种植体颈部与皮质骨交界处;斜向加载种植体应力显著大于垂直加载。结论 种植体植入位置是影响悬臂梁种植固定义齿应力的重要因素,悬臂梁长度不超过前磨牙宽度时行种植固定义齿设计是可行的,直径的选择要考虑骨量和悬臂梁长度双重因素。  相似文献   

17.
目的 通过有限元方法探究即刻负荷状态下不同■特征对后牙种植单冠种植体-骨界面生物力学变化的影响,以期为临床■特征的选择提供参考。方法 利用过盈配合法建立即刻负荷种植义齿及周围骨组织有限元模型后,参照天然牙设计6种不同的■特征,使用Ansys Workbench 2021 R2软件分别进行轴向200 N静态加载分析,对所有数据进行对比分析后,评估不同■特征对种植体-骨界面位移、Von Mises应力等的影响。结果 A-B-C咬合接触可获得最小的种植体及周围骨皮质和骨松质的位移(10.52μm、5.67μm、9.34μm);修复平台咬合(3点)接触产生了最大的种植体、骨皮质、骨松质位移(15.24μm、8.94μm、12.15μm)。与其他■接触类型相比,A-B咬合接触产生了最大的种植体Von Mises应力(71.91 MPa),明显降低了骨皮质和骨松质的最大Von Mises应力(18.04 MPa,17.81 MPa)。结论 即刻负荷状态下不同的■特征显著影响种植体-骨界面的位移及Von Mises应力分布,改变了应力集中位点;A-B-C咬合接触有利于减小种植体及周围骨组织的...  相似文献   

18.
目的 研究圆柱形种植体直径和长度同时连续变化对下颌骨Ⅱ类骨质的颌骨应力的影响.方法 应用Ansys Workbench DesignXplorer模块,建立包含圆柱状种植体的下颌骨Ⅱ类骨质的骨块三维有限元模型,设定种植体直径(D)变化范围为3.00~5.00 mm,种植体长度(L)变化范围为6.00~16.00 mm,观察D和L变化对下颌骨Von Mises应力峰值的影响.同时进行下颌骨Von Mises应力峰值对变量的敏感度分析.结果 随着D和L的增加,垂直向加载时,皮、松质骨的EQV应力峰值分别降低67.9%和75.0%,颊舌向加载时,皮、松质骨的EQV应力峰值分别降低64.9%和65.4%;当D大于3.85 mm同时L大于9.00 mm时,应力峰值的响应曲线的切斜率位于-1和0之间;在垂直向加载和颊舌向加载时,变量D比L更易影响皮质骨的EQV应力峰值.结论 种植体的直径比长度更易影响皮质骨的应力大小.从生物力学角度而言,对于下颌骨Ⅱ类骨质,在临床上选择种植体时,直径应不小于3.85 mm,长度应不小于9.00 mm.  相似文献   

19.
目的:应用Ansys DesignXplorer模块,研究圆柱形种植体直径和长度同时连续变化对Ⅰ类骨质的颌骨应力影响,为临床选择和设计种植体提供理论依据。方法:建立包含圆柱状种植体的下颌骨Ⅰ类骨质骨块的三维有限元模型,设定种植体直径(D)变化范围为3.0~5.0mm,种植体长度(L)变化范围为6.0~16.0mm,观察D和L变化对颌骨Von Mises应力峰值的影响。同时进行颌骨Von Mises应力峰值对变量的敏感度分析。结果:随着D和L的增加,垂直向加载时,皮、松质骨的EQV应力峰值分别降低了54.5%和70.2%,颊舌向加载时,皮、松质骨的EQV应力峰值分别降低了73.5%和75.1%;当D大于3.8mm同时L大于9.0mm时,应力峰值的响应曲线的切斜率位于-1和0之间;在垂直向加载和颊舌向加载时,变量D比L更易影响皮质骨的EQV应力峰值。结论:种植体的直径比长度更易影响皮质骨的应力大小。从生物力学角度而言,对于Ⅰ类骨质,在临床上选择种植体时,种植体的直径应不小于3.8mm,种植体的长度应不小于9.0mm。  相似文献   

20.
口腔种植学     
种植体-基台连接形式对种植体周围骨组织应力分布的影响;Ankylos SynCone基台覆盖义齿即刻种植修复的护理配合;圆柱形螺纹种植体螺纹的优化设计和应力分析;天然牙-种植体联合支持式固定义齿的临床观察;牙种植外科骨收集器内骨碎屑成骨活性的研究  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号