首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relevance of long-term potentiation (LTP) at excitatory synapses in CA3 circuits to generation of spontaneous epileptiform bursts in CA3 was investigated using rat hippocampal slices. CA3 pyramidal cells were antidromically stimulated through Schaffer collaterals. Evoked field potentials were extracellularly recorded from the stratum pyramidale and the stratum radiatum in CA3. Therefore, field potentials reflecting recurrent excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) were positive at the stratum pyramidale and negative at the stratum radiatum. First, we tested how the amplitude of the evoked field potentials depends on a γ-aminobutyric acid (GABAA) antagonist. Both of the positive and negative field potential peaks reduced in the medium containing penicillin (2 mM) or bicuculline (20 μM). This suggests that unmasked EPSPs due to suppression of IPSPs do not result in an increase in the evoked potentials. Second, CA3 pyramidal cells were antidromically stimulated by tetanic stimulation of Schaffer collaterals in order to induce LTP at synapses in CA3 circuits. Both of the positive and negative field potentials increased, suggesting that recurrent EPSPs were enhanced by tetanic stimulation. Induction of LTP at recurrent excitatory synapses was followed by spontaneous epileptiform bursts which persisted throughout experiments (1.5 h), while LTP of afferent synaptic potential evoked by hilar test stimulation was not induced. These results suggest that LTP at the afferent synapses is not necessary to spontaneous epileptiform bursts in CA3, but LTP at excitatory synapses between CA3 pyramidal cells contribute to spontaneous epileptiform bursts.  相似文献   

2.
1. Single and dual intracellular recordings were performed in neocortical slices obtained from tissue samples surgically removed from children (8 mo to 15 yr) for the treatment of intractable epilepsy. Electrical stimulation and glutamate microapplication were used to study local synaptic inputs to pyramidal cells. 2. In recordings with potassium-acetate electrodes, activation of presynaptic neocortical neurons with glutamate microdrops did not elicit a clear increase in postsynaptic potentials (PSPs) but did suppress current-evoked repetitive spike firing in recorded neurons. Bicuculline (10 microM) blocked this effect, suggesting it was caused by the activation of presynaptic gamma-aminobutyric acid (GABA) cells. In recordings with KCl electrodes, glutamate microdrops elicited an increase in the frequency and amplitude of depolarizing PSPs. Bicuculline (5-10 microM) blocked the glutamate-evoked PSPs, suggesting they were reversed GABAA-receptor-mediated inhibitory postsynaptic potentials (IPSPs). In one cell recorded with a KCl electrode (total n = 8), current-evoked spike trains elicited afterdischarges of reversed IPSPs, thus revealing a recurrent inhibitory circuit. Therefore local inhibitory synaptic circuits were robust and could be observed in tissue from patients as young as 11 mo. 3. In addition to short-latency (10-25 ms), monosynaptic excitatory postsynaptic potentials (EPSPs), electrical stimulation at low intensities sometimes elicited delayed EPSPs (20-60 ms). When GABAA-receptor-mediated synaptic inhibition was partially reduced in bicuculline (5-10 microM), electrical stimulation evoked large EPSPs at long and variable latencies (100-300 ms). Glutamate microapplication caused an increase in the frequency and amplitude of EPSPs; preliminary results suggest that glutamate microdrops were less likely to evoke EPSPs in tissue from younger patients (8-12 mo) than in slices from patients greater than 4 yr. Evidence for local excitatory synaptic circuits was thus found when synaptic inhibition was partially reduced. 4. After further reduction of inhibition in bicuculline (5-50 microM), electrical stimulation elicited epileptiform bursts. In pairs of simultaneously recorded neurons, bursts were generated synchronously from long-latency EPSPs (100-300 ms) in slices from patients as young as 8 mo. Reflected EPSPs at very long and variable latencies (500-1,100 ms) and repetitive epileptiform bursts could be evoked synchronously in pairs of cells. Glutamate activation of local presynaptic neurons elicited robust epileptiform events in recorded cells. This was seen in slices from patients as young as 16 mo. 5. These data provide physiological evidence for the presence of local inhibitory and excitatory synaptic circuits in human neocortex at least as early as 11 and 8 mo, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. Intra- and extracellular recordings were made from cells of the spinocervical tract in the lumbosacral spinal cord. A convergence of monosynaptic excitatory post-synaptic potentials (EPSPs) and disynaptic inhibitory post-synaptic potentials (IPSPs) was a general pattern of effects from the low threshold cutaneous fibres. Unitary IPSPs, probably mediated via the same disynaptic path, were evoked by light touch of hairs, which was also the adequate stimulus for exciting the cells. The receptive field for unitary IPSPs was closely related to the excitatory receptive field but was eccentric, not of a surround type.

2. EPSPs, IPSPs, or both, were evoked from the flexor reflex afferents in the great majority of neurones. Disynaptic IPSPs may be evoked from the interosseous nerve. No effects were produced by volleys in group I muscle afferents.

3. It is suggested, on the basis of the spatial organization of the excitatory and inhibitory receptive skin fields, that the spinocervical tract may give information regarding the direction of tactile stimuli.

  相似文献   

4.
1. The afferent-evoked synaptic input to lumbar spinal cord (L5-S1) neurons that were activated antidromically from the medial pontomedullary reticular formation (nucleus reticularis gigantocelluaris and vicinity) was investigated with the use of intracellular recordings in pentobarbital sodium-anesthetized cats. 2. Spinoreticular tract (SRT) neurons (n = 33) were categorized into three types ("deep-inhibited," "deep-complex," and "intermediate") on the basis of their locations and of their responses to natural and electrical stimulation. 3. The deep-inhibited-type neurons, located in the medial part of the deeper laminae (approximately VI-VIII), comprised a large component of the sample (20/33). They had no demonstrable excitatory receptive field (RF). However, electrical stimulation of low-threshold cutaneous afferents of hindlimb nerves evoked inhibitory postsynaptic potentials (IPSPs) via an oligosynaptic linkage. High-threshold cutaneous and muscle afferents also evoked IPSPs. 4. In the deep-complex-type neurons (8/33), electrical stimulation of low-threshold cutaneous afferents evoked complex IPSP-excitatory postsynaptic potential (EPSP) sequences. With intense stimuli, long-latency C-fiber-like EPSPs were evoked. Two of these eight neurons were characterized as wide-dynamic-range (WDR) neurons with large, excitatory and inhibitory cutaneous RFs. 5. Intermediate-type neurons (5/33) were concentrated in the lateral spinal gray and relatively superficially (approximately lamina V). These neurons had convergent low- and high-threshold cutaneous inputs (WDR neurons). Electrical stimulation of low-threshold cutaneous afferent fibers from within the excitatory RF evoked mono- or disynaptic EPSPs followed by IPSPs. High-threshold muscle and cutaneous afferents also evoked EPSPs. 6. These results show that SRT neurons have a variety of response characteristics resulting from various degrees of spatial and temporal summation of primary afferent input. Neurons with widespread inhibitory responses but no excitatory drive from the periphery comprise a surprisingly large component of the SRT: the function of these cells is unknown. It is apparent that the spinoreticular projection has considerable functional heterogeneity.  相似文献   

5.
Here we show that inhibition shapes diverse responses to species-specific calls in the inferior colliculus (IC) of Mexican free-tailed bats. We presented 10 calls to each neuron of which 8 were social communication and 2 were echolocation calls. We also measured excitatory response regions: the range of tone burst frequencies that evoked discharges at a fixed intensity. The calls evoked highly selective responses in that IC neurons responded to some calls but not others even though those calls swept through their excitatory response regions. By convolving activity in the response regions with the spectrogram of each call, we evaluated whether responses to tone bursts could predict discharge patterns evoked by species-specific calls. The convolutions often predicted responses to calls that evoked no responses and thus were inaccurate. Blocking inhibition at the IC reduced or eliminated selectivity and greatly improved the predictive accuracy of the convolutions. By comparing the responses evoked by two calls with similar spectra, we show that each call evoked a unique spatiotemporal pattern of activity distributed across and within isofrequency contours and that the disparity in the population response was greatly reduced by blocking inhibition. Thus the inhibition evoked by each call can shape a unique pattern of activity in the IC population and that pattern may be important for both the identification of a particular call and for discriminating it from other calls and other signals.  相似文献   

6.
This study evaluated how neurons in the dorsal nucleus of the lateral lemniscus (DNLL) in Mexican free-tailed bats respond to both tone bursts and species-specific calls. Up to 20 calls were presented to each neuron, of which 18 were social communication and 2 were echolocation calls. We also measured excitatory response regions (ERRs): the range of tone burst frequencies that evoked discharges at a fixed intensity. Neurons were unselective for one or another call in that each neuron responded to any call so long as the call had energy that encroached on its ERR. Additionally, responses were evoked by the same set of calls, and with similar spike counts, when they were presented normally or reversed. By convolving activity in the ERRs with the spectrogram of each call, we showed that responses to tones accurately predicted discharge patterns evoked by species-specific calls. DNLL cells are remarkably homogeneous in that neurons having similar BFs responded to each of the species-specific calls with similar response profiles. The homogeneity was further illustrated by the ability to accurately predict the response profiles of a particular DNLL cell to species-specific calls from the ERR of another similarly tuned DNLL cell. Thus DNLL neurons tuned to the same or similar frequencies responded to species-specific calls with latencies and temporal discharge patterns that were so similar as to be virtually interchangeable. What this suggests is that DNLL responses evoked by complex sounds can be largely explained by a simple summation of the excitation in each neuron's ERR. Finally, superimposing the spectrograms of each call on the responses evoked by that call revealed that the DNLL population response re-creates both the spectral and the temporal features of each signal.  相似文献   

7.
Intracellular activity was recorded from dissociated rat hippocampal neurons maintained in tissue culture conditions for 4-6 wk. The cells developed dense interconnections and had typical morphological characteristics similar to hippocampal neurons in situ. The recorded neurons possessed similar electrophysiological properties to those observed in situ or in a slice preparation. Their input resistance (42 M omega), resting membrane potential (-60 mV), membrane time constant (16.2 ms), total electrotonic length (0.92), and spike size (68.3 mV) were similar to values obtained in hippocampal cells in a slice. The connections among adjacent neurons were largely inhibitory. The inhibitory postsynaptic potentials (IPSPs) had longer durations than excitatory postsynaptic potentials (EPSPs) when these were detected. Synaptic delay varied between 0.3 and 3.0 ms. There were no electrotonic connections among neurons. Reciprocal connections were common. Most neurons reacted to acetylcholine (ACh) by an increase in frequency of spontaneous EPSPs, action-potential discharges, and IPSPs. Concurrently, there was a marked reduction in the magnitude of the evoked PSPs tested in pairs of cells. This effect is probably presynaptic to the recorded neurons. A statistical analysis of quantal properties of the synaptic interactions among neurons revealed that ACh causes a reduction of magnitude of PSPs by reducing the number of releasing elements (m). This effect is different from the reduction of evoked PSPs caused by postsynaptic depolarization.  相似文献   

8.
We studied the synaptic input from the nucleus interpositus of the cerebellum to the magnocellular division of the red nucleus (RNm) in the mouse using combined electrophysiological and neuroanatomical methods. Whole-cell patch-clamp recordings were made from brain slices (125-150 microm) cut in a horizontal plane oriented to pass through both red nucleus and nucleus interpositus. Large cells that were visually selected and patched were injected with Lucifer Yellow and identified as RNm neurons. Using anterograde tracing from nucleus interpositus in vitro, we examined the course of interposito-rubral axons which are dispersed in the superior cerebellar peduncle. In vitro monosynaptic responses in RNm were elicited by an electrode array placed contralaterally in this pathway but near the midline. Mixed excitatory post-synaptic potentials (EPSPs)/inhibitory post-synaptic potentials (IPSPs) were observed in 48 RNm neurons. Excitatory components of the evoked potentials were studied after blocking inhibitory components with picrotoxin (100 microM) and strychnine (5 microM). All RNm neurons examined continued to show monosynaptic EPSPs after non-N-methyl-D-aspartate (NMDA) glutamate receptor components were blocked with 10 microM 6,7-dinitroquinoxaline-2,3-dione or 5 microM 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX; n=12). The residual potentials were identified as NMDA receptor components since they (i) were blocked by the addition of the NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid (APV), (ii) were voltage-dependent, and (iii) were enhanced by Mg(2+) removal. Inhibitory components of the evoked potentials were studied after blocking excitatory components with NBQX and APV. Under these conditions, all RNm neurons studied continued to show IPSPs. Blockade of GABA(A) receptors reduced but did not eliminate the IPSPs. These were eliminated when GABA(A) receptor blockade was combined with strychnine to eliminate glycine components of the IPSPs. Thus, IPSPs evoked by midline stimulation of the superior cerebellar peduncle, while blocking alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and NMDA receptors, raise the possibility of direct inhibitory inputs to RNm from the cerebellum.In summary we propose that the special properties of the NMDA receptor components are considered important for the generation of RNm motor commands: their slow time course will contribute a steady driving force for sustained discharge and their voltage dependency will facilitate abrupt transitions from a resting state of quiescence to an active state of intense motor command generation.  相似文献   

9.
Pflieger JF  Dubuc R 《Neuroscience》2004,129(3):817-829
This study describes the anatomical projections from vestibular secondary neurons to reticulospinal neurons in the adult lamprey and the modulation of vestibular inputs during fictive locomotion. Anatomical tracers were applied in the posterior (PRRN) and middle rhombencephalic reticular nuclei as well as to the proximal stumps of cut vestibular nerve branches to identify the neurons projecting to the reticular nuclei that were in close proximity with vestibular primary afferents. Labeled neurons were found in the intermediate (ION) and posterior (PON) octavomotor nuclei, and were more numerous on the side of the injection (around 56-87 and 101-107 for the ION and the PON, respectively). Morphologies varied but cells were mostly round or oval. Axonal projections from the PON formed a dense bundle, whereas those from the ION were less densely packed. Based on their morphology and the distribution of their projections, most vestibulo-reticular neurons were presumed to be vestibulospinal cells. Reticulospinal cells from the PRRN were recorded intracellularly in the in vitro brainstem-spinal cord preparation and large excitatory post-synaptic potentials (EPSPs) were evoked following stimulation of the ipsilateral anterior and the contralateral posterior branches of the vestibular nerves, whereas inhibitory post-synaptic potentials (IPSPs) or smaller EPSPs were elicited by stimulation of the ipsilateral posterior or of the contralateral anterior branches. During fictive locomotion, both the excitatory and the inhibitory responses displayed phasic changes in amplitude such that the amplitude of the EPSPs was minimal when the spinal cord activity switched from the ipsilateral to the contralateral side of the recorded reticulospinal cell. The IPSPs were then of maximal amplitude. We propose that this modulation could serve to reduce the influence of vestibular inputs in response to head movements during locomotion.  相似文献   

10.
1. Conventional intracellular and extracellular recording techniques were used to investigate the physiology and pharmacology of epileptiform bursts induced by 4-aminopyridine (4-AP, 50 microM) in the CA3 area of rat hippocampal slices maintained in vitro. 2. 4-AP-induced epileptiform bursts, consisting of a 25-to 80-ms depolarizing shift of the neuronal membrane associated with three to six fast action potentials, occurred at the frequency of 0.61 +/- 0.29 (SD)/s. The bursts were generated synchronously by CA3 neurons and were triggered by giant excitatory postsynaptic potentials (EPSPs). A second type of spontaneous activity consisting of a slow depolarization also occurred but at a lower rate (0.04 +/- 0.2/s). 3. The effects of 4-AP on EPSPs and inhibitory postsynaptic potentials (IPSPs) evoked by mossy fiber stimulation were studied on neurons impaled with a mixture of K acetate and 2(triethyl-amino)-N-(2,6-dimethylphenyl) acetamide (QX-314)-filled microelectrodes. After the addition of 4-AP, the EPSP became potentiated and was followed by the appearance of a giant EPSP. This giant EPSP completely obscured the early IPSP recorded under control conditions and inverted at -32 +/- 3.9 mV (n = 4), suggesting that both inhibitory and excitatory conductances were involved in its generation. IPSPs evoked by Schaffer collateral stimulation increased in amplitude and duration after 4-AP application. 4. The spontaneous field bursts and the stimulus-induced giant EPSP induced by 4-AP were not affected by N-methyl-D-aspartate (NMDA) receptor antagonists 3-3 (2-carboxy piperazine-4-yl) propyl-1-phosphonate (CPP) and DL-2-amino-5-phosphonovalerate (APV) but were blocked by quisqualate/kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). CNQX also abolished the presence of small spontaneously occurring EPSPs, thereby disclosing the presence of bicuculline-sensitive (BMI, 20 microM) IPSPs. 5. Small, nonsynchronous EPSPs played an important role in the generation of 4-AP-induced epileptiform activity. 1) After the addition of 4-AP, small EPSPs appeared randomly on the baseline and then became clustered to produce a depolarizing envelope of irregular shape that progressively formed an epileptiform burst, 2) These small EPSPs were more numerous in the 100 ms period that preceded burst onset. 3) The frequency of occurrence of small EPSPs was positively correlated with the frequency of occurrence of synchronous bursts. 4) Small EPSPs and bursts were similarly decreased after the addition of different concentrations of CNQX (IC50 in both cases of approximately 1.2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Unitary excitatory (EPSP) and inhibitory (IPSP) postsynaptic potentials (PSPs) were evoked between neurons in Rexed's laminae (L)II-V of spinal slices from young hamsters (7-24 days old) at 27°C using paired whole cell recordings. Laminar differences in synaptic efficacy were observed: excitatory connections were more secure than inhibitory connections in LII and inhibitory linkages in LII were less reliable than those in LIII-V. A majority of connections displayed paired-pulse facilitation or depression. Depression was observed for both EPSPs and IPSPs, but facilitation was seen almost exclusively for IPSPs. There were no frequency-dependent shifts between facilitation and depression. Synaptic depression was associated with an increased failure rate and decreased PSP half-width for a majority of connections. However, there were no consistent changes in failure rate or PSP time course at facilitating connections. IPSPs evoked at high-failure synapses had consistently smaller amplitude and showed greater facilitation than low-failure connections. Facilitation at inhibitory connections was positively correlated with synaptic jitter and associated with a decrease in latency. At many connections, the paired-pulse ratio varied from trial to trial and depended on the amplitude of the first PSP; dependence was greater for inhibitory synapses than excitatory synapses. Paired-pulse ratios for connections onto neurons with rapidly adapting, "phasic" discharge to depolarizing current injection were significantly greater than for connections onto neurons with tonic discharge properties. These results are evidence of diversity in synaptic transmission between dorsal horn neurons, the nature of which may depend on the types of linkage, laminar location, and intrinsic firing properties of postsynaptic cells.  相似文献   

12.
Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Presently little is known about what basic synaptic and cellular mechanisms are employed by thalamocortical neurons in the two main divisions of the auditory thalamus to elicit their distinct responses to sound. Using intracellular recording and labeling methods, we characterized anatomic features, membrane properties, and synaptic inputs of thalamocortical neurons in the dorsal (MGD) and ventral (MGV) divisions in brain slices of rat medial geniculate body. Quantitative analysis of dendritic morphology demonstrated that tufted neurons in both divisions had shorter dendrites, smaller dendritic tree areas, more profuse branching, and a greater dendritic polarization compared with stellate neurons, which were only found in MGD. Tufted neuron dendritic polarization was not as strong or consistent as earlier Golgi studies suggested. MGV and MGD cells had similar intrinsic properties except for an increased prevalence of a depolarizing sag potential in MGV neurons. The sag was the only intrinsic property correlated with cell morphology, seen only in tufted neurons in either division. Many MGV and MGD neurons received excitatory and inhibitory inferior colliculus (IC) inputs (designated IN/EX or EX/IN depending on excitation/inhibition sequence). However, a significant number only received excitatory inputs (EX/O) and a few only inhibitory (IN/O). Both MGV and MGD cells displayed similar proportions of response combinations, but suprathreshold EX/O responses only were observed in tufted neurons. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) had multiple distinguishable amplitude levels implying convergence. Excitatory inputs activated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors the relative contributions of which were variable. For IN/EX cells with suprathreshold inputs, first-spike timing was independent of membrane potential unlike that of EX/O cells. Stimulation of corticothalamic (CT) and thalamic reticular nucleus (TRN) axons evoked a GABAA IPSP, EPSP, GABAB IPSP sequence in most neurons with both morphologies in both divisions. TRN IPSPs and CT EPSPs were graded in amplitude, again suggesting convergence. CT inputs activated AMPA and NMDA receptors. The NMDA component of both IC and CT inputs had an unusual voltage dependence with a detectable DL-2-amino-5-phosphonovaleric acid-sensitive component even below -70 mV. First-spike latencies of CT evoked action potentials were sensitive to membrane potential regardless of whether the TRN IPSP was present. Overall, our in vitro data indicate that reported regional differences in the in vivo responses of MGV and MGD cells to auditory stimuli are not well correlated with major differences in intrinsic membrane features or synaptic responses between cell types.  相似文献   

13.
Unitary discharge patterns (peristimulus time histograms or PSTH) and synaptic events were studies with intracellular recording techniques in 164 cat cochlear nucleus cells to steady-frequency tone bursts 250 ms in duration. There were four response types defined on the basis of the shape of the discharge patterns to tones at the characteristic or best frequency. Primarylike units resemble eighth nerve fibres and have a maximum discharge at tone onset, followed by a smooth decline to a steady level of activity. Buildup units have a transient response at tone onset, followed a period of little or not activity before gradually increasing their discharge rate for the remainder of the tone burst. Onset units have an initial burst of spikes at the onset, with little or no activity for the remainder of the tone burst. Pause units have a long latency (10-30 ms) between tone onset and the appearance of low levels of unit activity, which then gradually increase in rate for the remainder of the tone burst. Changes in signal frequency or intensity within the excitatory response area did not modify response patterns of primarylike and onset units, but could evoke primarylike patterns in buildup and pause units. Inhibition manifested by suppression of spontaneous activity and membrane hyperpolarization were of three kinds: 1) in response to signals at the edges of the excitatory response area (i.e., the inhibitory surround) and detected in onset buildup, and pause units but not in primarylike units; 2) occurring at the offset of tones in the excitatory response area and detected in all four types of cochlear nucleus cells; 3) during excitatory tone bursts in onset and buildup units associated with the periods of suppressed unit activity. Membrane hyperpolarization did not accompany the delay in unit activity after tone onset in pause units. Inhibitory events in cochlear nucleus cells provide mechanisms for producing diversity in the temporal pattern of discharges to acoustic signals which may underly the encoding of complex features of sounds.  相似文献   

14.
To elucidate synaptic mechanisms and the involvement of N-methyl-D-aspartate (NMDA) receptors in inspiratory off-switching (IOS) evoked by the stimulation of the nucleus parabrachialis medialis (NPBM), excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) were recorded from bulbar augmenting inspiratory (aug-I) and postinspiratory (PI) neurons in vagotomized cats. Stimulation of NPBM produced either transient inhibition or premature termination of inspiration (reversible or irreversible IOS), depending on the stimulus intensity. Each neuron displayed four-phasic postsynaptic responses during the reversible IOS, i.e. Phase 1 EPSPs, Phase 2 IPSPs, Phase 3 EPSPs and Phase 4 IPSPs in aug-I neurons, and Phase 1 plus 2 EPSPs, Phase 3 IPSPs and Phase 4 EPSPs in PI neurons. During the irreversible IOS, Phase 4 responses were replaced by sustained hyperpolarization in aug-I neurons and decrementing depolarization in PI neurons. Blockade of NMDA receptors by dizocilpine (0.3 mg kg(-1) i.v.) selectively increased Phase 4 potentials in both types of neurons and decreased the thresholds for evoking the irreversible IOS. The NPBM-induced responses had a pattern and time-course similar to those induced by vagal stimulation. The present results suggest that pneumotaxic and vagal inputs converge on the common IOS circuit, and the effectiveness of both inputs is modulated by NMDA receptors.  相似文献   

15.
1. Fetal rat striatal primordia were implanted into the neostriatum of adult rats 2 days after kainic acid lesion. Two to 6 mo after transplantation, in vivo intracellular recording and staining were performed to study the responses of spiny neurons in the grafts to the cortical and thalamic stimuli. The physiological characteristics and synaptic responses of 27 cells recorded in the grafts were compared with a sample of 23 neurons recorded from the surrounding host neostriatum in the same animals. Nineteen of the graft neurons and 19 of the host neurons were identified as spiny neurons by intracellular staining with biocytin. The responses of the remaining neurons were the same as those of identified spiny cells. 2. The spontaneous synaptically driven membrane potential shifts and long-lasting responses to afferent stimulation that are characteristic of neostriatal cells in normal animals were greatly reduced or absent in graft neurons. Presumably this reflects the reduction in synaptic input to the grafts and the lack of convergence of inputs from diverse sources. 3. Short-latency synaptic responses to cortical and thalamic stimulation were present and could consist of either excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs). The IPSPs were accompanied by a membrane conductance increase, and their reversal potentials could be altered by injection of chloride ions. Several minutes after impaling the cell, the IPSPs gradually disappeared, and the same stimuli could then evoke EPSPs. The disappearance of the IPSPs was independent of the presence of chloride in the electrodes. Most of the EPSP responses appeared to be monosynaptic but occurred at longer latencies than those seen in host neurons of the same type. 4. In cells not exhibiting IPSPs, or after the IPSP responses disappeared, cortical or thalamic stimulation could evoke slow depolarizing potentials and bursts of action potentials. These could not be evoked by current injection. They could be prevented or delayed by an exaggerated action potential after hyperpolarization that developed in neurons maintained in a depolarized state for several seconds, but could not be prevented by passage of hyperpolarizing current from the recording electrode. 5. The input resistance of graft spiny neurons was higher than that of the host cells, and time constants were longer. Both of these properties appeared to be due to the absence of the strong inward rectification that is usually present at resting membrane potentials in neostriatal neurons.  相似文献   

16.
We have used whole cell recording in the anesthetized rat to study whisker-evoked synaptic and spiking responses of single neurons in the barrel cortex. On the basis of their intrinsic firing patterns, neurons could be classified as either regular-spiking (RS) cells, intrinsically burst-spiking (IB) cells, or fast-spiking (FS) cells. Some recordings responded to current injection with a complex spike pattern characteristic of apical dendrites. All cell types had high rates of spontaneous postsynaptic potentials, both excitatory (EPSPs) and inhibitory (IPSPs). Some spontaneous EPSPs reached threshold, and these typically elicited only single action potentials in RS cells, bursts of action potentials in FS cells and IB cells, and a small, fast spike or a complex spike in dendrites. Deflection of single whiskers evoked a fast initial EPSP, a prolonged IPSP, and delayed EPSPs in all cell types. The intrinsic firing pattern of cells predicted their short-latency whisker-evoked spiking patterns. All cell types responded best to one or, occasionally, two primary whiskers, but typically 6-15 surrounding whiskers also generated significant synaptic responses. The initial EPSP had a relatively fixed amplitude and latency, and its amplitude in response to first-order surrounding whiskers was approximately 55% of that induced by the primary whisker. Second- and third-order surrounding whiskers evoked responses of approximately 27 and 12%, respectively. The latency of the initial EPSP was shortest for the primary whiskers, longer for surrounding whiskers, and varied with the neurons' depth below the pia. EPSP latency was shortest in the granular layer, longer in supragranular layers, and longest in infragranular layers. The receptive field size, defined as the total number of fast EPSP-inducing whiskers, was independent of each cell's intrinsic firing type, its subpial depth, or the whisker stimulus parameters. On average, receptive fields included >10 whiskers. Our results show that single neurons integrate rapid synaptic responses from a large proportion of the mystacial vibrissae, and suggest that the whisker-evoked responses of barrel neurons are a function of both synaptic inputs and intrinsic membrane properties.  相似文献   

17.
The synaptic events responsible for epileptiform burst discharge are often difficult to define. Blockade of inhibition has been used to produce epileptiform events, but it is unclear whether increased excitatory activity in the presence of normal inhibition can also result in burst discharge. In the hippocampal slice culture preparation, a small percentage of cultures exhibit spontaneous bursts. To determine whether the absence of inhibitory postsynaptic potentials (IPSPs) is responsible for these spontaneous bursts, we applied the glutamate antagonist, kynurenic acid (KYN) to block burst activity, and unmask any underlying IPSPs. KYN (10 mM) quickly reduced synaptic activity with concomitant loss of burst discharge. Washout of KYN resulted in a gradual return of synaptic activity, during which time both fast and slow IPSPs were clearly observed. As burst activity returned to control levels, excitatory postsynaptic potentials (EPSPs) were increasingly superimposed within the inhibitory events, obscuring (but not eliminating) the IPSPs. In these hippocampal slice cultures, therefore, epileptiform bursts appear to be the result of an abnormally high level of excitatory synaptic drive, not a reduction in inhibition.  相似文献   

18.
1. Intracellular microelectrodes were used to obtain recordings from neurons in layer II/III of rat frontal cortex. A bipolar electrode positioned in layer IV of the neocortex was used to evoke postsynaptic potentials. Graded series of stimulation were employed to selectively activate different classes of postsynaptic responses. The sensitivity of postsynaptic potentials and iontophoretically applied neurotransmitters to the non-N-methyl-D-asparate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was examined. 2. As reported previously, low-intensity electrical stimulation of cortical layer IV evoked short-latency early excitatory postsynaptic potentials (eEPSPs) in layer II/III neurons. CNQX reversibly antagonized eEPSPs in a dose-dependent manner. Stimulation at intensities just subthreshold for activation of inhibitory postsynaptic potentials (IPSPs) produced long-latency (10 to 40-ms) EPSPs (late EPSPs or 1EPSPs). CNQX was effective in blocking 1EPSPs. 3. With the use of stimulus intensities at or just below threshold for evoking an action potential, complex synaptic potentials consisting of EPSP-IPSP sequences were observed. Both early, Cl(-)-dependent and late, K(+)-dependent IPSPs were reduced by CNQX. This effect was reversible on washing. This disinhibition could lead to enhanced excitability in the presence of CNQX. 4. Iontophoretic application of quisqualate produced a membrane depolarization with superimposed action potentials, whereas NMDA depolarized the membrane potential and evoked bursts of action potentials. At concentrations up to 5 microM, CNQX selectively antagonized quisqualate responses. NMDA responses were reduced by 10 microM CNQX. D-Serine (0.5-2 mM), an agonist at the glycine regulatory site on the NMDA receptor, reversed the CNQX depression of NMDA responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neurons in the inferior colliculus (IC) process acoustic information converging from inputs from almost all nuclei of the auditory brain stem. Despite its importance in auditory processing, little is known about the distribution of ion currents in IC neurons, namely the hyperpolarization-activated current Ih. This current, as shown in neurons of the auditory brain stem, contributes to the precise analysis of temporal information. Distribution and properties of the Ih current and its contribution to membrane properties and synaptic integration were examined by current- and voltage-clamp recordings obtained from IC neurons in acute slices of rats (P17-P19). Based on firing patterns to positive current injection, three basic response types were distinguished: onset, adapting, and sustained firing neurons. Onset and adapting cells showed an Ih-dependent depolarizing sag and had a more depolarized resting membrane potential and lower input resistance than sustained neurons. Ih amplitudes were largest in onset, medium in adapting, and small in sustained neurons. Ih activation kinetics was voltage dependent in all neurons and faster in onset and adapting compared with sustained neurons. Injecting trains of simulated synaptic currents into the neurons or evoking inhibitory postsynaptic potentials (IPSPs) by stimulating the lemniscal tract showed that Ih reduced temporal summation of excitatory and inhibitory potentials in onset but not in sustained neurons. Blocking Ih also abolished afterhyperpolarization and rebound spiking. These results suggest that, in a large proportion of IC cells, namely the onset and adapting neurons, Ih improves precise temporal processing and contributes to the temporal analysis of input patterns.  相似文献   

20.
Postsynaptic potentials were recorded from motoneurons in the facial nucleus in response to stimulation of the vestibular and trigeminal nerves. The motoneurons were identified by antidromic activation from their peripheral axons. Disynaptic excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) and mixed EPSP/IPSPs were recorded in response to vestibular nerve stimulation, ranging in latency from 0.9 to 2.1 ms, with most at 1.5 ms. Activity in secondary vestibular axons recorded within the facial nucleus occurred at a latency of 0.7-1.1 ms. The amplitudes of the vestibular postsynaptic potentials were small, generally less than a millivolt, but double shocks produced marked summation. The average time to peak of ipsilateral vestibular EPSPs, 1.1 ms, was faster than that of either ipsilateral IPSPs, 1.6 ms, or contralateral EPSPs, 1.4 ms. The double-spiked vestibular activity was detectable in double-peaked PSPs. Disynaptic EPSPs, ranging in latency from 2.0 to 3.0 ms, were recorded in response to trigeminal nerve stimulation. The average time to peak was 1.3 ms. The multiple-spiked activity of the trigeminal neurons was detectable in multipeaked EPSPs. Inhibitory ipsilateral effects (Vi IPSPs) were recorded twice as often as excitatory ipsilateral effects (Vi EPSPs), being found in 29% versus 15% of the motoneurons. Contralateral effects were found in 13% of the motoneurons studied, and almost all were excitatory. Analysis of synaptic potential shapes suggested that the excitatory and inhibitory vestibular synapses probably contact distal dendrites preferentially, with the excitatory connections being somewhat closer to the soma. The trigeminal inputs probably contact the facial motoneurons more extensively near the soma. Horseradish peroxidase was injected into the facial nucleus, and retrograde uptake by vestibular neurons was studied. The majority of filled vestibular neurons was ipsilateral to the injection site, especially in the medial vestibular nucleus, ventral y group, and supravestibular nucleus. On the contralateral side, filled vestibular cells were found almost exclusively in the medial nucleus. Filled cells were also noted in the trigeminal nucleus, predominantly ipsilaterally at all rostrocaudal levels. We have demonstrated monosynaptic projections to facial motoneurons from both vestibular and trigeminal nuclei. The trigeminal input is likely to be involved in facial reflexes, especially blinking and grimacing. The afferent vestibular population overlaps that going to the oculomotor and cervical motoneurons; these projections may be collaterals of single vestibular neurons.4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号