首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the in vitro antibacterial activity of DV-7751a against gram-positive and -negative bacteria with those of quinolones currently available. MICs for 90% of the strains tested (MIC90s) against clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis were 0.20, 0.39, 0.20, and 0.78 micrograms/ml, respectively. Moreover, MIC50s for DV-7751a against ofloxacin-resistant methicillin-resistant S. aureus were 4-, 8-, 16-, 32-, and 64-fold lower than those for tosufloxacin and sparfloxacin, levofloxacin, ofloxacin and fleroxacin, ciprofloxacin, and lomefloxacin, respectively. DV-7751a inhibited the growth of all strains of Streptococcus pneumoniae, Streptococcus pyogenes, and Peptostreptococcus spp. at 0.39, 0.39, and 0.78 micrograms/ml, respectively, and was 4- to > 16-fold more active against enterococci at the MIC90 level than the other quinolones tested. The activity of DV-7751a against Pseudomonas aeruginosa was roughly comparable to those of levofloxacin and sparfloxacin at the MIC90 level and was two- to fourfold less than that of ciprofloxacin. DV-7751a showed activity comparable to those of levofloxacin and ciprofloxacin against the other glucose-nonfermenting bacteria Haemophilus influenzae, Neisseria gonorrhoeae, and Moraxella catarrhalis (MIC90s of 0.025, 0.20, and 0.10 micrograms/ml, respectively). DV-7751a activity was not affected by medium, inoculum size, or the addition of human serum but was decreased under acidic conditions and in human urine, as were the other quinolones tested. Time-kill curve studies demonstrated the rapid bactericidal action of DV-7751a against S. aureus, S. pneumoniae, Escherichia coli, and P. aeruginosa. The frequency of spontaneous resistance to DV-7751a was less than or equal to those of the reference drugs. DV-7751a inhibited the supercoiling activity of DNA gyrases from S. aureus, E. coli, and P. aeruginosa at concentrations comparable to those of levofloxacin and sparfloxacin.  相似文献   

2.
The in vitro activity of sparfloxacin was compared with those of tosufloxacin, ciprofloxacin, and fleroxacin against 730 bacterial isolates representing 49 different species. Sparfloxacin and ciprofloxacin had similar spectra of activity, but sparfloxacin was less active against Pseudomonas aeruginosa and more active against many gram-positive cocci and anaerobic bacteria. Tosufloxacin MICs were generally 8- to 16-fold lower than those for sparfloxacin or ciprofloxacin. All four fluoroquinolones were active against nalidixic acid-susceptible strains of the family Enterobacteriaceae (MIC for 90% of the isolates [MIC90], less than or equal to 0.25 micrograms/ml) but nalidixic acid-resistant strains were less susceptible (MIC90, greater than or equal to 4.0 micrograms/ml). Against Pseudomonas aeruginosa isolates, MIC90s were 1.0 micrograms/ml for tosufloxacin, 2.0 micrograms/ml for ciprofloxacin, and 4.0 micrograms/ml for sparfloxacin. Against Enterococcus faecalis, sparfloxacin and ciprofloxacin MIC90s were 1.0 and 2.0 micrograms/ml, respectively. MIC90s for ciprofloxacin-susceptible Staphylococcus aureus were 0.016 micrograms/ml for tosufloxacin, 0.06 micrograms/ml for sparfloxacin, and 0.5 micrograms/ml for both ciprofloxacin and fleroxacin. With four species of gram-negative bacilli, mutants resistant to two to four times the sparfloxacin MIC occurred spontaneously at frequencies of 10(-7) to 10(-9): single-step high-level resistance was not observed. In vitro-selected sparfloxacin-resistant mutants displayed cross-resistance to other quinolones, as did clinical isolates of ciprofloxacin-resistant S. aureus. Tosufloxacin MICs with broth microdilution methods were four- to eightfold greater than those obtained with agar dilution methods. The two procedures gave comparable results when sparfloxacin or ciprofloxacin was being tested.  相似文献   

3.
The in vitro antibacterial activity of NM394 was compared with those of other new quinolones. NM394 showed potent and broad-spectrum antibacterial activity against 2,606 recent clinical isolates. The activity of NM394 against gram-positive bacteria was 2- to 16-fold less than that of tosulfoxacin and sparfloxacin but was comparable to that of ofloxacin. Only against Streptococcus pyogenes was the activity of NM394 equal to that of sparfloxacin. Against gram-negative bacteria, NM394 showed antibacterial activity equal to that of ciprofloxacin. Against quinolone-resistant Pseudomonas aeruginosa (norfloxacin MIC, > 6.25 micrograms/ml), the activity of NM394 was greater than those of the other agents tested. NM394 was rapidly bactericidal at concentrations near the MIC. NM394 inhibited supercoiling activities of DNA gyrase purified from Staphylococcus aureus, Escherichia coli, and P. aeruginosa; the 50% inhibitory concentrations were 18.0, 0.41, and 2.05 micrograms/ml, respectively.  相似文献   

4.
The bactericidal effects of Q-35, sparfloxacin, tosufloxacin, and ofloxacin on 18 strains of methicillin-resistant Staphylococcus aureus (MRSA) and 3 strains of Staphylococcus epidermidis were studied by a viable-count method. Staphylococci as used in this study were clearly divided into two groups with respect to their susceptibilities to sparfloxacin. MICs of Q-35 and tosufloxacin were 0.05 to 0.78 microgram/ml for sparfloxacin-susceptible strains (MICs, 0.05 to 0.2 microgram/ml) and 1.56 to 12.5 micrograms/ml for sparfloxacin-resistant strains (6.25 to 25 micrograms/ml). All the sparfloxacin-resistant strains of MRSA tested contained the gyrA mutation at codon 84. Time-kill studies showed that Q-35 decreased the viable counts from approximately 10(7) CFU/ml to 10(3) to 10(5) CFU/ml within 3 h at concentrations greater than the MICs against both sparfloxacin-susceptible and -resistant strains. In contrast, sparfloxacin, tosufloxacin, and ofloxacin produced bacteriostatic effects at 3 h after exposure against sparfloxacin-resistant strains at concentrations which were greater than the respective MICs, whereas these quinolones were bactericidal against sparfloxacin-susceptible strains. The rapid bactericidal activities of Q-35 against sparfloxacin-resistant MRSA were reduced when the methoxy group of Q-35 at the 8 position was substituted with fluorine or hydrogen. Thus, our data suggest that the introduction of a methoxy group into the 8 position of quinolones contributes to the bactericidal activities of fluoroquinolones against quinolone-resistant staphylococci.  相似文献   

5.
DU-6859, (-)-7-[(7S)-amino-5-azaspiro(2,4)heptan-5-yl]-8-chloro-6- fluoro-1-[(1R,2R)-cis-2-fluoro-1-cyclopropyl]-1,4-dihydro-4-oxoquinol one-3- carboxylic acid, is a new fluoroquinolone with antibacterial activity which is significantly better than those of currently available quinolones. The MICs for 90% of methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis clinical isolates (MIC90s) were 0.1, 3.13, 0.1, and 0.39 microgram/ml, respectively. MIC50s of DU-6859 against quinolone-resistant, methicillin-resistant S. aureus were 8-, 32-, 64-, and 128-fold lower than those of tosufloxacin and sparfloxacin, ofloxacin and fleroxacin, ciprofloxacin, and lomefloxacin, respectively. DU-6859 inhibited the growth of all strains of Streptococcus pneumoniae and Streptococcus pyogenes at 0.1 and 0.2 microgram/ml, respectively, and was more active against enterococci than the other quinolones tested. Although the activity of DU-6859 against Pseudomonas aeruginosa was roughly comparable to that of ciprofloxacin at the MIC50 level, it was fourfold more active than ciprofloxacin at the MIC90 level. DU-6859 was also more active against other glucose-nonfermenting bacteria, Haemophilus influenzae, Moraxella catarrhalis, and Neisseria gonorrhoeae, than the other drugs tested. Strains of Bacteroides fragilis and Peptostreptococcus spp. were susceptible to DU-6859; MIC90s were 0.39 and 0.2 microgram/ml, respectively. DU-6859 generally showed activities twofold or greater than those of ciprofloxacin and the other drugs against almost all members of the family Enterobacteriaceae. The action of DU-6859 against the clinical isolates was bactericidal at concentrations near the MICs. DU-6859 activity was not affected by different media, pH, inoculum size, or human serum but was decreased in human urine.  相似文献   

6.
In vitro activity of AT-4140 against clinical bacterial isolates.   总被引:4,自引:32,他引:4       下载免费PDF全文
The activity of AT-4140, a new fluoroquinolone, was evaluated against a wide range of clinical bacterial isolates and compared with those of existing analogs. AT-4140 had a broad spectrum and a potent activity against gram-positive and -negative bacteria, including Legionella spp. and Bacteroides fragilis. The activity of AT-4140 against gram-positive and -negative cocci, including Acinetobacter calcoaceticus, was higher than those of ciprofloxacin, ofloxacin, and norfloxacin. Its activity against gram-negative rods was generally comparable to that of ciprofloxacin. Some isolates of methicillin-resistant Staphylococcus aureus (MIC of methicillin, greater than or equal to 12.5 micrograms/ml) were resistant to existing quinolones, but many of them were still susceptible to AT-4140 at concentrations below 0.39 micrograms/ml. The MICs of AT-4140, ciprofloxacin, ofloxacin, and norfloxacin for 90% of clinical isolates of methicillin-resistant S. aureus were 0.2, 12.5, 6.25, and 100 micrograms/ml, respectively. AT-4140 was bactericidal for each of 20 clinical isolates of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa at concentrations near the MICs. AT-4140 inhibited the supercoiling activity of DNA gyrase from E. coli.  相似文献   

7.
A-80556 is a novel fluoroquinolone with potent antibacterial activity against gram-positive, gram-negative, and anaerobic organisms. A-80556 was more active than ciprofloxacin, ofloxacin, lomefloxacin, and sparfloxacin against gram-positive bacteria. A-80556 was particularly active against Staphylococcus aureus (MIC for 90% of isolates [MIC90], 0.12 microgram/ml, relative to fluoroquinolone-susceptible strains) and Streptococcus pneumoniae (MIC90, 0.12 microgram/ml). A-80556 was also the most active of the quinolones tested against ciprofloxacin-resistant S. aureus, with an MIC90 of 4.0 micrograms/ml; that of ciprofloxacin was > 128 micrograms/ml. However, the significance of this activity is not known. A-80556 was slightly less active against Escherichia coli (MIC90, 0.06 microgram/ml) and other enteric organisms than ciprofloxacin (MIC90 for E. coli, < or = 0.03 microgram/ml). A-80556 was slightly less active against Pseudomonas aeruginosa (MIC90, 4.0 micrograms/ml) than ciprofloxacin (MIC90, 2.0 micrograms/ml) and more active against Acinetobacter spp. (respective MIC90s, 0.12 and 0.5 microgram/ml). A-80556 was also the most active compound against anaerobes. Against Bacteroides fragilis, the MIC90 of A-80556 was 2.0 micrograms/ml; that of ciprofloxacin was 16 micrograms/ml. The in vivo efficacy of A-80556 in experimental models with both gram-positive and gram-negative infections was consistent with the in vitro activity and pharmacokinetics and oral absorption in mice.  相似文献   

8.
The in vitro and in vivo activities of CS-940, a new 6-fluoro-8-difluoromethoxy quinolone, were compared with those of ciprofloxacin, tosufloxacin, sparfloxacin, and levofloxacin. The in vitro activity of CS-940 against gram-positive bacteria was nearly equal to or greater than those of the other quinolones tested. In particular, CS-940 was two to eight times more active against methicillin-resistant Staphylococcus aureus than the other quinolones, at the MIC at which 90% of the clinical isolates are inhibited. Against gram-negative bacteria, the activity of CS-940 was comparable to or greater than those of tosufloxacin, sparfloxacin, and levofloxacin, while it was lower than that of ciprofloxacin. The activity of CS-940 was largely unaffected by medium, inoculum size, or the addition of horse serum, but it was decreased under acidic conditions, as was also seen with the other quinolones tested. CS-940 showed potent bactericidal activity against S. aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In oral treatment of mouse systemic infections caused by S. aureus, Streptococcus pneumoniae, Streptococcus pyogenes, E. coli, K. pneumoniae, Serratia marcescens, and P. aeruginosa, CS-940 was more effective than ciprofloxacin, sparfloxacin, and levofloxacin against all strains tested. Against experimental pneumonia with K. pneumoniae in mice, CS-940 was the most effective of all the quinolones tested. These results suggest that CS-940 may be effective in the therapy of various bacterial infections.  相似文献   

9.
In vitro activity of T-3761, a new fluoroquinolone.   总被引:4,自引:0,他引:4       下载免费PDF全文
The in vitro activity of T-3761, a new fluoroquinolone antimicrobial agent which has an oxazine ring structure with a cyclopropyl moiety at C-10, was compared with those of other agents against 2,854 clinical isolates. T-3761 had a broad spectrum of activity and had potent activity against gram-positive and -negative bacteria. The MICs of T-3761 against 90% of the methicillin-susceptible Staphylococcus aureus, methicillin-susceptible and -resistant Staphylococcus epidermidis, and Clostridium spp. tested were 0.39 to 6.25 micrograms/ml. Its activity was comparable to those of ciprofloxacin and ofloxacin and four- to eightfold greater than those of norfloxacin and fleroxacin, but its activity was two- to eightfold less than that of tosufloxacin. Some isolates of ciprofloxacin-resistant S. aureus (MIC of ciprofloxacin, greater than or equal to 3.13 micrograms/ml) were still susceptible to T-3761 (MIC of T-3761, less than or equal to 0.78 micrograms/ml). The MICs of T-3761 against 90% of the streptococci and enterococci tested were 3.13 to 100 micrograms/ml. Its activity was equal to or 2- or 4-fold greater than those of norfloxacin and fleroxacin, equal to or 2- or 4-fold less than those of ofloxacin and ciprofloxacin, and 4- to 16-fold less than that of tosufloxacin. The activity of T-3761 against gram-negative bacteria was usually fourfold greater than those of norfloxacin, ofloxacin, and fleroxacin. Many isolates which were resistant to nonfluoroquinolone agents, such as minocycline- or imipenem-resistant S. aureus, ceftazidime-resistant members of the family Enterobacteriaceae, gentamicin- or imipenem-resistant Pseudomonas aeruginosa, and ampicillin-resistant Haemophilus influenzae and Neisseria gonorrhoeae, were susceptible to T-3761. The MBCs of T-3761 were either equal to or twofold greater than the MICs. The number of viable cells decreased rapidly during incubation with T-3761 at one to four times the MIC. At a concentration of four times the MIC, the frequencies of appearance of spontaneous mutants resistant to T-3761 against S. aureus, Escherichia coli, Serratia marcescens, and P. aeruginosa were 2.2 x 10(-8) to less than or equal to 1.2 x 10(-9). The 50% inhibitory concentrations of T-3761 for DNA gyrases isolated from E. coli and P. aeruginosa were 0.88 and 1.9 micrograms/ml, respectively.  相似文献   

10.
The in vitro activity of sparfloxacin, a new difluorinated quinolone, was evaluated against 857 gram-positive and gram-negative clinical isolates and compared with those of ciprofloxacin, norfloxacin, ofloxacin, fleroxacin, and lomefloxacin. The MIC of sparfloxacin for 90% of the members of the family Enterobacteriaceae tested was 0.5 microgram/ml (range, 0.06 to 4.0 micrograms/ml); only for members of the genera Serratia, Citrobacter, and Providencia were MICs above 1 microgram/ml. Some 90% of Pseudomonas aeruginosa isolates were inhibited by 8 micrograms of the drug per ml. The MICs for 90% of Staphylococcus spp. and Enterococcus faecalis were 0.12 and 2 micrograms/ml, respectively. All (100%) Streptococcus pneumoniae strains were inhibited by 0.5 microgram/ml. The inoculum size had little effect on either the MIC or the MBC of sparfloxacin. An increase in the magnesium concentration from 1.1 to 8.4 mM increased the MIC between 2 and 10 times, depending on the genus tested. Sparfloxacin was less active at pH 5. The antibacterial activity of sparfloxacin against gram-positive bacteria was generally higher than those of the quinolones with which it was compared; against Streptococcus pneumoniae, sparfloxacin was four- and eightfold more active than ofloxacin and ciprofloxacin, respectively. The activity of sparfloxacin against gram-negative rods was generally comparable to that of ciprofloxacin except against Enterobacter and Acinetobacter spp., Pseudomonas cepacia, Xanthomonas maltophilia, and Alcaligenes and Flavobacterium spp., against which sparfloxacin was the most active quinolone.  相似文献   

11.
CFC-222 is a novel fluoroquinolone containing a C-7 bicyclic amine moiety with potent antibacterial activities against gram-positive, gram-negative, and anaerobic organisms. We compared the in vitro and in vivo activities of CFC-222 with those of ciprofloxacin, ofloxacin, and lomefloxacin. CFC-222 was more active than the other fluoroquinolones tested against gram-positive bacteria. CFC-222 was particularly active against Streptococcus pneumoniae (MIC at which 90% of isolates are inhibited [MIC90], 0.2 microg/ml), Staphylococcus aureus (MIC90, 0.2 microg/ml for ciprofloxacin-susceptible strains), and Enterococcus faecalis (MIC90, 0.39 microg/ml). Against Escherichia coli and other members of the family Enterobacteriaceae, CFC-222 was slightly less active than ciprofloxacin (MIC90s for E. coli, 0.1 and 0.025 microg/ml, respectively). The in vitro activity of CFC-222 was not influenced by inoculum size, medium composition, or the presence of horse serum. However, its activity was decreased significantly by a change in the pH of the medium from 7.0 to 6.0, as was the case for the other quinolones tested. The in vivo protective efficacy of CFC-222 by oral administration was greater than those of the other quinolones tested in a mouse model of intraperitoneally inoculated systemic infection caused by S. aureus. CFC-222 exhibited efficacy comparable to that of ciprofloxacin in the same model of infection caused by gram-negative organisms, such as E. coli and Klebsiella pneumoniae. In this infection model, CFC-222 was slightly less active than ciprofloxacin against Pseudomonas aeruginosa. These results suggest that CFC-222 may be a promising therapeutic agent in various bacterial infections.  相似文献   

12.
The in vitro and in vivo antibacterial activities of OPC-17116 were compared with those of ofloxacin, enoxacin, ciprofloxacin, and tosufloxacin. The MICs of OPC-17116 for 90% of the strains tested were 0.125 to 8 micrograms/ml against gram-positive bacteria such as members of the genera Staphylococcus, Streptococcus, and Enterococcus: less than or equal to 0.063 to 16 micrograms/ml against members of the family Enterobacteriaceae; and less than or equal to 0.063 to 16 micrograms/ml against glucose-nonfermentative bacilli such as Pseudomonas aeruginosa. The activity of OPC-17116 against gram-positive organisms was comparable to that of tosufloxacin and higher than those of other reference drugs. The in vitro activity of OPC-17116 against gram-negative bacteria was similar to those of the reference drugs. In experimental systemic infections in mice with various organisms, the efficacy of OPC-17116 was similar to that of tosufloxacin and greater than those of ofloxacin, enoxacin, and ciprofloxacin. In a pyelonephritic model in mice with P. aeruginosa KU-1, OPC-17116 was as active as ciprofloxacin and more active than ofloxacin, enoxacin, and tosufloxacin. In respiratory tract infections in mice with Staphylococcus aureus Smith, Streptococcus pneumoniae TMS 3, and Klebsiella pneumoniae 3K25, the efficacy of OPC-17116 was generally greater than that of tosufloxacin. The peak level of OPC-17116 in the lungs of mice was 10 times higher than that in serum and was significantly greater than levels in lung achieved with an equivalent dose of the other quinolones. The therapeutic efficacy of OPC-17116 may depend not only on its in vitro activity but also on its high concentration in tissue.  相似文献   

13.
The in vitro antibacterial activity of AM-1155 against a wide variety of clinical isolates was compared with those of other fluoroquinolones. The MICs of AM-1155 for 90% of Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis isolates tested were 0.10, 0.39, and 0.78 microgram/ml, respectively. The antibacterial activity of AM-1155 against gram-positive bacteria and anaerobes was comparable to those of sparfloxacin and tosufloxacin. AM-1155 inhibited 90% of most species of the family Enterobacteriaceae at a concentration of 0.39 microgram/ml. AM-1155 generally had activity comparable to that of sparfloxacin against gram-negative bacteria. AM-1155 showed moderate activity against methicillin- and quinolone-resistant S. aureus. AM-1155 demonstrated bactericidal activity at the MIC. The frequency of occurrence of spontaneous mutants resistant to four times the MIC of AM-1155 was < 1 x 10(9) for S. aureus, Escherichia coli, and Pseudomonas aeruginosa. AM-1155 strongly inhibited the supercoiling activities of DNA gyrases purified from E. coli and S. aureus.  相似文献   

14.
In vitro activity of HSR-903, a new quinolone.   总被引:7,自引:4,他引:3       下载免费PDF全文
The in vitro activity of the new fluoroquinolone HSR-903 was compared with those of ciprofloxacin, lomefloxacin, sparfloxacin, and levofloxacin. HSR-903 inhibited 90% of methicillin-susceptible and -resistant Staphylococcus aureus (MRSA) clinical isolates at 0.78 and 1.56 microg/ml, respectively, and its activity against MRSA was 16-fold higher than those of sparfloxacin and levofloxacin and 64-fold higher than that of ciprofloxacin. The MICs at which 90% of the isolates are inhibited (MIC90s) of HSR-903 for Streptococcus pyogenes and penicillin G-susceptible and -resistant Streptococcus pneumoniae (PRSP) were 0.10, 0.05, and 0.05 microg/ml, respectively. Against PRSP, the activity of HSR-903 was 4-fold higher than that of sparfloxacin and 32- to 256-fold higher than those of the other quinolones. The MIC90 of HSR-903 for Enterococcus faecalis was 0.20 microg/ml, and HSR-903 was more active than the other quinolones against enterococci. The activity of HSR-903 against members of the family Enterobacteriaceae and Pseudomonas aeruginosa was roughly similar to that of ciprofloxacin and greater than those of the other quinolones. Against Haemophilus influenzae, Moraxella catarrhalis, and Helicobacter pylori, HSR-903 was the most potent of the quinolones tested. The activity of HSR-903 was not affected by the medium, the inoculum size, or the addition of serum, but decreased under acidic conditions, as did those of the other quinolones tested. HSR-903 exhibited rapid bactericidal action and had a good postantibiotic effect on S. aureus and P. aeruginosa. HSR-903 inhibited supercoiling by DNA gyrase from Escherichia coli, but it was much less active against human topoisomerase II.  相似文献   

15.
The in vitro activity of fleroxacin, a new trifluorinated quinolone was evaluated against 432 bacterial isolates. Fleroxacin was 1- to 2-fold less active than ciprofloxacin and at least as active as ofloxacin and lomefloxacin against most members of the family Enterobacteriaceae. The MICs of fleroxacin for 90% of strains tested (MIC90) were < or = 0.25 micrograms/ml against all isolates of Enterobacteriaceae except Citrobacter freundii (MIC90, 4 micrograms/ml) and Serratia marcescens (MIC90, 2 micrograms/ml). Fleroxacin was as active as ciprofloxacin, ofloxacin and lomefloxacin against Pseudomonas spp, (MIC90 for all quinolones tested were > 8 micrograms/ml). Acinetobacter and Haemophilus influenzae were very susceptible to fleroxacin; however fleroxacin was 1-fold less active than lomefloxacin against Acinetobacter and at least 1-fold less active than ciprofloxacin or ofloxacin against H. influenzae. Methicillin-susceptible and -resistant strains of Staphylococcus epidermidis and methicillin-susceptible strains of S. aureus were very susceptible to fleroxacin, with an MIC90 < or = 1 microgram/ml (range 0.5-1 microgram/ml). Methicillin-resistant S. aureus and Staphylococcus spp. other than aureus and epidermidis were not susceptible to fleroxacin (MIC90 > 8 micrograms/ml). In addition, fleroxacin as well as ciprofloxacin, ofloxacin and lomefloxacin were inactive against Enterococcus spp. (MIC90 > 8 micrograms/ml). Streptococcus pneumoniae and S. pyogenes were resistant to both fleroxacin and lomefloxacin but were very susceptible to ciprofloxacin and ofloxacin. These results suggest that fleroxacin represents a valid therapeutic option in the treatment of infections caused by most Enterobacteriaceae and some species of staphylococcus.  相似文献   

16.
BAY Y3118 was highly active against Moraxella catarrhalis, Haemophilus influenzae, Legionella pneumophila, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus (except quinolone-resistant, methicillin-resistant S. aureus), Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae (MIC for 90% of strains tested [MIC90], 0.063 micrograms/ml). For Enterococcus faecalis and Corynebacterium jeikeium, MIC90s were 4 and 2 micrograms/ml, respectively. BAY Y3118 was as active as ciprofloxacin against Pseudomonas aeruginosa (MIC90, 0.5 micrograms/ml) and had potent activity against Bacteroides fragilis (MIC90, 0.5 micrograms/ml).  相似文献   

17.
In vitro antibacterial activity of DU-6859a, a new fluoroquinolone.   总被引:3,自引:3,他引:3       下载免费PDF全文
The in vitro antibacterial activity of DU-6859a, a new fluoroquinolone, against a wide variety of clinical isolates was evaluated and compared with those of tosufloxacin, ofloxacin, ciprofloxacin, and sparfloxacin. DU-6859a showed potent broad-spectrum activity against gram-positive, gram-negative, and anaerobic bacteria, and its activity was greater than those of the control quinolones. By comparison of MICs at which 90% of strains are inhibited, DU-6859a had potent activity against bacteria resistant to the control quinolones. The time-killing curves of quinolones showed that the number of viable cells decreased rapidly during 2 to 4 of incubation, and regrowth was not seen even after 8 h incubation. At a concentration of four times the MIC, the frequencies of appearance of spontaneous mutants of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa resistant to DU-6859a were < or = 4.0 x 10(-9) to 1.9 x 10(-8). The 50% inhibitory concentrations of DU-6859a were 0.86 and 1.05 micrograms/ml for the supercoiling activities of DNA gyrases isolated from E. coli and P. aeruginosa, respectively. The rank order of the 50% inhibitory concentrations observed for both DNA gyrases roughly paralleled the MICs.  相似文献   

18.
In vitro activity of the new fluoroquinolone CP-99,219.   总被引:1,自引:6,他引:1       下载免费PDF全文
The in vitro activity of the new fluoroquinolone CP-99,219 [7-(3-azabicyclo[3.1.0]hexyl)naphthyridone] was compared with those of four other quinolones against 541 gram-negative, 283 gram-positive, and 70 anaerobic bacterial isolates. CP-99,219 inhibited 90% of many isolates in the family Enterobacteriaceae at a concentration of < or = 0.25 micrograms/ml (range, < 0.008 to 1 microgram/ml), an activity comparable to those of tosufloxacin and sparfloxacin and two times greater than that of temafloxacin. Ninety percent of the Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Serratia marcescens isolates were inhibited by 0.5 to 2 micrograms of CP-99,219 per ml. CP-99,219 inhibited 90% of the Pseudomonas aeruginosa and Haemophilus influenzae isolates at 1 and 0.015 micrograms/ml, respectively. The compound inhibited methicillin-susceptible Staphylococcus aureus at 0.06 micrograms/ml, whereas a ciprofloxacin concentration of 1 microgram/ml was required to inhibit these organisms. CP-99,219 inhibited 90% of methicillin-resistant S. aureus isolates at a concentration of < or = 4 micrograms/ml, while ciprofloxacin and temafloxacin had MICs against these isolates of > 16 micrograms/ml. Streptococci were inhibited by < or = 0.25 micrograms/ml, an activity comparable to that of tosufloxacin. CP-99,219 was eight times more active than ciprofloxacin against Streptococcus pneumoniae. Bacteroides species were inhibited by CP-99,219 at a concentration of 2 micrograms/ml, whereas inhibition of these species required 4- and 16-microgram/ml concentrations of tosufloxacin and ciprofloxacin, respectively. The MBCs of CP-99,219 ranged from two to four times the MICs, and inoculum size had a minimal effect on MIC. CP-99,219 was active against P. aeruginosa at pH 5.5, with only a fourfold increase in MIC compared with values obtained at pH 7.5. The addition of up to 9 mM Mg(2+) increased the MIC range from 0.03 to 0.06 microgram/ml to 0.12 to 0.5 microgram/ml. In view of its excellent in vitro activity against both gram-positive and gram-negative bacteria, CP-99,219 merits further study to determine it's clinical pharmacologic properties and potential for therapeutic use.  相似文献   

19.
The in vitro and in vivo antibacterial activities of KB-5246, a tetracyclic quinolone, were compared with those of ciprofloxacin, ofloxacin, and norfloxacin. KB-5246 demonstrated a broad antibacterial spectrum. The in vitro activity of KB-5246 against gram-negative bacteria was higher than that of ofloxacin or norfloxacin and was comparable to that of ciprofloxacin. KB-5246 demonstrated the greatest activity against gram-positive bacteria of the four agents tested. Among Streptococcus pyogenes strains resistant to 1.56 micrograms of norfloxacin per ml, there were 26 strains susceptible to 0.2 micrograms of KB-5246 per ml. Similarly, among the Staphylococcus aureus and Staphylococcus epidermidis strains resistant to 3.13 micrograms of norfloxacin per ml, there were 23 S. aureus and 11 S. epidermidis strains susceptible to 0.39 micrograms of KB-5246 per ml. Among the Streptococcus pneumoniae and Enterococcus faecalis strains resistant to 12.5 micrograms of norfloxacin per ml, there were 5 S. pneumoniae and 10 E. faecalis strains susceptible to 0.39 micrograms of KB-5246 per ml. KB-5246 had bactericidal activity at the MIC. KB-5246 demonstrated excellent antibacterial activity against various systemic infections in mice. After oral administration, KB-5246 was as active as ofloxacin and about two times more active than norfloxacin.  相似文献   

20.
T-3761, a new quinolone derivative, showed broad and potent antibacterial activity. Its MICs for 90% of the strains tested were 0.20 to 100 micrograms/ml against gram-positive bacteria, including members of the genera Staphylococcus, Streptococcus, and Enterococcus; 0.025 to 3.13 micrograms/ml against gram-negative bacteria, including members of the family Enterobacteriaceae and the genus Haemophilus; 0.05 to 50 micrograms/ml against glucose nonfermenters, including members of the genera Pseudomonas, Xanthomonas, Acinetobacter, Alcaligenes, and Moraxella; 0.025 micrograms/ml against Legionella spp.; and 6.25 to 25 micrograms/ml against anaerobes, including Bacteroides fragilis, Clostridium difficile, and Peptostreptococcus spp. The in vitro activity of T-3761 against these clinical isolates was comparable to or 2- to 32-fold greater than those of ofloxacin and norfloxacin and 2- to 16-fold less and 1- to 8-fold greater than those of ciprofloxacin and tosulfoxacin, respectively. When administered orally, T-3761 showed good efficacy in mice against systemic, pulmonary, and urinary tract infections with gram-positive and gram-negative bacteria, including quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa. The in vivo activity of T-3761 was comparable to or greater than those of ofloxacin, ciprofloxacin, norfloxacin, and tosufloxacin against most infection models in mice. The activities of T-3761 were lower than those of tosufloxacin against gram-positive bacterial systemic and pulmonary infections in mice but not against infections with methicillin-resistant Staphylococcus aureus. The activities of T-3761 against systemic quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa infections in mice were 2- to 14-fold greater than those of the reference agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号