首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The firing characteristics and projection patterns of secondary vestibular nucleus neurons involved in the vertical vestibuloocular pathways were investigated in alert cats. Single-unit recordings were made in the medial longitudinal fasciculus (MLF) near the trochlear nucleus from axons that were monosynaptically activated after electrical stimulation of the vestibular nerve. In a total of 253 identified secondary neurons, 225 discharged in relation to vertical eye movements; 189 of these increased their firing rate for downward eye movements and 36 for upward movements. The activity of the remaining 28 axons was not related to eye movements when the head was still. 2. Virtually all of the secondary neurons with downward on-direction displayed tonic activity that was primarily related to steady eye position during fixation (DPV neurons). The slope of the relationship between firing rate and vertical eye position ranged from 1.2 to 9.1 (spikes/s)/deg with a mean of 3.2 (spikes/s)/deg. The regularity of firing was quantified by calculating the coefficient of variation (CV) of interspike intervals. A comparison of the CV in the population units indicated that DPV neurons could be classified as either regular or irregular neurons. There was a tendency for regular neurons to have higher firing rates and higher correlation coefficients for the rate-position relationships than irregular neurons. 3. During pitch rotation in the light, all the DPV neurons tested increased their firing rate with upward head rotation. Both the phase and the amplitude of the response indicated that DPV neurons discharged not only in relation to eye position but also in relation to head velocity, suggesting that they received monosynaptic input from the posterior semicircular canal. The gain and phase lag of the response relative to head velocity were measured at 0.5 Hz. The range of the gain was 1.1-5.1 (spikes/s)/(deg/s), and that of the phase lag was 18.3-62.4 degrees. There was a tendency for irregular DPV neurons to have a larger gain and smaller phase lag than regular DPV neurons. 4. Ascending and descending projection pathways were determined for 147 DPV axons. Of these, 69 ascended in the contralateral MLF with respect to their soma (crossed-DPV axons), and 78 in the ipsilateral MLF (uncrossed-DPV axons), as revealed by their monosynaptic activation from the contralateral or ipsilateral vestibular nerve. Stimulation of the caudal MLF at the level of the obex evoked direct responses caused by antidromic activation of descending collaterals in approximately 70% (49/69) of the crossed-DPV axons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The vestibular nuclei and the interstitial nucleus of Cajal (INC) have been regarded as key elements of the velocity-to-position integrator for vertical eye movements. This paper reports a class of type II vestibular neurons that receives input from the INC and carries vertical eye movement signals that appear to represent an intermediate stage of the integration process. Extracellular recordings were made from neurons in and near the vestibular nuclei in alert cats. We encountered 39 neurons that exhibited an intense burst of spikes for downward saccades and a position-related tonic activity during intersaccadic intervals (d-type II neurons). They had a very high saccadic sensitivity (4.3±2.7 spikes/deg, mean ± SD) as well as a high position sensitivity (3.2±1.6 (spikes/sec)/deg). Unlike the bursts of motoneurons, the bursts of these neurons declined gradually with an exponential-like time course and lasted well beyond the end of saccades. The mean time constant of the burst decay was 139±43 ms. The d-type II neurons were excited with disynaptic or trisynaptic latencies following stimulation of the contralateral vestibular nerve. The responses to vertical head rotations suggested inputs from the contralateral posterior canal. The d-type II neurons were excited with short latencies following stimulation of the ipsilateral INC, suggesting that they receive a direct excitatory input from vertical eye movement-related INC neurons with downward on-directions. The d-type II neurons were located in the rostral portion of the vestibular nuclei and the underlying reticular formation. These results suggest that d-type II neurons may be interposed between the burst-tonic neurons in the INC and pure tonic neurons in the vestibular nuclei and contribute to the oculomotor velocity-to-position integration.  相似文献   

3.
Summary The medial longitudinal fasciculus (MLF) and immediately adjacent reticular formation were stimulated electrically just caudal to the trochlear nucleus in the cat. In the pontomedullary reticular formation within 1.5 mm of the midline, antidromically excited neurons were detected in (1) the contralateral abducens nucleus, (2) the contralateral reticular formation just caudal and caudoventral to the abducens nucleus, and (3) the ipsilateral nucleus reticularis pontis caudalis beneath and rostral to the abducens nucleus. The possible involvement of these neurons in eye or body movements is discussed.  相似文献   

4.
Summary This study examines the nature of the efferent projection of omnipause neurons (OPNs) in the midline pontine tegmentum to medium-lead burst neurons (BNs) in the Forel's field H (FFH), both of which exhibit activities related to vertical eye movements, using chronically prepared alert cats. Antidromic spikes of the BNs evoked by oculomotor nucleus stimulation were suppressed by shortly preceding (less than 5 ms) microstimulation within the OPN area including actual recording sites of OPNs. Many OPNs were antidromically activated by microstimulation at recording sites of the BNs. Furthermore, systematic tracking in and around the FFH with the stimulating microelectrode substantiated that the OPNs issued axonal branches within the BN area. These results suggest direct inhibitory projection of OPNs to the BNs.  相似文献   

5.
Summary Unit activities of 148 secondary vestibular neurons related to the posterior semicircular canal were recorded extracellularly in anesthetized cats. Axonal projections of these neurons were examined by their antidromic responses to stimulation of the excitatory target motoneurons of the contralateral (c-) inferior rectus muscle (IR) and bilateral (bi-) motoneuron pools of longus capitis muscles, neck flexors, in the C1 segment (C1LC). The neurons were classified into 4 groups according to their axonal projections. The first group of neurons, termed vestibulo-oculo-collic (VOC) neurons, sent axon collaterals both to the c-IR motoneuron pool and to the c-C1LC motoneuron pool. The majority of them (72%) were located in the descending nucleus. The second group of neurons were termed vestibuloocular (VO) neurons and sent their axons to the c-IR motoneuron pool but not to the cervical cord. Most of them (86%) were located in the medial nucleus. The third group of neurons, termed vestibulo-collic (contralateral) (VCc) neurons, sent axons to the cC 1LC motoneuron pool via the contralateral ventral funiculus but not to the oculomotor nuclei. They were mostly (75%) found in the descending nucleus. The last group of neurons were vestibulo-collic (ipsilateral) (VCi) neurons, which gave off axons to the ipsilateral (i-) C1LC motoneuron pool via the ipsilateral ventral funiculus but not to the oculomotor nuclei. One of them also sent an axon collateral to the c-C1LC motoneuron pool. The majority of them (74%) were located in the ventral part of the lateral nucleus. It was also observed in some of the VOC and VCi neurons that they produced unitary EPSPs in the c-C1LC and i-C1LC motoneurons, respectively. Their synaptic sites were estimated to be on the cell somata and/or proximal dendrites of the motoneurons.  相似文献   

6.
Summary Recordings were made from secondary vestibular axons in the medial longitudinal fasciculus (MLF) of barbiturate-anesthetized squirrel monkeys. Antidromic stimulation techniques were used to identify the axons as belonging to one of three classes of neurons: vestibulo-oculo-collic (VOC) neurons project both to the extraocular motor nuclei and to the spinal cord; vestibulo-ocular (VO) neurons do not have a spinal projection; and vestibulocollic (VC) neurons do not have an oculomotor projection. Galvanic stimulation was used to show that axons of all three classes received excitatory inputs from one labyrinth and inhibitory inputs from the other. VOC axons were confined to the MLF contralateral to the labyrinth from which they were excited. They made up more than half of the vestibular axons descending in the contralateral medial vestibulospinal tract (MVST), but less than one-quarter of those ascending in the contralateral MLF to the level of the oculomotor nucleus. Spinal projections were restricted to cervical segments with about half of the axons reaching segment C6. Conduction velocities, measured for Co-projecting axons, were similar for VOC and VC axons and were typically 25–50 m/s. Unlike the situation in the rabbit (Akaike et al. 1973) and cat (Akaike 1983), none of the MVST axons had conduction velocities > 75 m/s. The morphology of VOC neurons was studied by injection of horseradish peroxidase (HRP) into 60 physiologically identified axons in the MLF. Since individual axons were only stained for short distances, it was not possible to ascertain their complete branching patterns. Labeled fibers could be traced to an origin in and around the ventral lateral vestibular nucleus. This localization was confirmed by comparing the distributions within the vestibular nuclei of neurons retrogradely labeled from the upper cervical spinal cord (this study) and from the oculomotor nucleus (McCrea et al. 1987a; Highstein and McCrea 1988). VOC axons reached the contralateral MLF at the level of the abducens nucleus and immediately divided into an ascending and a descending, usually thicker, branch. Seven VOC axons could be traced to the extraocular motor nuclei; three terminated in the medial aspect of the oculomotor nucleus bilaterally and four terminated in the medial aspect of the contralateral abducens nucleus. The former axons may be part of a crossed, excitatory anterior-canal pathway; the latter, part of a similar horizontal-canal pathway. There were no terminations in the trochlear nucleus even though 12 labeled fibers passed close to it. VOC axons projected to several brainstem nuclei, including the contralateral interstitial nucleus of Cajal, cell groups in the region of the medial longitudinal fasciculus rostral to the abducens nucleus, the nucleus prepositus, the nucleus raphe obscuris, Roller's nucleus, and the paramedian medullary reticular formation. Virtually all of the above connections, except for the bilateral projection to the oculomotor nucleus, were contralateral to the cells of origin. The results in the squirrel monkey are compared with previous studies of VOC neurons in the cat (Isu and Yokota 1983; Uchino and Hirai 1984; Isu et al. 1988). In both species, VOC neurons make up a large proportion of contralaterally projecting MVST fibers. On the other hand, such dual-projecting neurons may provide a considerably smaller fraction of the secondary vestibular axons reaching the oculomotor nucleus in the monkey than they do in the cat.  相似文献   

7.
In two alert cats, single-unit activity of neurons related to vertical eye movement was recorded in and around the interstitial nucleus of Cajal (INC), and their projections to the ipsilateral vestibular nucleus and response to stimulation of the contralateral vestibular nerve were examined. Of 62 neurons that discharged in relation to vertical eye movement, 41 increased their firing rate for downward positions and 21 for upward positions. About one third of downward-on neurons was antidromically activated by stimulation of the ipsilateral vestibular nucleus with thresholds of 36-220 microA. None of the upward-on neurons were antidromically activated. About 60% of INC neurons (22/36) responded orthodromically to stimulation of the contralateral vestibular nerve. In particular, all the downward-on neurons that projected to the ipsilateral vestibular nucleus exhibited orthodromic responses at disynaptic latencies. The results, together with our previous finding that excitatory secondary vestibular neurons carrying vertical position signals project contralaterally to the INC, suggest that downward-on INC neurons receive direct connection from these secondary vestibular neurons and send the signals back to the ipsilateral vestibular nucleus. Interstitio-vestibular interactions through these pathways may be important in the generation of vertical eye position signals.  相似文献   

8.
We studied the ascending and descending axonal trajectories of excitatory vestibular neurons related to the anterior semicircular canal, by means of local stimulation and spike-triggered signal averaging techniques in anesthetized cats. More than 200 vestibular neurons related to the ampullary nerve of the anterior semicircular canal (ACN) were identified as vestibulo-ocular neurons by antidromic stimulation of the contralateral inferior oblique (IO) muscle motoneuron pool. In the descending, medial and ventral lateral nuclei, about 60% of these vestibulo-ocular neurons were also activated antidromically by upper cervical spinal cord stimulation (vestibulo-ocular-collic (cervical) = VOC). These VOC neurons produced unitary EPSPs in the majority of neck extensor motoneurons located at the C1 segment. None of the VOC neurons had axons descending as far as the thoracic level. Most of these VOC neurons were activated monosynaptically following stimulation of the ACN. The conduction velocity of the descending axons of VOC neurons was approximately 63 m/s, which was significantly faster than that of the ascending axons. The remaining 40% of the vestibulo-ocular neurons were not activated antidromically following spinal cord stimulation at intensities of 1 mA or more (vestibulo-ocular = VO). Most of the VO neurons were activated polysynaptically by ACN stimulation. The superior vestibular nucleus contained VO neurons that were activated mono- and polysynaptically following ACN stimulation.  相似文献   

9.
Summary This study investigated the nature of synaptic inputs from the Forel's field H (FFH) in the medial mesodiencephalic junction to inferior oblique (IO) motoneurons in the oculomotor nucleus and superior oblique (SO) motoneurons in the trochlear nucleus in anesthetized cats, using intracellular recording techniques. Stimulation of the FFH induced monosynaptic EPSPs in IO motoneurons on both sides. Paired stimulation of the ipsilateral FFH and contralateral vestibular nerve substantiated that the FFH-induced EPSPs were caused mainly by direct excitatory fibers from the FFH to IO motoneurons and partly by axon collaterals of excitatory neurons in the vestibular nuclei. Among parts of the FFH, the medial part was most effective for producing the EPSPs. Systematic tracking with the stimulating electrode in and around the FFH revealed that effective sites of stimulation inducing negative field potentials in the IO subdivision of the oculomotor nucleus, identified as extracellular counterparts of the EPSPs in IO motoneurons, were also located in the interstitial nucleus of Cajal, nearby reticular formation and posterior commissure, besides within and near the medial part of the FFH. Areas far rostral, dorsal and ventral to the FFH were ineffective. EPSP-IPSPs or EPSPs were mainly induced in SO motoneurons on both sides by FFH stimulation. Latencies of these EPSPs and IPSPs were close to those of the EPSPs in IO motoneurons, indicating their monosynaptic nature. Effective stimulation sites for inducing these synaptic potentials overlapped those for the EPSPs in IO motoneurons. Based on these results, it was suggested that excitatory and inhibitory premotor neurons directly controlling IO and SO motoneurons were located within and near the medial part of the FFH.  相似文献   

10.
11.
 The central cervical nucleus (CCN) of the cat receives input from upper cervical muscle afferents, particularly primary spindle afferents. Its axons cross in the spinal cord, and while in the contralateral restiform body give off collaterals to the vestibular nuclei. In order to study the connections between CCN axons and vestibular neurons, we stimulated the area of the CCN in decerebrate cats while recording intra- or extracellularly from neurons in the contralateral vestibular nuclei. CCN stimulation evoked excitatory postsynaptic potentials (EPSPs) or extracellularly recorded firing in the lateral, medial and descending vestibular nuclei. The latency of EPSPs (mean 1.6 ms) was on average 0.4 ms longer than the latency of antidromic spikes evoked in the CCN by stimulation of the contralateral vestibular nuclei (mean 1.2 ms), demonstrating that the excitation was typically monosynaptic. The results provide further evidence that the CCN is an important excitatory relay between upper cervical muscle afferents and neurons in the contralateral vestibular nuclei. Received: 1 August 1996 / Accepted: 16 December 1996  相似文献   

12.
Summary Bilateral transections across the brainstem interrupted the medial longitudinal fasciculus (MLF) in three monkeys trained to make eye movements while subjected to horizontal or vertical angular accelerations. Eye movements measured before and after the lesion revealed deficits in both voluntary and vestibular compensatory eye movements; the deficits differed in the horizontal and vertical directions. Vertical saccades in both directions were normal but eccentric positions of fixation could not be maintained; a drift toward the midline followed by a corrective saccade produced vertical fixation nystagmus. Furthermore, the vertical vestibuloocular reflex (VOR) was abolished and vertical smooth pursuit was impaired. Along the horizontal meridian, adduction across the midline could not be achieved during either saccades, smooth pursuit, or the VOR. Temporal saccades were normal whereas nasal saccades were considerably slowed. If the eye was not required to cross the midline, the phase shift during the VOR was within 15 deg of normal in each eye. The gain of the VOR was reduced to about 0.4 immediately after the lesion, but recovered within one month. These findings suggest that the MLF transmits quite different kinds of information to horizontal and vertical oculomotoneurons and that deficits in vertical eye movements may be a sensitive indicator of anterior internuclear ophthalmoplegia.  相似文献   

13.
Spinal commissural neurons (CNs) activated di- or trisynaptically by stimulation of ipsilateral vestibular afferents were stained with intraaxonal injection of horseradish peroxidase in the cat upper cervical spinal cord. Stem axons of CNs in lamina VIII or VII, after crossing the midline, had ascending and/or descending main branches that gave off multiple axon collaterals to laminae IX and VIII over a few cervical segments. Terminal boutons appeared to make contact with proximal dendrites and somata of retrogradely-labelled neck motoneurons. Therefore, these CNs were regarded as mediating vestibular afferent input to contralateral neck motoneurons trisynaptically at the shortest.  相似文献   

14.
1. Unit spikes of burst neurons were extracellularly recorded in the pontomedullary reticular formation of the cat. These neurons were identified by their burst activity coincident with the quick inhibitory phase of the contralateral abducens nerve during vestibular nystagmus and their antidromic activation from the contralateral abducens nucleus. 2. When the extracellular field potentials in and near the abducens nucleus were triggered by spikes of a contralateral burs neuron, the averaged potential consisted of an early di- or triphasic spike and a late slow positive wave. The early spike was an action current caused by impulses conducting along the axon of the burst neuron. 3. The action potentials of a contralateral burst neuron. 3. The action potentials of a contralateral burst neuron were employed to trigger a post-spike average of the membrane potential of abducens motoneurons. Then unitary IPSPs with monosynaptic latencies were revealed. This provided direct evidence that the burst neurons are inhibitory in nature. The amplitudes of unitary IPSPs ranged from 18 to 220 mu V. Each inhibitory burst neuron branched widely in the abducens nucleus and was estimated to make inhibitory connections with approximately 60% of the motoneuron pool. 4. The post-spike average of compound potentials of the abducens nerve triggered by action potentials of contralateral single inhibitory burst neurons revealed inhibition of spike activity with latencies and time courses compatible with those of unitary IPSPs in motoneurons. The inhibition was observed with all inhibitory burst neurons tested.  相似文献   

15.
16.
The morphology of secondary vertical vestibular neurons was investigated by injection of horseradish peroxidase (HRP) into cells connected to the posterior canal system in rabbits (lateral-eyed animals) and cats (frontal-eyed animals). Vestibular neurons were identified by stimulation with bipolar electrodes implanted into the ampullae of the anterior and posterior (PC) semicircular canals of pigmented rabbits; in the cat, these cells were identified by natural and electrical stimulation. Axons monosynaptically activated by PC stimulation were injected with HRP in the medial longitudinal fasciculus (MLF). These were later reconstructed by light microscopy after the brains had been processed with a DAB-CoCl2 method. In the rabbit the majority of the axons bifurcated after crossing the midline with one branch ascending and the other descending in the MLF. The ascending branches gave rise to collaterals that terminated in both the trochlear nucleus and the inferior rectus subdivision of the oculomotor nucleus. In addition some axons also sent collaterals into the paramedian pontine reticular formation, the periaqueductal grey and the interstitial nucleus of Cajal. The descending branches were followed to the caudal part of the medulla in the MLF and gave rise to collaterals terminating in the vestibular nuclei, the medullary reticular formation, the perihypoglossal nuclei, the abducens nucleus, and the facial nucleus. In another cell type axons crossed the midline without giving off any collaterals and proceeded caudally in the caudal MLF. The synaptic effects of the two types of cells were concluded to be excitatory and inhibitory, respectively. Cell bodies of contralaterally projecting neurons were located in either the medial or ventro-lateral vestibular nuclei. In the cat we observed two neuron classes, with contralaterally projecting axons, whose synaptic effects are presumably excitatory. Their cell somata were located in the medial vestibular nucleus. Termination patterns were similar to both the trochlear and oculomotor nuclei, but neither projected to the abducens nucleus. One class of neurons was almost identical to that found in the rabbit with the main axon bifurcating in the MLF. The second type lacked a descending branch in the MLF. Axon collaterals of the latter type crossed the midline within the oculomotor nucleus after terminating in the inferior rectus subdivision to reach a similar portion of the ipsilateral oculomotor nucleus. Collaterals of these axons also terminated bilaterally in the supraoculomotor region between trochlear and oculomotor nucleus, the interstitial nucleus of Cajal and prerubral loci (including the fields of Forel). In similarity to the rabbit, presumed inhibitory vestibular neurons were found with axons directed caudally in the MLF without brain stem collaterals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
Summary Action potentials of inhibitory burst neurons (IBNs) were extracellularly recorded in the pontomedullary reticular formation in the cat. These neurons were identified by their burst activity coincident with the quick inhibitory phase of the contralateral abducens nerve during vestibular nystagmus and by their antidromic activation from the contralateral abducens nucleus.During extracellular recording from the soma of single IBNs, another electrode for microstimulation was systematically tracked throughout the brain stem. For each IBN investigated, the effective sites for antidromic activation were invariably found in the contralateral abducens, prepositus hypoglossi, medial vestibular nuclei and the area ventral to the prepositus hypoglossi nucleus. Stimulation of neither the ipsilateral brain stem nor the oculomotor nuclei evoked antidromic responses in IBNs.Extracellular spikes of single IBNs and neurons in the overlying projection area were recorded simultaneously. Their correlation was examined by using peri-spike time histograms. Shortly after the spikes of single IBNs, the activity of motoneurons and internuclear interneurons in the abducens nucleus, and of type II neurons in the prepositus hypoglossi and vestibular nuclei, was depressed.Connections of IBNs with ipsilateral medial rectus motoneurons were studied by spike-triggered averaging of membrane potentials of the motoneurons and action potentials of the medial rectus nerve. Single IBN spikes induced a di- or polysynaptic disfacilitation in the motoneurons. This disfacilitation was concluded to be mediated by some of the above-described interneurons which were directly inhibited by IBNs. Their depressant effect on medial rectus motoneuronal spike activity was comparable to that on the spike activity of contralateral abducens motoneurons.  相似文献   

19.
1. Intracellular recordings were made from secondary neurons in the vestibular nuclei of barbiturate-anesthetized squirrel monkeys. Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the ipsilateral vestibular nerve (Vi) were measured. An electrophysiological paradigm, described in the preceding paper (26), was used to determine the proportion of irregularly (I) and regularly (R) discharging Vi afferents making direct connections with individual secondary neurons. The results were expressed as a % I index, an estimate for each neuron of the percentage of the total Vi monosynaptic input that was derived from I afferents. The secondary neurons were also classified as I, R, or M cells, depending on whether they received their direct Vi inputs predominantly from I or R afferents or else from a mixture (M) of both kinds of Vi fibers. The neurons were located in the superior vestibular nucleus (SVN) or in the rostral parts of the medical or lateral (LVN) vestibular nuclei. 2. Antidromic activation or reconstruction of axonal trajectories after intrasomatic injection of horseradish peroxidase (HRP) was used to identify three classes of secondary neurons in terms of their output pathways: 1) cerebellar-projecting (Fl) cells innervating the flocculus (n = 26); 2) rostrally projecting (Oc) cells whose axons ascended toward the oculomotor (IIIrd) nucleus (n = 27); and 3) caudally projecting (Sp) cells with axons descending toward the spinal cord (n = 13). Two additional neurons, out of 21 tested, could be antidromically activated both from the level of the IIIrd nucleus and from the spinal cord. 3. The Vi inputs to the various classes of relay neurons differed. As a class, Oc neurons received the most regular inputs. Sp neurons had more irregular inputs. Fl neurons were heterogeneous with similar numbers of R, M, and I neurons. The mean values (+/- SD) of the % I index for the Oc, Fl, and Sp neurons were 34.7 +/- 24.7, 51.9 +/- 30.4, and 61.8 +/- 18.0%, respectively. Only the Oc neurons had a % I index that was similar to the proportion of I afferents (34%) in the vestibular nerve (cf. Ref. 26). 4. The commissural inputs from the contralateral vestibular nerve (Vc) also differed for the three projection classes. Commissural inhibition was most common in Fl cells: 22/25 (88%) of the neurons had Vc inhibitory postsynaptic potentials (IPSPs) and 1/25 (4%) had a Vc EPSP. In contrast, Vc inputs were only observed in approximately half the Oc and Sp neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号