首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in muscle activation and performance were studied in healthy men in response to 5 weeks of resistance training with or without “eccentric overload”. Subjects, assigned to either weight stack (grp WS; n = 8) or iso-inertial “eccentric overload” flywheel (grp FW; n = 9) knee extensor resistance training, completed 12 sessions of four sets of seven concentric–eccentric actions. Pre- and post-measurements comprised maximal voluntary contraction (MVC), rate of force development (RFD) and training mode-specific force. Root mean square electromyographic (EMGRMS) activity of mm. vastus lateralis and medialis was assessed during MVC and used to normalize EMGRMS for training mode-specific concentric (EMGCON) and eccentric (EMGECC) actions at 90°, 120° and 150° knee joint angles. Grp FW showed greater (p < 0.05) overall normalized angle-specific EMGECC of vastii muscles compared with grp WS. Grp FW showed near maximal normalized EMGCON both pre- and post-training. EMGCON for Grp WS was near maximal only post-training. While RFD was unchanged following training (p > 0.05), MVC and training-specific strength increased (p < 0.05) in both groups. We believe the higher EMGECC activity noted with FW exercise compared to standard weight lifting could be attributed to its unique iso-inertial loading features. Hence, the resulting greater mechanical stress may explain the robust muscle hypertrophy reported earlier in response to flywheel resistance training.  相似文献   

2.
Aim: This study determined changes in knee extensor and plantar flexor muscle volume during 29 days of bed rest with or without resistance exercise using a gravity‐independent flywheel ergometer. Methods: Seventeen men (26–41 years) were subjected to 29 days of bed rest with (n = 8) or without (n = 9) resistance exercise; Supine Squat (SS) and Calf Press (CP) performed every third day. Quadriceps and triceps surae muscle volume was determined before and after bed rest and force and power were measured during training. Prior to these interventions, reproducibility of this device for training and testing was assessed in 23 subjects who performed bilateral maximal concentric, eccentric and isometric (MVC) knee extensions and plantar flexions over repeated sessions with simultaneous measurements of force, power and electromyographic (EMG) activity. Results: Quadriceps and triceps surae muscle volume decreased (P < 0.05) 10 and 16%, respectively, after 29 days bed rest. Exercise maintained quadriceps volume and mitigated triceps surae atrophy. Thus, either muscle showed different response across subject groups (P < 0.05). Force and power output during training were either maintained (P > 0.05) or increased (P < 0.05). EMG amplitude in the training mode was similar (SS; P > 0.05) or greater (CP; P < 0.05) compared with that elicited during MVC. Peak force and power test‐retest coefficient of variation (CV) ranged 5–6% and 7–8% for SS and CP, respectively. Conclusion: The present data suggest that this resistance exercise paradigm counteracts quadriceps and abates the more substantial triceps surae muscle atrophy in bedridden subjects, and therefore should be an important asset to space travellers.  相似文献   

3.
Aim: The efficacy of a mechanical, gravity‐independent resistance exercise (RE) system to induce strength gains and muscle hypertrophy was validated. Designed for space crew in orbit, this technique offers resistance during coupled concentric and eccentric actions by utilizing the inertia of a rotating flywheel(s), set in motion by the trainee. Methods: Ten middle‐aged (30–53 years) men and women performed four sets of seven maximal, unilateral (left limb) knee extensions two or three times weekly for 5 weeks. Knee extensor force and electromyographic (EMG) activity of the three superficial quadriceps muscles were measured before and after this intervention. In addition, with the use of magnetic resonance imaging (MRI), volume of individual knee extensor and ankle plantar flexor muscles was assessed. Results: Over the 12 training sessions, the average concentric (CON) and eccentric (ECC) force generated during exercise increased by 11% (P < 0.05). Likewise, maximal isometric strength (maximal voluntary contraction, MVC) at 90 and 120° knee angle increased by (P < 0.05) 11 and 12% respectively, after training. Neither individual quadriceps muscle showed a change (P > 0.05) in maximal integrated EMG (iEMG) activity. Quadriceps muscle volume increased by 6.1% (P < 0.05). Although the magnitude of response varied, all individual quadriceps muscles showed increased (P < 0.05) volume after training. As expected, ankle plantar flexor volume of the trained limb was unchanged (P > 0.05). Likewise, MVC, CON and ECC force, iEMG and knee extensor and plantar flexor muscle volume were unaltered (P > 0.05) in the right, non‐trained limb. Conclusion: The results of this study show that the present RE regimen produces marked muscle hypertrophy and important increases in maximal voluntary strength and appears equally effective as RE paradigms using gravity‐dependent weights, in this regard.  相似文献   

4.
This study investigates the effects of eccentric exercise and delayed onset muscle soreness (DOMS) of the quadriceps on agonist–antagonist activity during a range of motor tasks. Ten healthy volunteers (age, mean ± SD, 24.9 ± 3.2 years) performed maximum voluntary contractions (MVC) and explosive isometric contractions of the knee extensors followed by isometric contractions at 2.5, 5, 10, 15, 20, and 30% MVC at baseline, immediately after and 24 h after eccentric exercise of the quadriceps. During each task, force of the knee extensors and surface EMG of the vasti and hamstrings muscles were recorded concurrently. Rate of force development (RFD) was computed from the explosive isometric contraction, and the coefficient of variation of the force (CoV) signal was estimated from the submaximal contractions. Twenty-four hours after exercise, the subjects rated their perceived pain intensity as 4.1 ± 1.2 (score out of 10). The maximum RFD and MVC of the knee extensors was reduced immediately post- and 24 h after eccentric exercise compared to baseline (average across both time points: 19.1 ± 17.1% and 11.9 ± 9.8% lower, respectively, P < 0.05). The CoV for force during the submaximal contractions was greater immediately after eccentric exercise (up to 66% higher than baseline, P < 0.001) and remained higher 24 h post-exercise during the presence of DOMS (P < 0.01). For the explosive and MVC tasks, the EMG amplitude of the vasti muscles decreased immediately after exercise and was accompanied by increased antagonist EMG for the explosive contraction only. On the contrary, reduced force steadiness was accompanied by a general increase in EMG amplitude of the vasti muscles and was accompanied by increased antagonist activity, but only at higher force levels (>15% MVC). This study shows that eccentric exercise and subsequent DOMS of the quadriceps reduce the maximal force, rate of force development and force steadiness of the knee extensors, and is accompanied by different adjustments of agonist and antagonist muscle activities.  相似文献   

5.
Skeletal muscle atrophy and strength loss induced by short-term simulated spaceflight are offset or attenuated by resistance exercise (RE). This study compared the effects of plantar flexor and knee extensor RE on muscle size and function in 17 healthy men (aged 26–41years) subjected to 90 days 6° head-down-tilt bed rest with (BRE; n=8) or without (BR; n=9) RE. The RE program consisted of coupled maximal concentric and eccentric actions in the supine squat (4 sets of 7 repetitions) and calf press (4×14) every third day employing a gravity-independent flywheel ergometer (FW). Prior to, and following bed rest, muscle volume was assessed using magnetic resonance imaging. Similarly, muscle strength and power and surface electromyographic (EMG) activity were determined during maximal actions using FW or isokinetic dynamometry. In BR, knee extensor and plantar flexor muscle volume decreased (P<0.05) 18% and 29%, respectively. Torque or force and power decreased (P<0.05) 31–60% (knee extension) and 37–56% (plantar flexion) while knee extensor and plantar flexor EMG activity decreased 31–38% and 28–35%, respectively following BR. Muscle atrophy in BRE was prevented (P>0.05; knee extensors) or attenuated (–15%; plantar flexors). BRE maintained task-specific force, power and EMG activity. The decrease in non-task-specific torque was less (P<0.05) than in BR. The present data imply that the triceps surae and quadriceps muscles show different responsiveness to long-term bed rest with or without resistance exercise. The results also suggest that designing in-flight resistance exercise protocols for space travellers is complex and must extend beyond preserving muscle only.  相似文献   

6.
This study compared force fluctuations during isometric contraction following eccentric exercise of the elbow flexors between young, middle-aged, and old subjects. Ten young (20 ± 2.0 years), 12 middle-aged (48 ± 7.3 years), and 10 old (71 ± 4.1 years) men performed six sets of five eccentric actions of the elbow flexors using a dumbbell weighing 40% of maximal voluntary isometric contraction strength (MVC) at an elbow joint angle of 90° (1.57 rad). MVC was measured before, immediately after, and 1–5 days following exercise, and the force fluctuations were assessed at 30, 50, and 80% of the corresponding time point MVC using coefficient of variation (CV) of force data collected at a frequency of 100 Hz for 4 s. Changes in MVC and CV over time were compared between groups by a two-way repeated measures ANOVA. Changes in MVC following exercise were not significantly different between the young and middle-aged groups, but the old group showed significantly (P < 0.05) smaller decreases in MVC compared with other groups. CV increased significantly (P < 0.05) only immediately after exercise without a significant difference among the three intensities, and no significant differences between groups were evident. It was concluded that force fluctuations during submaximal isometric tasks after eccentric exercise were not affected by age.  相似文献   

7.
We hypothesized that activation of the quadriceps femoris muscle group during eccentric exercise is related to the increase in magnitude of several markers of muscle injury that developed during the next week. Fourteen male subjects performed six to eight sets of five to ten repetitions of single-leg eccentric-only seated knee extension exercise. Magnetic resonance (MR) images were collected before and immediately after exercise and on days 2–4 and 6 after eccentric exercise. Changes in maximal voluntary contraction (MVC), perceived soreness, muscle volume and muscle transverse relaxation of water protons (T2) were determined for the quadriceps femoris muscle group each day. Changes in muscle volume and T2 were determined every day for each muscle [vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), rectus femoris (RF)] of the quadriceps femoris group. Post-exercise T2 was greater than pre-exercise T2 (P<0.05) for all muscles. The acute ΔT2 (Post-Pre) was similar (P>0.05) among VL, VM, VI, and RF [5.5 (0.3) ms], suggesting that the four muscles were equally activated during eccentric exercise. In the week after eccentric exercise, subjects experienced delayed-onset muscle soreness (DOMS) and all muscles demonstrated a delayed increase in T2 above pre-exercise values (P<0.05), suggesting that muscle injury had occurred. For the quadriceps femoris muscle group, there was no correlation between acute ΔT2 and delayed (peak T2 during days 2, 3, 4, 6 minus pre-exercise T2) ΔT2 (r=0.04, P>0.05). Similar results were obtained when VL, VM, VI and RF were examined separately. Of the four muscles in quadriceps femoris, the biarticular RF experienced greater muscle injury [delayed ΔT2=15.2 (2.0) ms] compared to the three monoarticular vasti muscles [delayed ΔT2=7.7 (1.3) ms; P<0.05]. We propose that the disproportionate muscle injury to RF resulted from an ineffective transfer of torque from the knee to hip joint during seated eccentric knee extension exercise, thus causing RF to dissipate greater energy than normal. We conclude that in humans, muscle activation is not a unique determinant of muscle injury. Electronic Publication  相似文献   

8.
Considerable variation exists between people in the muscle response to resistance training, but there are numerous ways muscle might adapt to overload that might explain this variable response. Therefore, the aim of this study was to quantify the range of responses concerning the training-induced change in maximum voluntary contraction (MVC) knee joint torque, quadriceps femoris (QF) maximum muscle force (F), physiological cross-sectional area (PCSA) and specific tension (F/PCSA). It was hypothesized that the variable change in QF specific tension between individuals would be less than that of MVC. Fifty-three untrained young men performed progressive leg-extension training three times a week for 9 weeks. F was determined from MVC torque, voluntary muscle activation level, antagonist muscle co-activation and patellar tendon moment arm. QF specific tension was established by dividing F by QF PCSA, which was calculated from the ratio of QF muscle volume to muscle fascicle length. MVC torque increased by 26 ± 11% (P < 0.0001; range −1 to 52%), while F increased by 22 ± 11% (P < 0.0001; range −1 to 44%). PCSA increased by 6 ± 4% (P < 0.001; range −3 to 18%) and specific tension increased by 17 ± 11% (P < 0.0001; range −5 to 39%). In conclusion, training-induced changes in F and PCSA varied substantially between individuals, giving rise to greater inter-individual variability in the specific tension response compared to that of MVC. Furthermore, it appears that the change in specific tension is responsible for the variable change in MVC.  相似文献   

9.
The present study aimed to investigate the effect of isometric squat training on human tendon stiffness and jump performances. Eight subjects completed 12 weeks (4 days/week) of isometric squat training, which consisted of bilateral leg extension at 70% of maximum voluntary contraction (MVC) for 15 s per set (10 sets/day). Before and after training, the elongations of the tendon–aponeurosis complex in the vastus lateralis muscle and patella tendon were directly measured using ultrasonography while the subjects performed ramp isometric knee extension up to MVC. The relationship between the estimated muscle force and tendon elongation was fitted to a linear regression, the slope of which was defined as stiffness. In addition, performances in two kinds of maximal vertical jumps, i.e. squatting (SJ) and counter-movement jumps (CMJ), were measured. The training significantly increased the volume (P<0.01) and MVC torque (P<0.01) of the quadriceps femoris muscle. The stiffness of the tendon–aponeurosis complex increased significantly from 51±22 (mean ± SD) to 59±24 N/mm (P=0.04), although that of the patella tendon did not change (P=0.48). The SJ height increased significantly after training (P=0.03), although the CMJ height did not (P=0.45). In addition, the relative difference in jump height between SJ and CMJ decreased significantly after training (P=0.02). These results suggest that isometric squat training changes the stiffness of human tendon–aponeurosis complex in knee extensors to act negatively on the effects of pre-stretch during stretch-shortening cycle exercises.  相似文献   

10.
This study tested the hypothesis that eccentric exercise (ECC) would increase force fluctuation for several days following exercise; however, concentric exercise (CON) would not produce such an effect. Twelve men performed six sets of five reps of dumbbell exercise of the elbow flexors eccentrically with one arm and concentrically with the other, separated by 4–6 weeks, using a dumbbell set at 50% of maximal voluntary isometric contraction (MVC) measured at 90° of elbow flexion. MVC, range of motion (ROM), upper arm circumference, plasma creatine kinase activity (CK), myoglobin concentration (Mb) and muscle soreness were assessed before, immediately after, 1 h and 1–5 days following both exercise bouts. Force fluctuations during 30, 50 and 80% MVC were quantified by coefficient of variation (CV) of the force data (sampling frequency: 100 Hz) for 4 s. Significantly (P<0.01) larger changes in MVC, ROM, and upper arm circumference were evident following ECC compared to CON, and only ECC resulted in significant (P<0.01) increases in CK and Mb, and development of muscle soreness. Significant (P<0.01) differences existed between ECC and CON for changes in force fluctuations. CV increased significantly (P<0.01) immediately and 1 h after ECC from baseline for 30, 50, and 80% MVC without a significant difference among the intensities, and no significant changes in CV were evident following CON. It was concluded that increases in force fluctuation were peculiar to ECC, but did not necessarily reflect muscle damage.  相似文献   

11.
AIM: The efficacy of a mechanical, gravity-independent resistance exercise (RE) system to induce strength gains and muscle hypertrophy was validated. Designed for space crew in orbit, this technique offers resistance during coupled concentric and eccentric actions by utilizing the inertia of a rotating flywheel(s), set in motion by the trainee. METHODS: Ten middle-aged (30-53 years) men and women performed four sets of seven maximal, unilateral (left limb) knee extensions two or three times weekly for 5 weeks. Knee extensor force and electromyographic (EMG) activity of the three superficial quadriceps muscles were measured before and after this intervention. In addition, with the use of magnetic resonance imaging (MRI), volume of individual knee extensor and ankle plantar flexor muscles was assessed. RESULTS: Over the 12 training sessions, the average concentric (CON) and eccentric (ECC) force generated during exercise increased by 11% (P < 0.05). Likewise, maximal isometric strength (maximal voluntary contraction, MVC) at 90 and 120 degrees knee angle increased by (P < 0.05) 11 and 12% respectively, after training. Neither individual quadriceps muscle showed a change (P > 0.05) in maximal integrated EMG (iEMG) activity. Quadriceps muscle volume increased by 6.1% (P < 0.05). Although the magnitude of response varied, all individual quadriceps muscles showed increased (P < 0.05) volume after training. As expected, ankle plantar flexor volume of the trained limb was unchanged (P > 0.05). Likewise, MVC, CON and ECC force, iEMG and knee extensor and plantar flexor muscle volume were unaltered (P > 0.05) in the right, non-trained limb. CONCLUSION: The results of this study show that the present RE regimen produces marked muscle hypertrophy and important increases in maximal voluntary strength and appears equally effective as RE paradigms using gravity-dependent weights, in this regard.  相似文献   

12.
In elderly males muscle plantar flexor maximal voluntary contraction (MVC) torque normalised to muscle volume (MVC/VOL) is reduced compared to young males as a result of incomplete muscle activation in the elderly. The aim of the present study was to determine the influence of a 12-month resistance training programme on muscle volume, strength, MVC/VOL, agonist activation and antagonist coactivation of the plantarfexors in elderly males. Thirteen elderly males aged 70 years and over (range 70–82 years), completed a 12-month whole body resistance-training programme (TRN), training three times a week. Another eight males (range 18–30 years), who maintained their habitual physical activity for the same 12-month period as the TRN group acted as controls (CTRL). Isometric plantarflexor maximal voluntary contraction (MVC) torque increased in the TRN group by 20% (P<0.01), from 113.1±22.0 Nm to 141.5±19.2 Nm. Triceps surae volume (TS VOL) assessed using MRI, increased by 12%, from 796.3±78.9 cm3 to 916.8±144.4 cm3 . PF activation, measured using supramaximal double twitch interpolation, increased from 83.6±11.0% pre training, to 92.1±7.6% post training (P<0.05). Dorsiflexion MVC and antagonist coactivation (assessed using surface electromyography) did not change with training. Plantarflexor MVC torque normalized for triceps surae muscle volume (MVC/VOL) was 142.6±32.4 kN m–2 before training and 157.0± 27.9 kN m–2 after training (a non-significant increase of 8%). No significant change in any measurement was observed in the CTRL group. This study has shown that the gain in muscle strength in response to long-term (12-month) training in older men is mostly accounted for by an increased muscle volume and activation.  相似文献   

13.
Three different training regimens were performed to study the influence of eccentric muscle actions on skeletal muscle adaptive responses to heavy resistance exercise. Middle-aged males performed the leg press and leg extension exercises two days each week. The resistance was selected to induce failure within six to twelve repetitions of each set. Group CON/ECC (n= 8) performed coupled concentric and eccentric actions while group CON (n= 8) used concentric actions only. They did four or five sets of each exercise. Group CON/CON (n= 10) performed twice as many sets with only concentric actions. Eight subjects did not train and served as controls. Tissue samples were obtained from m. vastus lateralis using the biopsy technique before and after 19 weeks of training, and after four weeks of detraining. Histochemical analyses were performed to assess fibre type composition, fibre area and capillarization. Training increased (P < 0.05) Type IIA and decreased (P < 0.05) Type IIB fibre percentage. Only group CON/ECC increased Type I area (14%, P < 0.05). Type II area increased (P < 0.05) 32 and 27%, respectively, in groups CON/ECC and CON/CON, but not in group CON. Mean fibre area increased (P < 0.05) 25 and 20% in groups CON/ECC and CON/CON, respectively. Capillaries per fibre increased (P < 0.05) equally for Type I and Type II fibres. Capillaries per fibre area for both fibre types, however, increased (P <0.05) only in groups CON and CON/CON. The changes in fibre type composition and capillary frequency were manifest after detraining. At this time only group CON/ECC showed mean fibre hypertrophy, while capillary density was elevated in groups CON/CON and CON. This study suggests that optimal muscle hypertrophy in response to resistance exercise is not attained unless eccentric muscle actions are performed. The data also show that heavy resistance exercise may produce muscle fibre transformation and capillary neoformation.  相似文献   

14.
AIM: This study determined changes in knee extensor and plantar flexor muscle volume during 29 days of bed rest with or without resistance exercise using a gravity-independent flywheel ergometer. METHODS: Seventeen men (26-41 years) were subjected to 29 days of bed rest with (n = 8) or without (n = 9) resistance exercise; Supine Squat (SS) and Calf Press (CP) performed every third day. Quadriceps and triceps surae muscle volume was determined before and after bed rest and force and power were measured during training. Prior to these interventions, reproducibility of this device for training and testing was assessed in 23 subjects who performed bilateral maximal concentric, eccentric and isometric (MVC) knee extensions and plantar flexions over repeated sessions with simultaneous measurements of force, power and electromyographic (EMG) activity. RESULTS: Quadriceps and triceps surae muscle volume decreased (P < 0.05) 10 and 16%, respectively, after 29 days bed rest. Exercise maintained quadriceps volume and mitigated triceps surae atrophy. Thus, either muscle showed different response across subject groups (P < 0.05). Force and power output during training were either maintained (P > 0.05) or increased (P < 0.05). EMG amplitude in the training mode was similar (SS; P > 0.05) or greater (CP; P < 0.05) compared with that elicited during MVC. Peak force and power test-retest coefficient of variation (CV) ranged 5-6% and 7-8% for SS and CP, respectively. CONCLUSION: The present data suggest that this resistance exercise paradigm counteracts quadriceps and abates the more substantial triceps surae muscle atrophy in bedridden subjects, and therefore should be an important asset to space travellers.  相似文献   

15.
The present study examined the hypothesis that creatine (Cr) supplementation can increase the performance of isometric exercise in subjects engaged in a strength training program. Ten male subjects were tested in three experimental trials 7 days apart (days 1, 8 and 15). In each trial the subjects' maximum voluntary force of contraction (MVC) was measured in both legs and isometric endurance capacity at 80, 60, 40 and 20% of MVC of their stronger leg (knee extensor group) was measured with a 4-min rest between contractions. Additionally, the subjects' isometric endurance capacity at 80% of MVC of their weaker leg was measured in 10 repeated bouts interspersed with 2-min rest. A double-blind cross-over design was adopted for administering Cr or placebo. Subjects were randomized into either the Cr–placebo (Group A: days 2–6: 10 g day?1 of Cr; days 9–13: 10 g day?1 of glucose polymers) or the placebo–Cr group (Group B reverse supplementation order). The daily diet was analysed, and urine samples from 24-h collections were subjected to Cr and creatinine analysis. In each subject, ≈18 g (35%) of Cr was eliminated in the urine during the Cr supplementation period. MVC increased by about 10% (P < 0.01 in the weaker leg, P < 0.05 in the stronger leg) and body mass increased by 1.7 ± 0.4 kg (2.3%, P < 0.01) and 1.8 ± 0.3 kg (2.1%, P < 0.01) in groups A and B, respectively, after Cr supplementation, while energy intake and diet composition remained constant throughout the study. The subjects' endurance capacity increased (P < 0.05) in all the bouts after Cr supplementation. Muscle hypertrophy in response to Cr supplementation and weight training may explain the findings of the present study.  相似文献   

16.
The present study investigated the effects of three different strength training regimes on the isokinetic strength profile of the knee extensors (quadriceps, Q) and flexors (hamstrings, H) and if increases in isokinetic strength were accompanied by an enhanced performance during a more complex leg movement, the soccer kick. Twenty-two elite soccer players performed 12 weeks of strength training (three times per week) at either high resistance (HR group: 4 sets, 8 reps, 8RM loading), low resistance (LR group: 4 sets, 24 reps, 24RM loading), loaded kicking movements (LK group: 4 sets, 16 reps, 16RM loading) while one group served as controls (CO group). Isokinetic concentric and eccentric moment of force was obtained (KinCom) as peak moment (Mpeak) and moment at 50° knee flexion (M50) at angular velocities of 30, 120, 240° s-1. Isokinetic knee joint strength was unchanged in groups LR, LK, CO. However, after the HR strength training, concentric Mpeak (±SD) increased (P<0.01) at 30° s-1 (Q, 258±37 to 297±57 Nm; H, 122±22 to 140±21 Nm). Furthermore, eccentric Mpeak increased at 30, 120 and 240° s-1 (Q, 274±60 to 345±57 Nm (P<0.01), 291±56 to 309±49 Nm and 275±43 to 293±36 Nm (P<0.05), respectively; H, 143±32 to 158±25 Nm, 152±39 to 169±31 Nm and 148±27 to 163±19 Nm (P<0.05)). Corresponding increases (P<0.05) were observed for M50. The H/Q ratio calculated as eccentric hamstring strength divided by concentric quadriceps strength (Hecc/Qcon, representative for knee extension) at 240° s-1 increased (P<0.05) from 107 to 118% (based on Mpeak) and from 90 to 105% (M50). Kicking performance estimated by maximal ball flight velocity was unaffected by any of the strength training regimes investigated. In conclusion, only heavy-resistance strength training induced increases in isokinetic muscle strength in the absence of learning effects. Concentric strength gains were observed at the actual velocity of training, while eccentric strength gains were found over the entire range of velocities examined. The capacity of the hamstring muscles for providing stability to the knee joint during fast extension was augmented as a result of the heavy-resistance strength training. Strength training should be integrated with other types of training involving the actual movement pattern in order to increase the performance within more complex movement patterns.  相似文献   

17.
Summary Four male subjects aged 23–34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad·s−1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30° before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad·s−1. After 60 days T leg CSA had increased by 8.5%±1.4% (mean±SEM,n=4,p<0.001), iEMG by 42.4%±16.5% (p<0.01) and MVC by 20.8%±5.4% (p<0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8%±10% (N.S.) and 8.7%±4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0%±1.5%,p<0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5%±1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed. Isoangular torque of T leg increased by 20.9%±5.4% (p<0.05), 23.8%±7.8% (p<0.05) and 22.5%±6.7% (p<0.05) at 0, 1.05 and 2.09 rad·s−1 respectively; no significant change was observed at higher velocities and in the UT leg. Hypertrophy produced by strength training accounts for 40% of the increase in force while the remaining 60% seems to be attributable to an increased neural drive and possibly to changes in muscle architecture.  相似文献   

18.
Aim: The present study investigated whether in vivo human quadriceps femoris (QF) muscle specific tension changed following strength training by systematically determining QF maximal force and physiological cross-sectional area (PCSA). Methods: Seventeen untrained men (20 ± 2 years) performed high-intensity leg-extension training three times a week for 9 weeks. Maximum tendon force (Ft) was calculated from maximum voluntary contraction (MVC) torque, corrected for agonist and antagonist muscle activation, and moment arm length (dPT) before and after training. QF PCSA was calculated as the sum of the four component muscle volumes, each divided by its fascicle length. Dividing Ft by the sum of the component muscle PCSAs, each multiplied by the cosine of the respective fascicle pennation angle, provided QF specific tension. Results: MVC torque and QF activation increased by 31% (P < 0.01) and 3% (P < 0.05), respectively, but there was no change in antagonist co-activation or dPT. Subsequently, Ft increased by 27% (P < 0.01). QF volume increased by 6% but fascicle length did not change in any of the component muscles, leading to a 6% increase in QF PCSA (P < 0.05). Fascicle pennation angle increased by 5% (P < 0.01) but only in the vastus lateralis muscle. Consequently, QF specific tension increased by 20% (P < 0.01). Conclusion: An increase in human muscle specific tension appears to be a real consequence of resistance training rather than being an artefact of measuring errors but the underlying cause of this phenomenon remains to be determined.  相似文献   

19.
Twenty-three subjects isokinetically trained the right and left quadriceps femoris, three times per week for 16 weeks; one group (n=13) trained at an angular velocity of 4.19 rad · s–1 and a second group (n=10), at 1.05 rad · s–1. A control group (n=10) performed no training. Isometric endurance time at 60% quadriceps maximum voluntary contraction (MVC), mean power output and work done (W) during all-out cycling, and the muscle buffer value (B) and carnosine concentration of biopsy samples from the vastus lateralis, were all assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of these variables (P < 0.05). No significant difference in either 60% MVC endurance time or impulse [(endurance time × force) at 60% MVC] was observed for any group after the 16 week period (P > 0.05). However, the post-training increase (9%) in W during high-intensity cycling was greater in the training group than in the control group (P=0.04). NeitherB nor carnosine concentration showed any significant change following training (P=0.56 andP=0.37, respectively). It is concluded that 16 weeks of isokinetic training of the knee extensors enables subjects to do more work during high-intensity cycling. Although the precise adaptations responsible for the improved performance have yet to be identified, they are unlikely to include an increase inB.  相似文献   

20.
Muscle weakness following constant load exercise under heat stress has been associated with hyperthermia-induced central fatigue. However, evidence of central fatigue influencing intense self-paced exercise in the heat is lacking. The purpose of this investigation was to evaluate force production capacity and central nervous system drive in skeletal muscle pre- and post-cycle ergometer exercise in hot and cool conditions. Nine trained male cyclists performed a 20-s maximal voluntary isometric contraction (MVC) prior to (control) and following a 40-km time trial in hot (35°C) and cool (20°C) conditions. MVC force production and voluntary activation of the knee extensors was evaluated via percutaneous tetanic stimulation. In the cool condition, rectal temperature increased to 39.0°C and reached 39.8°C in the heat (P < 0.01). Following exercise in the hot and cool conditions, peak force declined by ~90 and ~99 N, respectively, compared with control (P < 0.01). Mean force decreased by 15% (hot) and 14% (cool) (P < 0.01 vs. control). Voluntary activation during the post-exercise MVC declined to 93.7% (hot) and 93.9% (cool) (P < 0.05 vs. control). The post-exercise decline in voluntary activation represented ~20% of the decrease in mean force production in both conditions. Therefore, the additional increase in rectal temperature did not exacerbate the loss of force production following self-paced exercise in the heat. The impairment in force production indicates that the fatigue exhibited by the quadriceps is mainly of peripheral origin and a consequence of the prolonged contractile activity associated with exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号