首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although reactive oxygen species (ROS) have been implicated in cadmium (Cd)-induced hepatotoxicity, the role of ROS in this pathway remains unclear. Therefore, we attempted to determine the molecular mechanisms relevant to Cd-induced cell death in HepG2 cells. Cd was found to induce apoptosis in the HepG2 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis and TUNEL staining. In the early stages, both rapid and transient ROS generation triggered apoptosis via Fas activation and subsequent caspase-8-dependent Bid cleavage, as well as by calpain-mediated mitochondrial Bax cleavage. The timing of Bid activation was coincided with the timing at which the mitochondrial transmembrane potential (MMP) collapsed as well as the cytochrome c (Cyt c) released into the cytosol. Furthermore, mitochondrial permeability transition (MPT) pore inhibitors, such as cyclosporin A (CsA) and bongkrekic acid (BA), did not block Cd-induced ROS generation, MMP collapse and Cyt c release. N-acetylcysteine (NAC) pretreatment resulted in the complete inhibition of the Cd-induced apoptosis via catalase upregulation and subsequent Fas downregulation. NAC treatment also completely blocked the Cd-induced intracellular ROS generation, MMP collapse and Cyt c release, indicating that Cd-induced mitochondrial dysfunction may be regulated indirectly by ROS-mediated signaling pathway. Taken together, a rapid and transient ROS generation by Cd triggers apoptosis via caspase-dependent pathway and subsequent mitochondrial pathway. NAC inhibits Cd-induced apoptosis through the blocking of ROS generation as well as the catalase upregulation.  相似文献   

2.
Selenium, an essential trace element, showed the significant protective effects against liver and kidney damage induced by some heavy metals. However, the mechanism how selenium suppresses cadmium (Cd)-induced cytotoxicity remains unclear. In this study, we investigated the protective mechanism of selenium on Cd-induced apoptosis in LLC-PK1 cells via reactive oxygen species (ROS) and mitochondria linked signal pathway. Studies of PI and Annexin V dual staining analysis demonstrated that 20 μM Cd-induced apoptosis as early as 18 h. A concomitant by the generation of ROS, the loss of mitochondrial membrane potential, cytochrome c (cyt c) release, activation of caspase-9, -3 and regulation of Bcl-2 and Bax were observed. N-acetylcysteine (NAC, 500 μM), a free radical scavenger, was used to determine the involvement of ROS in Cd-induced apoptosis. During the process, selenium played the same role as NAC. The anti-apoptosis exerted by selenium involved the blocking of Cd-induced ROS generation, the inhibition of Cd-induced mitochondrial membrane potential collapse, the prevention of cyt c release, subsequent inhibition of caspase activation and the changed level of Bcl-2 and Bax. Taken together, we concluded that Cd-induced apoptosis was mediated by oxidative stress and selenium produced a significant protection against Cd–induced apoptosis in LLC-PK1 via ameliorating the mitochondrial dysfunction.  相似文献   

3.
Selenium, an essential trace element, showed the significant protective effects against kidney damage induced by some heavy metals. Our previous research have found that the protection effects of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium (Cd)-induced LLC-PK1 cells. The present study as a continuation of our earlier one to investigate the protective effects and mechanism of selenium on Cd-induced apoptosis of kidney in vivo. Cadmium exposure increased the production of reactive oxygen species (ROS) and altered the levels of oxidative stress related biomarkers in kidney tissue. A concomitant by the loss of mitochondrial membrane potential, cytochrome c release and regulation of VDAC, Bcl-2 and Bax were observed. Apoptotic nature of cell death is confirmed by activation of caspase-3, which is also supported by histological examination. During the process, selenium played a beneficial role against Cd-induced renal damage. Pretreatment with selenium partially blocked Cd-induced ROS generation, inhibited Cd induced mitochondrial membrane potential collapse, prevented cytochrome c release, inhibited caspase activation and changed the level of VDAC, Bcl-2 and Bax. Combining all, results suggest that selenium has an ability to inhibit mitochondrial apoptotic pathway in oxidative stress mediated kidney dysfunction caused by cadmium.  相似文献   

4.
5.
The molecular mechanism of Cd-induced signal transduction is not well understood. The aims of this study were to determine the system that generates reactive oxygen species in response to Cd that contribute to intracellular signaling on the activation of the STAT3 pathway in HepG2 cells and to address the participation of STAT3 in the production of Hsp70. Cadmium induced a significant increase in STAT3 DNA-binding after 1 h treatment. Serine phosphorylation of STAT3 was observed as a result of cadmium treatment while no tyrosine phosphorylation was detected. Cells were pretreated with inhibitors for several ROS generating systems, only diphenylen iodonium, an inhibitor of NADPH oxidase, decreased STAT3 activation. Cd induced 2.6-fold NADPH oxidase activity. Antioxidant treatment with pegylated-catalase reduced STAT3 activation. Cells were pretreated with different MAPK's inhibitors. ERK contributes in approximately 60%, and JNK in a small proportion, while p38 does not contribute in STAT3 activation. Cells were pretreated with a specific STAT3 peptide inhibitor that decreased the Cd-induced Hsp70 expression. Data suggest that STAT3 is phosphorylated at serine 727 by a Cd stress-activated signaling pathway inducing NADPH oxidase activity which produced ROS, leading ERK activation. MAPK promotes STAT3 phosphorylation that could induce a protective mechanism against Cd toxicity.  相似文献   

6.
Hepatocellular carcinoma (HCC) contributes to more than 80% of all primary cancers globally and ranks fourth in cancer-related deaths, due to the lack of an effective, definite therapeutic drug. Coleus vettiveroides (CV) has been used in Indian traditional medicine to treat diabetes, liver ailments, skin diseases, leukoderma, and leprosy. This study investigates the anticancer effect of CV ethanolic root extract in HepG2 cells. HepG2 cells were treated with CV extract, and its cytotoxicity was analyzed by MTT assay. AO/EB staining, propidium iodide staining, DCFH-DA assay, phalloidine staining, flow cytometry, and qPCR studies were performed for ROS expression, apoptosis and cell cycle analysis. The phytochemical analysis confirmed the presence of quercetin and galangin in CV root extract. The results showed that CV inhibited the proliferation of HepG2 cells, with altered cellular and nuclear morphology. CV was also found to increase intracellular ROS levels and oxidative stress markers in HepG2 cells. CV significantly altered the actin microfilament distribution in HepG2 cells and caused cell cycle arrest at the sub G0-G1 phase. CV also induced mitochondria-mediated apoptosis, as evidenced by increased expression of p53, Bax, cytochrome C, Apaf-1, PARP, caspase-3 and caspase-9, and downregulated Bcl-2 expression. Therefore, CV exerts its anticancer effect by inducing mitochondrial dysfunction, oxidative stress, cytoskeletal disorganization, cell cycle arrest, and mitochondria-mediated apoptosis, and it could be a potent therapeutic option for HCC.  相似文献   

7.
A pharmacological dose (2.5-10 μM) of 17α-estradiol (17α-E2) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17α-E2 was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G2/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56 phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17α-E2-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G2/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17α-E2-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G1/S boundary, 17α-E2 failed to induce the G2/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17α-E2 toward Jurkat T cells is attributable to apoptosis mainly induced in G2/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.  相似文献   

8.
Previous reports have demonstrated that cadmium (Cd) may induce cell death via apoptosis, but the mechanism responsible for cellular death is not clear. In this study, we investigated the signaling pathways implicated in Cd-induced apoptosis in lung epithelial fibroblast (WI 38) cells. Apoptotic features were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, propidium iodide staining and DNA laddering. A treatment of cadmium caused the caspase-8-dependent Bid cleavage, the release of cytochrome c (Cyt c), activation of caspase-9 and -3, and PARP cleavage. A caspase-8 specific inhibitor prevented the Bid cleavage, caspase-3 activation and cell death. Alternatively, we observed that full-length Bax was cleaved into 18-kDa fragment (p18/Bax); this was initiated after 12 h and by 36 h the full-length Bax protein was totally cleaved to the p18/Bax, which caused a drastic release of Cyt c from mitochondria. The p18/Bax was detected exclusively in the mitochondrial fraction, and it originated from mitochondrial full-length Bax, but not from the cytosol full-length Bax. Cd also induced the activation of the mitochondrial 30-kDa small subunit of calpain that was preceded by Bax cleavage. Cd induced the upregulation of Bcl-2 and the degradation of p53 protein. N-acetyl cysteine effectively inhibited the Cd-induced DeltaPsim reduction, indicating ROS acts upstream of mitochondrial membrane depolarization. Taken together, our results suggest that Cd-induced apoptosis was thought to be mediated at least two pathways; caspase-dependent Bid cleavage, and the other is calpain-mediated mitochondrial Bax cleavage. Moreover, we found that the function of Bid and Bax was not dependent of Bcl-2, and that ROS can also contribute in the Cd-induced cell death.  相似文献   

9.
This study investigates the mechanism of cell death induced by cadmium (Cd) in Chinese hamster ovary (CHO) cells. Cells exposed to 4 microM Cd for 24 h did not show signs of apoptosis, such as DNA fragmentation and caspase-3 activation. The pro-apoptotic (Bax) or anti-apoptotic (Bcl-2 and Bcl-xL) protein levels in the Bcl-2 family were not altered. However, an increase in propidium iodide uptake and depletion of ATP, characteristics of necrotic cell death, were observed. Cd treatment increased the intracellular calcium (Ca2+) level. Removal of the Ca2+ by a chelator, BAPTA-AM, efficiently inhibited Cd-induced necrosis. The increased Ca2+ subsequently mediated calpain activation and intracellular ROS production. Calpains then triggered mitochondrial depolarization resulting in cell necrosis. Cyclosporin A, an inhibitor of mitochondrial permeability transition, recovered the membrane potential and reduced the necrotic effect. The generated ROS reduced basal NF-kappaB activity and led cells to necrosis. An increase of NF-kappaB activity by its activator, PMA, attenuated Cd-induced necrosis. Calpains and ROS act cooperatively in this process. The calpain inhibitor and the ROS scavenger synergistically inhibited Cd-induced necrosis. Results in this study suggest that Cd stimulates Ca2+-dependent necrosis in CHO cells through two separate pathways. It reduces mitochondrial membrane potential by activating calpain and inhibits NF-kappaB activity by increasing the ROS level.  相似文献   

10.
Fish oil-containing diets rich in cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) provide protection against tumorigenesis. The mechanisms of the cytotoxic effects of DHA include the production of reactive oxygen species (ROS). Albumin has antioxidant property and binds fatty acids, it may protect the cells against the DHA-induced cytotoxicity. In this study, we compared the susceptibility of three human hepatocellular carcinoma (HCC) cell lines (HepG2, Hep3B, Huh7) to the cytotoxic effects of DHA, and examined the changes in the susceptibility following albumin overexpression using transfection vectors or albumin downregulation using small interfering RNA (siRNA). HepG2 cells were the most susceptible to DHA-induced cytotoxicity and increased oxidative activities by DHA compared to Hep3B and Huh7 cells. The cytotoxic effects of DHA were concentration-dependently abrogated by typical antioxidants, a radical scavenger, an iron chelator and incubation with exogenous albumin. Overexpression of albumin in HepG2 cells markedly attenuated DHA-induced oxidative activities and cytotoxicity. Furthermore, knockdown of albumin in both Hep3B and Huh7 cells significantly enhanced the effects of DHA. The results of our in vitro experiments indicate that the cytotoxic effects of DHA on HCC cell lines are modulated by albumin.  相似文献   

11.
We examined the molecular mechanisms involved in the adaptive response to cadmium (Cd)-induced apoptosis in human myelomonocytic lymphoma U937 cells. When U937 cells were treated with 50 μM cadmium chloride (CdCl2) for 12 h, significant apoptosis occurred. This was associated with an increase in intracellular reactive oxygen species (ROS), sustained phosphorylation of JNK, activation of caspase-3, a decrease in Mcl-1 (anti-apoptotic Bcl-2 proteins), and increases in Bim, Noxa and tBid (a pro-apoptotic protein under the Bcl-2 family). No apoptosis occurred when the cells were treated with 1 μM CdCl2 for 72 h. However, pretreatment with low-dose CdCl2 dramatically altered the sensitivity of the cells to 50 μM CdCl2 with inhibition of apoptosis. Concomitantly, there were significant decreases in the generation of intracellular ROS and the activation of JNK. Pretreatment with 1 μM CdCl2 also attenuated the decrease in Mcl-1 and the increases in Bim, Noxa and tBid induced by 50 μM CdCl2. In conclusion, pretreatment with low-dose Cd inhibited apoptosis induced by high-dose Cd. The mechanism involves inhibition of intracellular ROS generation and JNK activation, and modulating the balance between the expression of Mcl-1 and its binding partners, Bim, Noxa and tBid.  相似文献   

12.
KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G2 growth. We found that KYKZL-1 inhibited the growth of Hep G2 cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE2 and LTB4 production in Hep G2 cells. Accordingly, exogenous addition of PGE2 or LTB4 reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G2 checkpoint via the activation of p21CIP1 protein and down-regulation of cyclin A expression.These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest.Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile.  相似文献   

13.
Recent findings have suggested that oxidative damage might contribute to the cytotoxicity and carcinogenicity of aflatoxin B(1) (AFB(1)). The induction of oxidative stress also plays an important role in the toxicity of another mycotoxin: ochratoxin A (OTA). In this study, the protective effect of rosmarinic acid (Ros A) against AFB(1) and OTA-induced cytotoxicity was investigated in a human hepatoma-derived cell line (Hep G2). Rosmarinic acid, a natural phenolic compound contained in many Lamiaceae herbs such as Perilla frutescens, sage, basil and mint, inhibits complement-dependent inflammatory processes and may have therapeutic potential.The ability of Ros A to reduce radical oxygen species (ROS) production, protein and DNA synthesis inhibition and apoptosis caused by the two mycotoxins was also investigated. Our experiments proved the significant cytoprotective effect of Ros A in vitro from OTA- and AFB(1)-induced cell damage. In particular, 24-h pretreatment with 50 micro M Ros A inhibited the cytotoxicity of 10 micro M AFB(1) (by 45%) and 10 micro M OTA (by 35%) in Hep G2 cells (P < 0.001). Moreover, Ros A dose dependently attenuated ROS production and DNA and protein synthesis inhibition induced by both of the toxins. Similarly, apoptosis cell death was prevented, as demonstrated by reduction of DNA fragmentation and inhibition of caspase-3 activation (P < 0.001).  相似文献   

14.
Cadmium is a toxic metal that can damage the brain and other organs. This study aimed to explore the protective effects of Potentilla anserine L. polysaccharide (PAP) against CdCl2-induced neurotoxicity in N2a and SH-SY5Y cells and in the cerebral cortex of BALB/c mice. In addition, we aimed to identify the potential mechanisms underlying these protective effects. Relative to CdCl2 treatment alone, pretreatment with PAP prevented the reduction in cell viability evoked by CdCl2, decreased rates of apoptosis, promoted calcium homeostasis, decreased ROS accumulation, increased mitochondrial membrane potential, inhibited cytochrome C and AIF release, and prevented the cleavage of caspase-3 and PARP. In addition, PAP significantly decreased the CdCl2-induced phosphorylation of CaMKII, Akt, and mTOR. In conclusion, PAP represents a potential therapeutic agent for the treatment of Cd-induced neurotoxicity, functioning in part via attenuating the activation of the mitochondrial apoptosis pathway and the Ca2+-CaMKII-dependent Akt/mTOR pathway.  相似文献   

15.
16.
Cadmium is a toxic heavy metal that accumulates in the environment and is commonly found in cigarette smoke and industrial effluents. This study was designed to determine the role of reactive oxygen species (ROS) generation, and its antagonism by antioxidants, in cadmium-mediated cell signaling and apoptosis in murine macrophage cultures. Cadmium-generated ROS production was observed in J774A.1 cells at 6 h, reverting to control levels at 16 and 24 h. The ROS production was concentration related between 20 and 500 microM cadmium. Activation of caspase-3 was observed at 8 h and DNA fragmentation at 16 h in the presence of 20 microM cadmium, suggesting that caspase-3 activation is a prior step to DNA fragmentation in cadmium-induced apoptosis. Inhibitors of caspase-3, -8, -9, and a general caspase inhibitor suppressed cadmium-induced caspase-3 activation and apoptosis indicating the importance of caspase-3 in cadmium-induced toxicity in these cells. Protection against the oxidative stress with N-acetylcysteine (NAC) and silymarin (an antioxidant flavonoid) blocked cadmium-induced apoptosis. Pretreatment of cells with NAC and silymarin prevented cadmium-induced cell injury, including growth arrest, mitochondrial impairment, and necrosis, and reduced the cadmium-elevated intracellular calcium ([Ca2+]i), suggesting that the oxidative stress is a source of increased [Ca2+]i. NAC inhibited cadmium-induced activation of mitogen-activated protein kinases, the c-Jun NH2-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK). However, silymarin provided only a partial protection for JNK activation, and only at the low concentration did it inhibit cadmium-induced ERK activation. Inhibition of caspase-3 protected oxidative stress produced by cadmium, suggesting that the activation of caspase-3 also contributes to generation of reactive oxygen species (ROS). Results emphasized the role of ROS, Ca2+ and mitogen-activated protein kinases in cadmium-induced cytotoxicity in murine macrophages.  相似文献   

17.
Metallothionein (MT) often reduces the adverse effects of cadmium (Cd), but how it may alter Cd-induced apoptosis is unclear. The goal of this study was to define the role of MT in Cd-induced apoptosis using cell lines with widely varying sensitivity to Cd. Effects of Cd on growth of human hepatocellular carcinoma cell lines (HepG2 and PLC/PRF/5) were investigated and compared with Chang cells. These cells were cultured with 0, 5, 10, 20, 40, 80, and 120 microM of Cd for 3, 6, 12, and 24 h. Significant cytolethality was observed in HepG2 and PLC/PRF/5 cells in a time- and concentration-dependent manner, with LC(50) values of 24 microM and 13 microM, respectively. However, Chang cells were much less sensitive to Cd-induced cytotoxicity (LC(50), 64 microM). Apoptotic cell death occurring at cytolethal concentrations was demonstrated in all cell lines by DNA fragmentation on agarose gel electrophoresis or by ELISA. When MT was measured, there was a highly significant negative linear correlation between the basal cellular MT concentration or Cd-induced MT and the rate of apoptosis induced by Cd in these cell lines. Treating HepG2 cells with zinc (Zn) made the relatively sensitive HepG2 cell line resistant to Cd-induced apoptosis, likely due to Zn-induced MT. In fact, there was also a significant negative linear correlation between the amount of Zn-induced MT in HepG2 cells and the rate of Cd-induced apoptosis. These findings revealed that basal or induced MT perturbs Cd-induced apoptotic cell death in various cell lines, and a strong negative correlation exists between cellular MT content and the rate of apoptosis induced by Cd.  相似文献   

18.
Ochratoxin A (OTA), one of the most abundant mycotoxin food contaminants, is classified as “possibly carcinogenic to humans.” Our previous study showed that OTA could induce a G2 arrest in immortalized human gastric epithelium cells (GES-1). To explore the putative roles of oxidative DNA damage and the ataxia telangiectasia-mutated (ATM) pathways on the OTA-induced G2 arrest, the current study systematically evaluated the roles of reactive oxygen species (ROS) production, DNA damage, and ATM-dependent pathway activation on the OTA-induced G2 phase arrest in GES-1 cells. The results showed that OTA exposure elevated intracellular ROS production, which directly induced DNA damage and increased the levels of 8-OHdG and DNA double-strand breaks (DSBs). In addition, it was found that OTA treatment induced the phosphorylation of the ATM protein, as well as its downstream molecules Chk2 and p53, in response to DNA DSBs. Inhibition of ATM by the pharmacological inhibitor caffeine or siRNA effectively prevented the activation of ATM-dependent pathways and rescued the G2 arrest elicited by OTA. Finally, pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) reduced the OTA-induced DNA DSBs, ATM phosphorylation, and G2 arrest. In conclusion, the results of this study suggested that OTA-induced oxidative DNA damage triggered the ATM-dependent pathways, which ultimately elicited a G2 arrest in GES-1 cells.  相似文献   

19.
Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells.   总被引:6,自引:0,他引:6  
Cadmium (Cd), a potent immunotoxic metal, induces apoptosis both in vitro and in vivo. However, the mode of action remains unclear. We previously reported that Cd-induced apoptosis was partly dependent on mitochondria. In the present study, we investigated the involvement of caspase-9, which is the apex caspase in the mitochondoria-dependent apoptosis pathway, in Cd-induced apoptosis in human promyelocytic leukemia HL-60 cells. A specific inhibitor of caspase-9, Z-LEHD-FMK, partly inhibited DNA fragmentation induced by Cd treatment in HL-60 cells. Moreover, treatment of HL-60 cells with Cd resulted in the appearance of Cytochrome c (Cyt c), a potent activator of caspase-9, in the cytosol at 3 h, which closely paralleled the activation of caspase-9. Caspase-9 is an initiator caspase that is a potent activator of downstream effector caspases such as caspase-3. Caspase-3 activation was subsequent to the Cyt c release at 6 h. DNA fragmentation, an index of induction of apoptosis, also appeared 6 h after Cd treatment. The effects were more pronounced at 9 h after Cd addition. A broad-specificity inhibitor of caspases, Z-Asp-CH(2)-DCB, inhibited caspase-3 activation and DNA fragmentation induced by Cd in a dose-dependent fashion. The results suggest that Cd-induced apoptosis is partly caused by caspase-9 activation triggered by Cyt c.  相似文献   

20.
Intestinal microflora (IM) is able to produce toxic and carcinogenic metabolites and induce more potent cytotoxicity against cells than non-metabolites. This study was performed to investigate the cytotoxic responses of geniposide (GS) and its metabolite and to determine the role of metabolism by IM in GS-induced cytotoxicity. Genipin (GP), a GS metabolite, increased cytotoxic effects in cells, but GS did not. Following GS incubation with IM for metabolic activation, increased cytotoxicity was detected compared to GS. Western blot analysis revealed that the activated GS inhibited Bcl-2 expression with a subsequent increase in Bax expression. Likewise, GS activation by IM stimulated caspase-3 and the production of reactive oxygen species (ROS). In addition, activated GS-induced apoptosis was confirmed by apoptosis and ROS assays; N-acetyl-l-cysteine (NAC) suppressed ROS production and apoptotic cell death. Activated GS induced sustained JNK phosphorylation. Moreover, activated GS-induced cell death was reversed by SP600125. Taken together, these findings suggest that human IM is able to metabolize GS into GP, and the related biological activities induce apoptosis through ROS/JNK signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号