首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Objectives. Psychotic symptoms frequently occur in veterans with combat-related posttraumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) plays a major role in neurodevelopment, neuro-regeneration, neurotransmission, learning, regulation of mood and stress responses. The Met allele of the functional polymorphism, BDNF Val66Met, is associated with psychotic disorders. This study intended to assess whether the Met allele is overrepresented in unrelated Caucasian male veterans with psychotic PTSD compared to veteran controls. Methods. The BDNF Val66Met variants were genotyped in 576 veterans: 206 veterans without PTSD and 370 veterans with PTSD subdivided into groups with or without psychotic features. Results. Veterans with psychotic PTSD were more frequently carriers of one or two Met alleles of the BDNF Val66Met polymorphism than veterans with PTSD without psychotic features and veterans without PTSD. Conclusions. The study shows that veterans with psychotic PTSD carried more Met alleles of the BDNF Val66Met than non-psychotic veterans with PTSD or veterans without PTSD. The results might add further support to the hypothesis that psychotic PTSD is a more severe subtype of PTSD.  相似文献   

2.
Abstract

Objectives. Converging evidence suggests that the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects brain structure. Yet the majority of studies have shown no effect of this polymorphism on hippocampal volumes, perhaps due to small effect size. Methods. We performed a meta-analysis of studies investigating the association between Val66Met BDNF polymorphism and hippocampal volumes in healthy subjects by combining standardized differences between means (SDM) from individual studies using random effect models. Results. Data from 399 healthy subjects (255 Val-BDNF homozygotes and 144 carriers of at least one Met-BDNF allele) in seven studies were meta-analysed. Both the left and right hippocampi were significantly larger in Val-BDNF homozygotes than in carriers of at least one Met-BDNF allele (SDM = 0.41, 95% Confidence Interval = 0.20; 0.62, z = 3.86, P = 0.0001; SDM = 0.41; 95% Confidence Interval = 0.20; 0.61, z = 3.81, P = 0.0001, respectively), with no evidence of publication bias. Conclusions. Healthy carriers of BDNF gene Val66Met polymorphism show bilateral hippocampal volume reduction. The effect size was small, but the same direction of effect was seen in all meta-analyzed studies. The association with the BDNF gene Val66Met polymorphism makes hippocampal volume a potential candidate for an endophenotype of disorders presenting with reduced hippocampal volumes.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) is a nerve growth factor that has antidepressant-like effects in animals and may be implicated in the etiology of mood-related phenotypes. However, genetic association studies of the BDNF Val66Met polymorphism (single nucleotide polymorphism rs6265) in major depressive disorder (MDD) have produced inconsistent results. We conducted a meta-analysis of studies comparing the frequency of the BDNF Val66Met-coding variant in depressed cases (MDD) and nondepressed controls. A total of 14 studies involving 2812 cases with DSM-III or -IV defined MDD and 10 843 nondepressed controls met the inclusion criteria. Analyses were stratified either by gender or ethnicity (Asian and Caucasian) because MDD is more prevalent in women and in Caucasians and because BDNF allele frequencies differ by ethnicity. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were provided for allelic analyses (Met versus Val), as well as for genotypic analyses (Met/Met and Val/Met versus Val/Val). In the total sample, the BDNF Val66Met polymorphism was not significantly associated with depression. However, the gender stratified analyses revealed significant effects in both the allelic and genotypic analyses in men (OR(MET), 95% CI; 1.27 (1.10-1.47); OR(MET/MET), 95% CI; 1.67 (1.19-2.36)). Stratification according to ethnicity did not show significant effects of the Val66Met polymorphism on MDD. Our results suggest that the BDNF Val66Met polymorphism is of greater importance in the development of MDD in men than in women. Future research into gender issues will be of interest.  相似文献   

4.
Although emerging evidence has suggested an association between the Val66Met (rs6265) polymorphisms in brain‐derived neurotrophic factor (BDNF) gene and the panic disorder, the conclusion is inclusive given the mixed results. This meta‐analysis reviewed and analyzed the recent studies addressing the potential association between the Val66Met polymorphisms and panic disorder susceptibility. Related case–control studies were retrieved by database searching and selected according to established inclusion criteria. Six articles were identified, which explored the association between the BDNF Val66Met polymorphism and panic disorder. Statistical analyses revealed no association for the allele contrast and the dominant model. However, the recessive model showed a significant association between the BDNF Val66Met polymorphism and panic disorder (odds ratio = 1.26, 95% confidence interval = 1.04–1.52, z = 2.39, P = 0.02). Despite of some limitations, this meta‐analysis suggests that the Val66Met polymorphism of BDNF gene is a susceptibility factor for panic disorder.  相似文献   

5.
Childhood stress and genetic factors like the Val66MET polymorphism of the brain derived neurotrophic factor (BDNF) gene are associated with a higher risk for developing major depressive disorder (MDD) and might also influence hippocampal changes. The aim of this study was to determine which hippocampal dentate gyrus and cornu ammonis subfields are altered in MDD compared to healthy controls and which subfields are affected by the BDNF Val66Met polymorphism and child adversity. Adult patients with MDD and healthy matched controls underwent high‐resolution magnetic resonance imaging. Automatic segmentation using the programme FreeSurfer was used to segment the hippocampal subfields dentate gyrus (DG/CA4), CA1 and CA2/3. The history of possible childhood adversity was assessed using the Childhood Trauma Questionnaire and the Val66Met BDNF SNP (rs6265) genotypes were obtained. Patients with MDD had significantly smaller CA4/DG and CA2/3 volumes compared to healthy controls. Furthermore, there was a significant interactive effect of BDNF allele and childhood adversity on CA2/3 and CA4/DG volumes. Met allele carriers without childhood adversity had larger and with childhood adversity smaller CA4/DG and CA2/3 volumes than Val‐allele homozygotes. Our results highlight stress by gene interactions as relevant for hippocampal volume reductions, in particular for the subfield CA2/3 and dentate gyrus. Hum Brain Mapp 35:5776–5783, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

6.
A functional polymorphism of the brain derived neurotrophic factor gene (BDNF) (Val66Met) has been suggested to be involved in the pathogenesis of attention-deficit/hyperactivity disorder (ADHD). It also has an impact on peripheral BDNF levels in psychiatric disorders. This study examined the association of Val66Met with plasma BDNF level of ADHD in Han Chinese children (170 medication – naïve ADHD patients and 155 unaffected controls, aged 6–16 years). The Val allele was showed a higher frequency in females with ADHD (n=84) than controls (P=0.029) from the case-control association study. The analysis of covariance (ANCOVA) indicated that the mean plasma BDNF levels of ADHD patients were significantly higher than that of controls (P=0.001). We performed both total sample and sex stratified analyses to investigate the effect of Val66Met genotype on the plasma BDNF levels, but only a trend of association was found in females with ADHD (n=84), with a tendency of lower plasma BDNF level in Val allele carriers than Met/Met genotype carriers (P=0.071). Our results suggested a sex-specific association between BDNF and ADHD. Furthermore, there was a possible sex-specific relationship between the BDNF Val66Met genotype and plasma BDNF levels. However, further studies are required to elucidate the role of BDNF in ADHD.  相似文献   

7.
Various studies suggested that brain-derived neurotrophic factor (BDNF) gene polymorphisms contributed to the development of many neurological disorders. However, whether BDNF Val66Met polymorphism is associated with epilepsy remains controversial. In our study, we tried to investigate the effects of this functional polymorphism on the occurrence of temporal lobe epilepsy (TLE) and its clinical phenotypes. Case-control studies were employed to study the association between BDNF Val66Met polymorphism and TLE, as well as its clinical phenotypes, and magnetic resonance imaging examinations and voxel-based morphometry analyses were carried out for further study. Our results showed that the frequency of Met allele was found to be lower in the TLE patients compared with the control subjects (43.9% vs. 48.6%, P = 0.012, OR = 1.21, 95% CI = 1.04–1.41), and the frequency of Met66 allele carriers in the TLE with hippocampal sclerosis was significantly lower than those non-carriers (20.5% vs. 29.1%, P = 0.040). However, we failed to find the difference between different genotypes and hippocampal asymmetry. Our findings suggested that BDNF Val66Met polymorphism might be correlated with epileptogenesis, and Met66 allele might play a protective role against the occurrence of TLE.  相似文献   

8.
Cognitive impairment is one of the core symptoms in schizophrenia, which reflects the neurodevelopmental deficits in the etiology of this disease. Brain-derived neurotrophic factor (BDNF) plays an important role in various neurodevelopmental processes. Growing evidence has shown that BDNF may be involved in the etiology of schizophrenia. The aim of this study was to examine the association of the BDNF Val66Met polymorphism with cognition in patients with schizophrenia. Various neuropsychological tests including the Wechsler Adult Intelligence Scale-Revised, the Wechsler Memory Scale-Revised, and the Wisconsin Card Sorting Test (WCST) were employed in a sample of 112 antipsychotic-na?ve patients with schizophrenia and 63 healthy controls. We examined the Val66Met polymorphism in the 112 patients and 394 controls. Among the patients, cognition was compared between Met allele carriers and non-Met allele carriers. A wide range of cognitive deficits were demonstrated in the schizophrenic patients, compared with the controls (Ps?相似文献   

9.
Background: Brain-derived neurotrophic factor (BDNF) plays a crucial role in the survival, development and maintenance of neuronal systems, and the Val66Met polymorphism has been implicated in memory functions. Method: We examined the association of BDNF with general intellectual ability in 161 individuals including 53 early-onset patients with schizophrenia (EOS), 91 healthy biological relatives, and 17 relatives with major depressive disorder (MDD), using the Wechsler Intelligence Scales (WISC). Results: Regardless of diagnosis, individuals with the Met66 allele had a significantly higher performance score than those homozygous for Val66 on vocabulary, block design and object assembly subtests of the WISC. EOS probands showed poor performance on all IQ subtests compared with relatives with and without MDD. Limitations: Relatively smaller sample size of individual genotypes. Conclusions: BDNF genotype may play a role in specific cognitive functions and dimensions of intelligence. The Met allele appears to be associated with superior performance in IQ compared with relatives Val/Val genotype.  相似文献   

10.
《Clinical neurophysiology》2021,132(11):2827-2839
ObjectiveWhile previous studies showed that the single nucleotide polymorphism (Val66Met) of brain-derived neurotrophic factor (BDNF) can impact neuroplasticity, the influence of BDNF genotype on cortical circuitry and relationship to neuroplasticity remain relatively unexplored in human.MethodsUsing individualised transcranial magnetic stimulation (TMS) parameters, we explored the influence of the BDNF Val66Met polymorphism on excitatory and inhibitory neural circuitry, its relation to I-wave TMS (ITMS) plasticity and effect on the excitatory/inhibitory (E/I) balance in 18 healthy individuals.ResultsExcitatory and inhibitory indexes of neurotransmission were reduced in Met allele carriers. An E/I balance was evident, which was influenced by BDNF with higher E/I ratios in Val/Val homozygotes. Both long-term potentiation (LTP-) and depression (LTD-) like ITMS plasticity were greater in Val/Val homozygotes. LTP- but not LTD-like effects were restored in Met allele carriers by increasing stimulus intensity to compensate for reduced excitatory transmission.ConclusionsThe influence of BDNF genotype may extend beyond neuroplasticity to neurotransmission. The E/I balance was evident in human motor cortex, modulated by BDNF and measurable using TMS. Given the limited sample, these preliminary findings warrant further investigation.SignificanceThese novel findings suggest a broader role of BDNF genotype on neurocircuitry in human motor cortex.  相似文献   

11.
ObjectiveAttention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that negatively affects different areas of life. We aimed to evaluate the associations between the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) and ADHD and to assess the effect of the BDNF polymorphism on the neurocognitive profile and clinical symptomatology in ADHD.MethodsTwo hundred one ADHD cases and 99 typically developing subjects (TD) between the ages of 8 and 15 years were involved in the study. All subjects were evaluated using a complete neuropsychological battery, Child Behavior Checklist, the Teacher''s Report Form (TRF) and the DSM-IV Disruptive Behavior Disorders Rating Scale-teacher and parent forms.ResultsThe GG genotype was significantly more frequent in the patients with ADHD than in the TD controls, and the GG genotype was also significantly more frequent in the ADHD-combined (ADHD-C) subtype patients than in the TDs. However, there were no significant associations of the BDNF polymorphism with the ADHD subtypes or neurocognitive profiles of the patients. The teacher-assessed hyperactivity and inattention symptom count and the total score were higher, and the appropriately behaving subtest score of the TRF was lower in the GG genotypes than in the GA and AA (i.e., the A-containing) genotypes.ConclusionWe found a positive association between the BDNF gene Val66Met polymorphism and ADHD, and this association was observed specifically in the ADHD-C subtype and not the ADHD-predominantly inattentive subtype. Our findings support that the Val66Met polymorphism of BDNF gene might be involved in the pathogenesis of ADHD. Furthermore Val66Met polymorphism of BDNF gene may be more closely associated with hyperactivity rather than inattention.  相似文献   

12.
Data from animal studies and from genetic scans in humans suggest that brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, may be involved in the mechanisms underlying substance abuse. The present study tested the hypothesis that the BDNF-gene Val66Met polymorphism is associated with substance abuse. We studied this polymorphism in 103 methamphetamine- and 200 heroin-dependent cases and 122 normal controls. We also considered the association of this polymorphism with age of onset of substance abuse in the heroin-dependent cases. Significant differences in BDNF Val66Met genotype distribution were found between subjects dependent on methamphetamine (P = 0.046) or heroin (P = 0.045) and controls, suggesting that the lower 66Met carrier frequency is associated with substance abuse. Furthermore, in the heroin-dependent group, the Val/Val homozygotes had a later onset of substance abuse compared with the Met allele carriers. The results suggest that the BDNF Val66Met polymorphism or a nearby locus may be involved in the pathogenesis of substance abuse. Our findings support previous genetic scan results showing that BDNF may contribute to substance abuse vulnerability.  相似文献   

13.

Objective

Coping with cancer is an important determinant of psychological morbidity, quality of life, and treatment adherence in cancer patients. The aim of this study was to elucidate the association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and coping response to stress in patients diagnosed with advanced gastric cancer.

Methods

Ninety-one subjects (60 males, 31 females) recently diagnosed with advanced gastric cancer were recruited. Coping style and distress level were examined using the Mini-Mental Adjustment to Cancer (Mini-MAC) scale and Hospital Anxiety and Depression Scale, and genotyping was evaluated. To examine the temporal stability of the Mini-MAC scores, a 6-week follow-up evaluation was conducted in 72 patients, after completion of two chemotherapy cycles.

Results

Coping style to cancer significantly differed between the Met carriers of BDNF Val66Met and the Val/Val homozygotes. The Met carriers were significantly more anxious than the Val/Val homozygotes.

Conclusion

The present findings suggest that the BDNF Val66Met polymorphism may be involved in individual coping responses to cancer. The Met allele of BDNF Val66Met may be predictive of an anxious coping style in patients with advanced cancer.  相似文献   

14.
Abstract

Objectives. Lower levels of serum brain derived neurotrophic factor (BDNF) is one of the best known biomarkers of depression. To identify genetic variants associated with serum BDNF, we tested the Val66Met (rs6265) functional variant and conducted a genome-wide association scan (GWAS). Methods. In a community-based sample (N = 2054; aged 19–101, M = 51, SD = 15) from Sardinia, Italy, we measured serum BDNF concentration and conducted a GWAS. Results. We estimated the heritability of serum BDNF to be 0.48 from sib-pairs. There was no association between serum BDNF and Val66Met in the SardiNIA sample and in a meta-analysis of published studies (k = 13 studies, total n = 4727, P = 0.92). Although no genome-wide significant associations were identified, some evidence of association was found in the BDNF gene (rs11030102, P = 0.001) and at two loci (rs7170215, P = 4.8 × 10–5 and rs11073742 P = 1.2 × 10–5) near and within NTRK3 gene, a neurotrophic tyrosine kinase receptor. Conclusions. Our study and meta-analysis of the literature indicate that the BDNF Val66Met variant is not associated with serum BDNF, but other variants in the BDNF and NTRK3 genes might regulate the level of serum BDNF.  相似文献   

15.

Objective

We investigated possible association between depressive disorders and BDNF Val66Met and 5-HTTLPR. Brain derived neurotrophic factor (BDNF) gene and serotonin transporter (SLC6A4) gene are promising candidate genes for depressive disorders. It has been suggested that BDNF promotes the survival and differentiation of serotonergic neurons and that serotonergic transmission exerts powerful control over BDNF gene expression.

Methods

Final analyses were performed on 186 patients with depressive disorders and 1032 controls. Val66Met polymorphism of BDNF gene and 5-HTTLPR polymorphism of serotonin transporter gene were genotyped and allele and genotypic associations on the diagnosis of depression and age at onset of depression were analyzed.

Results

The 5-HTTLPR was positively associated with depressive affected status in the total sample and in females (p=0.038 for allelewise, p=0.015 for genotype-wise associations), but, not in males. The BDNF Val66Met showed no association with depression. BDNF Val66Met and 5-HTTLPR alone were not associated with age at onset of depression. Additional analysis on the interaction between BDNF Val66Met and 5-HTTLPR found a significant association with age at onset of depression in the entire patient group. This association was also found in the female but not in the male patient group. None of the positive results survived Bonferroni correction for multiple testing.

Conclusion

This result suggested that BDNF Val66Met and 5-HTTLPR may contribute to depressive disorders in a complex way and that the genetic effect could differ by gender. Further studies with large number of patients will be necessary.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin growth factor family, has been implicated in both mood disorders and suicidal behavior. This study has examined the association between the BDNF gene Val66Met polymorphism and mood disorders, age of onset and suicidal behavior in a Chinese sample population. The genotype and allele frequencies for the BDNF gene Val66Met polymorphism did not differ comparing depression groups (total, bipolar disorder or major depression) and control subjects. Furthermore, it was not demonstrated that this BDNF polymorphism was associated with age of onset or suicidal history in our mood disorder patients. Based on these results, it seems reasonable to suggest that this polymorphism is unlikely to play a major role in the genetic susceptibility to mood disorders. Given the fact that the positive association between BDNF gene Val66Met polymorphism and bipolar disorder has only been demonstrated for a Caucasian population but not for a Japanese analog or our Chinese sample, it appears likely that this association is ethnicity dependent.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) enhances survival of dopaminergic neurons in the substantia nigra, whereas in patients with Parkinson's disease (PD), the expression of BDNF mRNA is decreased, thus making BDNF a candidate gene for PD susceptibility. The association between BDNF Val66Met polymorphism and PD has been evaluated in several studies with controversial results. Thus, we determined the distribution of BDNF Val66Met polymorphism in 184 Greek patients with sporadic PD and 113 control participants using polymerase chain reaction-restriction fragment length polymorphism, and explored the association of the polymorphism with certain clinical parameters of the disease. Our results do not support a major role for the BDNF Val66Met polymorphism in PD in the Greek population.  相似文献   

18.
Abstract

Objectives. Abnormalities in neurotrophic systems have been reported in Alzheimer's disease (AD), as shown by decreased serum brain-derived neurotrophic factor (BDNF) levels and association with BDNF genetic polymorphisms. In this study, we investigate whether these findings can be detected in patients with mild cognitive impairment (MCI), which is recognized as a high risk condition for AD. We also address the impact of these variables on the progression of cognitive deficits within the MCI-AD continuum. Methods. One hundred and sixty older adults with varying degrees of cognitive impairment (30 patients with AD, 71 with MCI, and 59 healthy controls) were longitudinally assessed for up to 60 months. Baseline serum BDNF levels were determined by sandwich ELISA, and the presence of polymorphisms of BDNF and apolipoprotein E (Val66Met and APOE*E4, respectively) was determined by allelic discrimination analysis on real time PCR. Modifications of cognitive state were ascertained for non-demented subjects. Results. Mean serum BDNF levels were reduced in patients with MCI and AD, as compared to controls (509.2±210.5; 581.9±379.4; and 777.5±467.8 pg/l respectively; P<0.001). Baseline serum BDNF levels were not associated with the progression of cognitive impairment upon follow-up in patients with MCI (progressive MCI, 750.8±463.0; stable MCI, 724.0±343.4; P=0.8), nor with the conversion to AD. Although Val66Met polymorphisms were not associated with the cross-sectional diagnoses of MCI or AD, the presence of Met-BDNF allele was associated with a higher risk of disease-progression in patients with MCI (OR=3.0 CI95% [1.2–7.8], P=0.02). We also found a significant interaction between the APOE*E4 and Met-BDNF allele increasing the risk of progression of cognitive impairment in MCI patients (OR=4.4 CI95% [1.6–12.1], P=0.004). Conclusion. Decreased neurotrophic support, as indicated by a reduced systemic availability of BDNF, may play role in the neurodegenerative processes that underlie the continuum from MCI to AD. The presence of Met-BDNF allele, particularly in association with APOE*E4, may predict a worse cognitive outcome in patients with MCI.  相似文献   

19.
Background A single nucleotide polymorphism, Val66Met, in the Brain Derived Neurotrophic Factor (BDNF) gene has been studied for its role in recovery following stroke. Despite this work, the role of BDNF genotype on long-term recovery is unclear. Additionally, no study has examined its impact on functional mobility. As a result, the purpose of this study was to examine the relationship between BDNF genotype and functional mobility in chronic stroke survivors by first accounting for factors related to the Val66Met polymorphism and post-stroke recovery.

Methods Participants 6 months post-stroke completed the Fugl-Meyer Lower Extremity Assessment (FMLE), Yesavage Geriatric Depression Scale (YGDS), 10 meter walk test (SSWS), and BDNF genotype testing. A regression model was used to determine if including genotype (Val or Met) and the genotype’s interactions with age, gender, and depression increased the model’s fit in predicting functional mobility, as measured by SSWS, after accounting for physical impairment (FMLE) and personal information (age, gender, and YGDS).

Results Sixty-three subjects, twenty-two percent of whom had at least one Met allele, were included. Impairment and personal information significantly predicted SSWS (R2 = 0.268, p < 0.001 and ΔR2 = 0.158, p = 0.002, respectively). The addition of genotype and genotype’s interactions did not significantly increase the variance accounted for in SSWS (ΔR2 = 0.012, p = 0.27, and ΔR2 = 0.006, p = 0.723, respectively).

Conclusions Our results suggest that the Val66Met polymorphism does not predict long-term, functional mobility following stroke. This difference may be due to differences in model variables or a reduced impact of the polymorphism as recovery progresses.  相似文献   

20.
《Neuromodulation》2021,24(5):854-862
ObjectivesThe ability of noninvasive brain stimulation to modulate corticospinal excitability and plasticity is influenced by genetic predilections such as the coding for brain-derived neurotrophic factor (BDNF). Otherwise healthy individuals presenting with BDNF Val66Met (Val/Met) polymorphism are less susceptible to changes in excitability in response to repetitive transcranial magnetic stimulation (TMS) and paired associative stimulation paradigms, reflecting reduced neuroplasticity, compared to Val homozygotes (Val/Val). In the current study, we investigated whether BDNF polymorphism influences “baseline” excitability under TMS conditions that are not repetitive or plasticity-inducing. Cross-sectional BDNF levels could predict TMS response more generally because of the ongoing plasticity processes.Materials and MethodsForty-five healthy individuals (23 females; age: 25.3 ± 7.0 years) participated in the study, comprising two groups. Motor evoked potentials (MEP) were collected using single-pulse TMS paradigms at fixed stimulation intensities at 110% of the resting motor threshold in one group, and individually-derived intensities based on MEP sizes of 1 mV in the second group. Functional variant Val66Met (rs6265) was genotyped from saliva samples by a technician blinded to the identity of DNA samples.ResultsTwenty-seven participants (60.0%) were identified with Val/Val, sixteen (35.5%) with Val/Met genotype, and two with Met/Met genotype. MEP amplitudes were significantly diminished in the Val/Met than Val/Val individuals. These results held independent of the single-pulse TMS paradigm of choice (p = 0.017110% group; p = 0.035 1 mV group), age, and scalp-to-coil distances.ConclusionsThe findings should be further substantiated in larger-scale studies. If validated, intrinsic differences by BDNF polymorphism status could index response to TMS prior to implementing plasticity-inducing protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号