首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic interactions define overlapping functions and compensatory pathways. In particular, synthetic sick or lethal (SSL) genetic interactions are important for understanding how an organism tolerates random mutation, i.e., genetic robustness. Comprehensive identification of SSL relationships remains far from complete in any organism, because mapping these networks is highly labor intensive. The ability to predict SSL interactions, however, could efficiently guide further SSL discovery. Toward this end, we predicted pairs of SSL genes in Saccharomyces cerevisiae by using probabilistic decision trees to integrate multiple types of data, including localization, mRNA expression, physical interaction, protein function, and characteristics of network topology. Experimental evidence demonstrated the reliability of this strategy, which, when extended to human SSL interactions, may prove valuable in discovering drug targets for cancer therapy and in identifying genes responsible for multigenic diseases.  相似文献   

2.
Sea stars and sea urchins evolved from a last common ancestor that lived at the end of the Cambrian, approximately half a billion years ago. In a previous comparative study of the gene regulatory networks (GRNs) that embody the genomic program for embryogenesis in these animals, we discovered an almost perfectly conserved five-gene network subcircuit required for endoderm specification. We show here that the GRN structure upstream and downstream of the conserved network kernel has, by contrast, diverged extensively. Mesoderm specification is accomplished quite differently; the Delta-Notch signaling system is used in radically distinct ways; and various regulatory genes have been coopted to different functions. The conservation of the conserved kernel is thus the more remarkable. The results indicate types of network linkage subject to evolutionary change. An emergent theme is that subcircuit design may be preserved even while the identity of genes performing given roles changes because of alteration in their cis-regulatory control systems.  相似文献   

3.
4.
Describing at a genomic scale how mutations in different genes influence one another is essential to the understanding of how genotype correlates with phenotype and remains a major challenge in biology. Previous studies pointed out the need for accurate measurements of not only synthetic but also buffering interactions in the characterization of genetic networks and functional modules. We developed a sensitive and efficient method that allows such measurements at a genomic scale in yeast. In a pilot experiment (41 genome-wide screens), we quantified the fitness of 140,000 double deletion strains relative to the corresponding single mutants and identified many genetic interactions. In addition to synthetic growth defects (validated experimentally with factors newly identified as genetically interfering with mRNA degradation), most of the identified genetic interactions measured weak epistatic effects. These weak effects, rarely meaningful when considered individually, were crucial to defining specific signatures for many gene deletions and had a major contribution in defining clusters of functionally related genes.  相似文献   

5.
With the identification of eight new polypeptides, we here complete the subunit characterization of the Schizosaccharomyces pombe RNA polymerase II holoenzyme. The complex contains homologs to all 10 essential gene products present in the Saccharomyces cerevisiae Mediator, but lacks clear homologs to any of the 10 S. cerevisiae components encoded by nonessential genes. S. pombe Mediator instead contains three unique components (Pmc2, -3, and -6), which lack homologs in other cell types. Presently, pmc2(+) and pmc3(+) have been shown to be nonessential genes. The data suggest that S. pombe and S. cerevisiae share an essential protein module, which associates with nonessential speciesspecific subunits. In support of this view, sequence analysis of the conserved yeast Mediator components Med4 and Med8 reveals sequence homology to the metazoan Mediator components Trap36 and Arc32. Therefore, 8 of 10 essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated.  相似文献   

6.
To elucidate cellular machinery on a global scale, we performed a multiple comparison of the recently available protein-protein interaction networks of Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. This comparison integrated protein interaction and sequence information to reveal 71 network regions that were conserved across all three species and many exclusive to the metazoans. We used this conservation, and found statistically significant support for 4,645 previously undescribed protein functions and 2,609 previously undescribed protein interactions. We tested 60 interaction predictions for yeast by two-hybrid analysis, confirming approximately half of these. Significantly, many of the predicted functions and interactions would not have been identified from sequence similarity alone, demonstrating that network comparisons provide essential biological information beyond what is gleaned from the genome.  相似文献   

7.
8.
cdc18+ of Schizosaccharomyces pombe is a periodically expressed gene that is required for entry into S phase and for the coordination of S phase with mitosis. cdc18+ is related to the Saccharomyces cerevisiae gene CDC6, which has also been implicated in the control of DNA replication. We have identified a new Sch. pombe gene, orp1+, that encodes an 80-kDa protein with amino acid sequence motifs conserved in the Cdc18 and Cdc6 proteins. Genetic analysis indicates that orp1+ is essential for viability. Germinating spores lacking the orp1+ gene are capable of undergoing one or more rounds of DNA replication but fail to progress further, arresting as long cells with a variety of deranged nuclear structures. Unlike cdc18+, orp1+ is expressed constitutively during the cell cycle. cdc18+, CDC6, and orp1+ belong to a family of related genes that also includes the gene ORC1, which encodes a subunit of the origin recognition complex (ORC) of S. cerevisiae. The products of this gene family share a 250-amino acid domain that is highly conserved in evolution and contains several characteristic motifs, including a consensus purine nucleotide-binding motif. Among the members of this gene family, orp1+ is most closely related to S. cerevisiae ORC1. Thus, the protein encoded by orp1+ may represent a component of an Sch. pombe ORC. The orp1+ gene is also closely related to an uncharacterized putative human homologue. It is likely that the members of the cdc18/CDC6 family play key roles in the regulation of DNA replication during the cell cycle of diverse species from archaebacteria to man.  相似文献   

9.
The origin recognition complex (ORC), first identified in Saccharomyces cerevisiae (sc), is a six-subunit protein complex that binds to DNA origins. Here, we report the identification and cloning of cDNAs encoding the six subunits of the ORC of Schizosaccharomyces pombe (sp). Sequence analyses revealed that spOrc1, 2, and 5 subunits are highly conserved compared with their counterparts from S. cerevisiae, Xenopus, Drosophila, and human. In contrast, both spOrc3 and spOrc6 subunits are poorly conserved. As reported by Chuang and Kelly [(1999) Proc. Natl. Acad. Sci. USA 96, 2656-2661], the C-terminal region of spOrc4 is also conserved whereas the N terminus uniquely contains repeats of a sequence that binds strongly to AT-rich DNA regions. Consistent with this, extraction of S. pombe chromatin with 1 M NaCl, or after DNase I treatment, yielded the six-subunit ORC, whereas extraction with 0.3 M resulted in five-subunit ORC lacking spOrc4p. The spORC can be reconstituted in vitro with all six recombinant subunits expressed in the rabbit reticulocyte system. The association of spOrc4p with the other subunits required the removal of DNA from reaction mixture by DNase I. This suggests that a strong interaction between spOrc4p and DNA can prevent the isolation of the six-subunit ORC. The unique DNA-binding properties of the spORC may contribute to our understanding of the sequence-specific recognition required for the initiation of DNA replication in S. pombe.  相似文献   

10.
Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis.  相似文献   

11.
We describe a protein kinase, Shk1, from the fission yeast Schizosaccharomyces pombe, which is structurally related to the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases. We provide genetic evidence for physical and functional interaction between Shk1 and the Cdc42 GTP-binding protein required for normal cell morphology and mating in S. pombe. We further show that expression of the STE20 gene complements the shk1 null mutation and that Shk1 is capable of signaling to the pheromone-responsive mitogen-activated protein kinase cascade in S. cerevisiae. Our results lead us to propose that signaling modules composed of small GTP-binding proteins and protein kinases related to Shk1, Ste20, and p65PAK, are highly conserved in evolution and participate in both cytoskeletal functions and mitogen-activated protein kinase signaling pathways.  相似文献   

12.
13.
The carpel is the female reproductive organ specific to flowering plants. We aim to define the genes that controlled carpel development in the common ancestor of this group as a step toward determining the molecular events that were responsible for the evolution of the carpel. CRABS CLAW (CRC) and TOUSLED (TSL) control important aspects of carpel development in the model plant, Arabidopsis thaliana. The basal angiosperm species Amborella trichopoda and Cabomba aquatica very likely represent the two most early diverging groups of flowering plants. We have identified putative orthologues of CRC and TSL from A. trichopoda and C. aquatica, respectively. We demonstrate the expression patterns of these genes in carpels to be very highly conserved, both spatially and temporally, with those of their Arabidopsis orthologues. We argue that CRC and TSL in Arabidopsis are likely to have conserved their respective roles in carpel development since the common ancestor of the living flowering plants. We conclude that a divergent role shown for the CRC orthologue in rice, DROOPING LEAF, most probably arose specifically in the monocot lineage. We show that, in addition to its expression in carpels, the TSL orthologue of C. aquatica is expressed in tissues that contribute to buoyancy and argue that its role in these tissues may have arisen later than its role in carpel development.  相似文献   

14.
To reveal regulators of innate immunity, we used RNAi assays to monitor the immune response when genes are inhibited in Caenorhabditis elegans and mouse macrophages. Genes that altered innate immune responsiveness in C. elegans were validated in murine macrophages, resulting in the discovery of 11 genes that regulate the innate immune response in both systems and the subsequent identification of a protein interaction network with a conserved role in innate immunity regulation. We confirmed the role of four of these 11 genes in antimicrobial gene regulation using available mutants in C. elegans. Several of these genes (acy-1, tub-2, and tbc-1) also regulate susceptibility to the pathogen Pseudomonas aeruginosa. These genes may prove critical to understanding host defense and represent potential therapeutic targets for infectious and immunological diseases.  相似文献   

15.
16.
17.
Transposons are mobile genetic elements that are an important source of genetic variation and are useful tools for genome engineering, mutagenesis screens, and vectors for transgenesis including gene therapy. We have used second-generation sequencing to analyze ≈2 × 10(5) unique de novo transposon insertion sites of the transposon Hermes in the Saccharomyces cerevisiae genome from both in vitro transposition reactions by using purified yeast genomic DNA, to better characterize intrinsic sequence specificity, and sites recovered from in vivo transposition events, to characterize the effect of intracellular factors such as chromatin on target site selection. We find that Hermes transposon targeting in vivo is profoundly affected by chromatin structure: The subset of genome-wide target sites used in vivo is strongly associated (P < 2e-16 by Fisher's exact test) with nucleosome-free chromatin. Our characterization of the insertion site preferences of Hermes not only assists in the future use of this transposon as a molecular biology tool but also establishes methods to more fully determine targeting mechanisms of other transposons. We have also discovered a long-range sequence motif that defines S. cerevisiae nucleosome-free regions.  相似文献   

18.
A Schizosaccharomyces pombe gene encoding adenylate cyclase has been cloned by cross-hybridization with the Saccharomyces cerevisiae adenylate cyclase gene. The protein encoded consists of 1692 amino acids and has adenylate cyclase activity that cannot be activated by the Sa. cerevisiae RAS2 protein. Sc. pombe cyclase has a high degree of homology (approximately 60%) with the catalytic domain of Sa. cerevisiae cyclase precisely mapped by a gene-deletion analysis. A 25-40% identity is observed throughout the middle segments of approximately 1000 residues of both cyclases, large parts of which are composed of repetitions of a 23-amino acid motif similar to those found in human glycoproteins, Drosophila chaoptin, and Toll gene product. However, a segment corresponding to the NH2-terminal 620 residues of Sa. cerevisiae cyclase appears lost from Sc. pombe cyclase, and the COOH-terminal 140 residues are not well conserved between the two yeast species. Deletions involving the COOH-terminal residues of Sa. cerevisiae cyclase cause loss of activation by the RAS2 protein. These results suggest that Sc. pombe cyclase may have lost the ability to interact with RAS proteins by the loss of a regulatory site.  相似文献   

19.
The origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae as a protein that specifically binds to origins of DNA replication. Although ORC appears to play an essential role in the initiation of DNA replication in the cells of all eukaryotes, its interactions with DNA have not been defined in species other than budding yeast. We have characterized a Schizosaccharomyces pombe homologue of the ORC subunit, Orc4p. The homologue (Orp4p) consists of two distinct functional domains. The C-terminal domain shows strong sequence similarity to human, frog, and yeast Orc4 proteins, including conserved ATP-binding motifs. The N-terminal domain contains nine copies of the AT-hook motif found in a number of DNA-binding proteins, including the members of the HMG-I(Y) family of chromatin proteins. AT-hook motifs are known from biochemical and structural studies to mediate binding to the minor groove of AT-tracts in DNA. Orp4p is essential for viability of Sc. pombe and is expressed throughout the cell cycle. The Orp4 protein (and its isolated N-terminal domain) binds to the Sc. pombe replication origin, ars1. The DNA binding properties of Orp4p provide a plausible explanation for the characteristic features of Sc. pombe origins of replication, which differ significantly from those of Sa. cerevisiae.  相似文献   

20.
Alteration of DNA ligase I activity is a consistent biochemical feature of Bloom's syndrome (BS) cells. DNA ligase I activity in BS cells either is reduced and abnormally thermolabile or is present in an anomalously dimeric form. To assess the role of DNA ligase function in the etiology of BS, we have cloned the DNA ligase I cDNA from normal human cells by a PCR strategy using degenerate oligonucleotide primers based on conserved regions of the Saccharomyces cerevisiae and Schizosaccharomyces pombe DNA ligase genes. Human DNA ligase I cDNAs from normal and BS cells complemented a S. cerevisiae DNA ligase mutation, and protein extracts prepared from S. cerevisiae transformants expressing normal and BS cDNA contained comparable levels of DNA ligase I activity. DNA sequencing and Northern blot analysis of DNA ligase I expression in two BS human fibroblast lines representing each of the two aberrant DNA ligase I molecular phenotypes demonstrated that this gene was unchanged in BS cells. Thus, another factor may be responsible for the observed reduction in DNA ligase I activity associated with this chromosomal breakage syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号