首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fritz HG  Hoff H  Hartmann M  Karzai W  Schwarzkopf KR 《Anesthesia and analgesia》2002,94(3):626-30; table of contents
In a previous study we have shown that the antihypertensive drug, urapidil, stops postanesthetic shivering. One possible mechanism in the inhibition of postanesthetic shivering by urapidil may be alterations in thermoregulatory thresholds. We therefore studied the effects of urapidil on vasoconstriction and shivering thresholds during cold-induced shivering in volunteers. Seven healthy male volunteers were cooled by an infusion of saline at 4 degrees C on two study days separated by 48 h. Thermoregulatory vasoconstriction was estimated using forearm minus fingertip skin-temperature gradients, and values exceeding 0 degrees C were considered to represent significant vasoconstriction. The rectal core temperatures at the beginning of shivering and at vasoconstriction were considered the thermoregulatory thresholds. Before cooling, either 25 mg of urapidil or placebo was administered randomly and blindly to each volunteer. When shivering occurred continuously for 10 min, another 25 mg of urapidil was administered IV to completely stop shivering. Urapidil led to a decrease in core temperature at vasoconstriction and shivering threshold by 0.4 degrees C plus/minus 0.2 degrees C (P < 0.001) and 0.5 degrees C plus/minus 0.3 degrees C (P < 0.01), respectively. Oxygen consumption increased during shivering by 70% plus/minus 30% (P < 0.01) in comparison with baseline and decreased levels after shivering stopped, despite the continued low core temperature. Our investigation shows that urapidil stops postanesthetic shivering by decreasing important thermoregulatory thresholds. This means that shivering, not hypothermia, is treated, and hypothermia will need more attention in the postanesthesia care unit. IMPLICATIONS: In this study we show that the antihypertensive drug urapidil stops cold-induced shivering and decreases normal thermoregulatory responses, i.e., the thresholds for vasoconstriction and shivering, in awake volunteers.  相似文献   

2.
Background: Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. Therefore, the authors tested the hypothesis that amino acid infusion increases the thermoregulatory set point.

Methods: Nine male volunteers each participated on 4 study days in randomized order: (1) intravenous amino acids infused at 4 kJ [middle dot] kg-1 [middle dot] h-1 for 2.5 h combined with skin-surface warming, (2) amino acid infusion combined with cutaneous cooling, (3) saline infusion combined with skin-surface warming, and (4) saline infusion combined with cutaneous cooling.

Results: Amino acid infusion increased resting core temperature by 0.3 +/- 0.1[degrees]C (mean +/- SD) and oxygen consumption by 18 +/- 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean skin temperature of 34[degrees]C) for active cutaneous vasodilation by 0.3 +/- 0.3[degrees]C, for sweating by 0.2 +/- 0.2[degrees]C, for thermoregulatory vasoconstriction by 0.3 +/- 0.3[degrees]C, and for thermogenesis by 0.4 +/- 0.5[degrees]C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses.  相似文献   


3.
We determined the effects of doxapram on the major autonomic thermoregulatory responses in humans. Nine healthy volunteers were studied on 2 days: control and doxapram (IV infusion to a plasma concentration of 2.4 +/- 0.8, 2.5 +/- 0.9, and 2.6 +/- 1.1 microg/mL at the sweating, vasoconstriction, and shivering thresholds, respectively). Each day, skin and core temperatures were increased to provoke sweating, then reduced to elicit peripheral vasoconstriction and shivering. We determined the sweating, vasoconstriction, and shivering thresholds with compensation for changes in skin temperature. Data were analyzed with paired t-tests and presented as mean +/- sd; P < 0.05 was considered statistically significant. Doxapram did not change the sweating (control: 37.5 degrees +/- 0.4 degrees C, doxapram: 37.3 degrees +/- 0.4 degrees C; P = 0.290) or the vasoconstriction threshold (36.8 degrees +/- 0.7 degrees C versus 36.4 degrees +/- 0.5 degrees C; P = 0.110). However, it significantly reduced the shivering threshold from 36.2 degrees +/- 0.5 degrees C to 35.7 degrees +/- 0.7 degrees C (P = 0.012). No sedation or symptoms of panic were observed on either study day. The observed reduction in the shivering threshold explains the drug's efficacy for treatment of postoperative shivering; however, a reduction of only 0.5 degrees C is unlikely to markedly facilitate induction of therapeutic hypothermia as a sole drug.  相似文献   

4.
Mizobe T  Nakajima Y  Ueno H  Sessler DI 《Anesthesiology》2006,104(6):1124-1130
BACKGROUND: The authors tested the hypothesis that intravenous fructose ameliorates intraoperative hypothermia both by increasing metabolic rate and the vasoconstriction threshold (triggering core temperature). METHODS: Forty patients scheduled to undergo open abdominal surgery were divided into two equal groups and randomly assigned to intravenous fructose infusion (0.5 g . kg(-1) . h(-1) for 4 h, starting 3 h before induction of anesthesia and continuing for 4 h) or an equal volume of saline. Each treatment group was subdivided: Esophageal core temperature, thermoregulatory vasoconstriction, and plasma concentrations were determined in half, and oxygen consumption was determined in the remainder. Patients were monitored for 3 h after induction of anesthesia. RESULTS: Patient characteristics, anesthetic management, and circulatory data were similar in the four groups. Mean final core temperature (3 h after induction of anesthesia) was 35.7 degrees +/- 0.4 degrees C (mean +/- SD) in the fructose group and 35.1 degrees +/- 0.4 degrees C in the saline group (P = 0.001). The vasoconstriction threshold was greater in the fructose group (36.2 degrees +/- 0.3 degrees C) than in the saline group (35.6 degrees +/- 0.3 degrees C; P < 0.001). Oxygen consumption immediately before anesthesia induction in the fructose group (214 +/- 18 ml/min) was significantly greater than in the saline group (181 +/- 8 ml/min; P < 0.001). Oxygen consumption was 4.0 l greater in the fructose patients during 3 h of anesthesia; the predicted difference in mean body temperature based only on the difference in metabolic rates was thus only 0.4 degrees C. Epinephrine, norepinephrine, and angiotensin II concentrations and plasma renin activity were similar in each treatment group. CONCLUSIONS: Preoperative fructose infusion helped to maintain normothermia by augmenting both metabolic heat production and increasing the vasoconstriction threshold.  相似文献   

5.
BACKGROUND: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering. METHODS: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34 degrees C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response. RESULTS: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9 degrees C. microg-1. ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0 degrees C. microg-1. ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3 degrees C. microg-1. ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4 degrees C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds. CONCLUSIONS: Most drugs with thermoregulatory actions-including anesthetics, sedatives, and opioids-synchronously reduce the vasoconstriction and shivering thresholds. However, nefopam reduced only the shivering threshold. This pattern has not previously been reported for a centrally acting drug. That pharmacologic modulations of vasoconstriction and shivering can be separated is of clinical and physiologic interest.  相似文献   

6.
Greif R  Laciny S  Rajek A  Doufas AG  Sessler DI 《Anesthesia and analgesia》2002,94(4):1019-22, table of contents
Increased intraluminal pressure may help maintain vasodilation in a dependent arm even after hypothermia triggers centrally mediated thermoregulatory vasoconstriction. We therefore tested the hypotheses that the threshold (triggering core temperature) and gain (increase in vasoconstriction per degree centigrade) of cold-induced vasoconstriction is reduced in the dependent arm during anesthesia. Anesthesia was maintained with 0.4 minimum alveolar anesthetic concentration of desflurane in 10 volunteers in the left-lateral position. Mean skin temperature was reduced to 31 degrees C to decrease core body temperature. Fingertip blood flow in both arms was measured, as was core body temperature.The vasoconstriction threshold was slightly, but significantly, less in the dependent arm (36.2 degrees C +/- 0.3 degrees C, mean +/- SD) than in the upper arm (36.5 degrees C +/- 0.3 degrees C). However, the gain of vasoconstriction in the dependent arm was 2.3-fold greater than in the upper arm. Consequently, intense vasoconstriction (i.e., a fingertip blood flow of 0.15 mL/min) occurred at similar core temperatures. In the lateral position, the vasoconstriction threshold was reduced in the dependent arm; however, gain was also increased in the dependent arm. The thermoregulatory system may thus recognize that hydrostatic forces reduce the vasoconstriction threshold and may compensate by sufficiently augmenting gain. IMPLICATIONS: The threshold for cold-induced vasoconstriction is reduced in the dependent arm, but the gain of vasoconstriction is increased. Consequently, the core temperature triggering intense vasoconstriction was similar in each arm, suggesting that the thermoregulatory system compensates for the hydrostatic effects of the lateral position.  相似文献   

7.
Effect of amino acid infusion on central thermoregulatory control in humans   总被引:3,自引:0,他引:3  
BACKGROUND: Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. Therefore, the authors tested the hypothesis that amino acid infusion increases the thermoregulatory set point. METHODS: Nine male volunteers each participated on 4 study days in randomized order: (1) intravenous amino acids infused at 4 kJ x kg(-1) x h(-1) for 2.5 h combined with skin-surface warming, (2) amino acid infusion combined with cutaneous cooling, (3) saline infusion combined with skin-surface warming, and (4) saline infusion combined with cutaneous cooling. RESULTS: Amino acid infusion increased resting core temperature by 0.3 +/- 0.1 degrees C (mean +/- SD) and oxygen consumption by 18 +/- 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean skin temperature of 34 degrees C) for active cutaneous vasodilation by 0.3 +/- 0.3 degrees C, for sweating by 0.2 +/- 0.2 degrees C, for thermoregulatory vasoconstriction by 0.3 +/- 0.3 degrees C, and for thermogenesis by 0.4 +/- 0.5 degrees C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses. CONCLUSIONS: Amino acid infusion increased the metabolic rate and the resting core temperature. However, amino acids also produced a synchronous increase in all major autonomic thermoregulatory defense thresholds; the increase in core temperature was identical to the set point increase, even in a cold environment with amble potential to dissipate heat. In subjects with intact thermoregulatory defenses, amino acid-induced hyperthermia seems to result from an increased set point rather than increased metabolic rate per se.  相似文献   

8.
Inadvertent hypothermia occurs frequently at typical ambient operating room (OR) temperatures, especially in elderly patients receiving general anesthesia. The aims of the current study were to 1) determine the incidence and magnitude of core hypothermia in an unusually warm OR environment, and 2) to assess age-related differences in perioperative thermoregulatory responses under these circumstances. Forty patients receiving general anesthesia for orthopedic surgical procedures (20 younger patients, 20-40 yr old) and (20 older patients, 60-75 yr old) were enrolled. Mean ambient temperature in the ORs was 25.8 degrees +/- 0.2 degrees C. Core temperature, vasoconstriction, and shivering were compared in the younger and older age groups. Mean core temperature on admission to the postanesthesia care unit was not significantly different in the younger (36.7 degrees +/- 0.1 degrees C) and older (36.4 degrees +/- 0.1 degrees C) age groups. Only 10% of patients (n = 4, 1 younger, 3 older) were admitted with a core temperature <36.0 degrees C. Only 2% of patients (n = 1, older group) had a core temperature <35.5 degrees C. This very mild degree of hypothermia was associated with postoperative vasoconstriction in 80% of the younger and 55% of the older patients (P = 0.18). Postoperative shivering occurred in 40% of the younger patients and in 10% of the older patients (P = 0.06). In summary, an ambient OR temperature near 26 degrees C (79 degrees F) is effective in preventing core hypothermia during general anesthesia regardless of patient age. Even very mild postoperative hypothermia may initiate thermoregulatory responses. Implications: By increasing ambient temperature in the operating room to 26 degrees C (79 degrees F), the incidence of core hypothermia can be dramatically reduced in both younger and older patients.  相似文献   

9.
Amino acid infusion during general anesthesia induces thermogenesis and prevents postoperative hypothermia and shivering. We propose that amino acid prevention of hypothermia during anesthesia shortens the hospital stay. Core temperatures and pulmonary oxygen uptake were measured in 45 patients, receiving an IV amino acid mixture, 126 mL/h, before and/or during isoflurane anesthesia and 30 control patients receiving acetated Ringer's solution. At awakening, mean core temperature was 36.5 degrees+/-0.1 degrees C in the amino acid group and 35.7 degrees+/-0.1 degrees C (P < 0.001) in the controls. Energy expenditure increased by 54%+/-9% from baseline in amino acid patients in whom shivering was uncommon, but only by 5%+/-4% (P < 0.001) in control patients, of whom the majority developed postoperative shivering. The estimated difference in hospital stay between the two groups was 2.7 days (CI 95%: 1.3-4.0). Multiple regression analysis showed that the variables best predicting hospitalization were duration of surgery, amino acid treatment, and awakening temperatures. Duration of surgery was similar in the two groups and core temperatures at awakening were a result of amino acid infusion, which indicates that amino acid infusion during anesthesia and surgery was the most important factor for the shorter hospitalization. IMPLICATIONS: Amino acid infusion during general anesthesia induces thermogenesis and prevents postoperative hypothermia and shivering. Multiple regression analysis indicated that this resulted in a shorter hospital stay.  相似文献   

10.
Physiologic responses to mild perianesthetic hypothermia in humans   总被引:6,自引:0,他引:6  
To evaluate physiologic responses to mild perianesthetic hypothermia, we measured tympanic membrane and skin-surface temperatures, peripheral vasoconstriction, thermal comfort, and muscular activity in nine healthy male volunteers. Each volunteer participated on three separate days: 1) normothermic isoflurane anesthesia; 2) hypothermic isoflurane anesthesia (1.5 degrees C decrease in central temperature); and 3) hypothermia alone (1.5 degrees C decrease in central temperature) induced by iced saline infusion. Involuntary postanesthetic muscular activity was considered thermoregulatory when preceded by central hypothermia and peripheral cutaneous vasoconstriction. Tremor was considered normal shivering when electromyographic patterns matched those produced by cold exposure in unanesthetized individuals. During postanesthetic recovery, central temperatures in hypothermic volunteers increased rapidly when residual end-tidal isoflurane concentrations were less than or equal to 0.3% but remained 0.5 degree C less than control values throughout 2 h of recovery. All volunteers were vasodilated during isoflurane administration. Peripheral vasoconstriction occurred only during recovery from hypothermic anesthesia, at end-tidal isoflurane concentrations of less than approximately 0.4%. Spontaneous tremor was always preceded by central hypothermia and peripheral vasoconstriction, indicating that muscular activity was thermoregulatory. Maximum tremor intensity during recovery from hypothermic anesthesia occurred when residual end-tidal isoflurane concentrations were less than or equal to 0.4%. Three patterns of postanesthetic muscular activity were identified. The first was a tonic stiffening that occurred in some normothermic and hypothermic volunteers when end-tidal isoflurane concentrations were approximately 0.4-0.2%. This activity appeared to be largely a direct, non-temperature-dependent effect of isoflurane anesthesia. In conjunction with lower residual anesthetic concentrations, stiffening was followed by a synchronous, tonic waxing-and-waning pattern and spontaneous electromyographic clonus, both of which were thermoregulatory. Tonic waxing-and-waning was by far the most common pattern and resembled that produced by cold-induced shivering in unanesthetized volunteers; it appears to be thermoregulatory shivering triggered by hypothermia. Spontaneous clonus resembled flexion-induced clonus and pathologic clonus and did not occur during hypothermia alone; it may represent abnormal shivering or an anesthetic-induced modification of normal shivering. We conclude that among the three patterns of muscular activity, only the synchronous, tonic waxing-and-waning pattern can be attributed to normal thermoregulatory shivering.  相似文献   

11.
Background: The authors tested the hypothesis that intravenous fructose ameliorates intraoperative hypothermia both by increasing metabolic rate and the vasoconstriction threshold (triggering core temperature).

Methods: Forty patients scheduled to undergo open abdominal surgery were divided into two equal groups and randomly assigned to intravenous fructose infusion (0.5 g [middle dot] kg-1 [middle dot] h-1 for 4 h, starting 3 h before induction of anesthesia and continuing for 4 h) or an equal volume of saline. Each treatment group was subdivided: Esophageal core temperature, thermoregulatory vasoconstriction, and plasma concentrations were determined in half, and oxygen consumption was determined in the remainder. Patients were monitored for 3 h after induction of anesthesia.

Results: Patient characteristics, anesthetic management, and circulatory data were similar in the four groups. Mean final core temperature (3 h after induction of anesthesia) was 35.7[degrees] +/- 0.4[degrees]C (mean +/- SD) in the fructose group and 35.1[degrees] +/- 0.4[degrees]C in the saline group (P = 0.001). The vasoconstriction threshold was greater in the fructose group (36.2[degrees] +/- 0.3[degrees]C) than in the saline group (35.6[degrees] +/- 0.3[degrees]C; P < 0.001). Oxygen consumption immediately before anesthesia induction in the fructose group (214 +/- 18 ml/min) was significantly greater than in the saline group (181 +/- 8 ml/min; P < 0.001). Oxygen consumption was 4.0 l greater in the fructose patients during 3 h of anesthesia; the predicted difference in mean body temperature based only on the difference in metabolic rates was thus only 0.4[degrees]C. Epinephrine, norepinephrine, and angiotensin II concentrations and plasma renin activity were similar in each treatment group.  相似文献   


12.
Background: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering.

Methods: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34[degrees]C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response.

Results: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4[degrees]C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds.  相似文献   


13.
Clinical studies have reported that body core temperature decreases during prolonged surgery and anesthesia. Although this finding has been attributed primarily to increased heat loss resulting from exposure of body cavities and infusion of cold solutions, it is generally recognized that anesthesia interferes with the thermoregulatory system. The present study examined the effects of mild narcosis induced by 30% N2O on shivering thermogenesis and cutaneous thermoregulatory vasoconstriction in humans, during exposure in a much more intense peripheral thermal stimulus than the ones often used in clinical studies. Nine male subjects were immersed in 15 degrees C water on two separate occasions. During one occasion subjects inspired air (control condition), and during the other occasion the inspired gas mixture contained 20% O2, 30% N2O, and 50% N2 (N2O condition). On both occasions, subjects were immersed to the neck for 60 min, or until their core temperature decreased by 2 degrees C from the preimmersion value. Following the cooling phase, subjects rewarmed via endogenous thermogenesis while lying in a well-insulated bed for 48 min. In the N2O condition, subjects continued to inspire the anesthetic gas mixture during the 48-min period of recovery. O2 uptake (VO2), esophageal temperature (Tes), mean skin temperature (Tsk), mean heat flux (Q) and forearm-fingertip temperature gradient (Tsk-gr) were recorded at 1-min intervals. Tsk and Q in both conditions stabilized within 10 and 25 min of immersion, respectively, and were not significantly different between the two conditions. The cooling rate of Tes was greater during the N2O than the control condition. VO2 increased during the immersion in both conditions and was greater in the control than in the N2O condition. In both conditions, VO2 increased linearly with decreasing Tes, but at any given Tes, VO2 was higher in the control than in the N2O condition. No significant difference was observed in cutaneous thermoregulatory vasoconstriction between the two experimental conditions, as indicated by the Tsk-gr values. The estimated Tes threshold for shivering (estimated from the O2 consumption vs. delta Tes regression) was reduced by 0.95 +/- 0.26 (SE) degrees C during the immersion phase and by 0.39 +/- 0.05 (SE) degrees C during the rewarming phase in the N2O condition compared to the control conditions. Although the thermosensitivity (gain) of shivering appeared preserved during the immersion phase, it was reduced during the N2O rewarming phase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Dantrolene is used for treatment of life-threatening hyperthermia, yet its thermoregulatory effects are unknown. We tested the hypothesis that dantrolene reduces the threshold (triggering core temperature) and gain (incremental increase) of shivering. Healthy volunteers were evaluated on 2 random days: control and dantrolene (approximately 2.5 mg/kg plus a continuous infusion). In Study 1, 9 men were warmed until sweating was provoked and then cooled until arteriovenous shunt constriction and shivering occurred. Sweating was quantified on the chest using a ventilated capsule. Absolute right middle fingertip blood flow was quantified using venous-occlusion volume plethysmography. A sustained increase in oxygen consumption identified the shivering threshold. In Study 2, 9 men were given cold lactated Ringer's solution i.v. to reduce core temperature approximately 2 degrees C/h. Cooling was stopped when shivering intensity no longer increased with further core cooling. The gain of shivering was the slope of oxygen consumption versus core temperature regression. In Study 1, sweating and vasoconstriction thresholds were similar on both days. In contrast, shivering threshold decreased 0.3 +/- 0.3 degrees C, P = 0.004, on the dantrolene day. In Study 2, dantrolene decreased the shivering threshold from 36.7 +/- 0.2 to 36.3 +/- 0.3 degrees C, P = 0.01 and systemic gain from 353 +/- 144 to 211 +/- 93 mL.min(-1).degrees C(-1), P = 0.02. Thus, dantrolene substantially decreased the gain of shivering, but produced little central thermoregulatory inhibition. IMPLICATIONS: Dantrolene substantially decreases the gain of shivering but produces relatively little central thermoregulatory inhibition. It thus seems unlikely to prove more effective than conventional muscle relaxants for treatment of life-threatening hyperthermia.  相似文献   

15.
Thermal balance and tremor patterns during epidural anesthesia   总被引:10,自引:0,他引:10  
Five healthy, nonpregnant volunteers were studied before and after induction of lumbar epidural anesthesia to determine the cause of central hypothermia during epidural anesthesia. Cutaneous heat loss was measured from 10 area-weighted sites using thermal flux transducers. Oxygen consumption was measured and converted to heat production in watts (W). After a 2-h control period at approximately 20 degrees C, epidural anesthesia was induced by injection of 30-50 ml 3% chloroprocaine. Additional boluses were given to extend the sensory blockade to at least the T5 dermatome. Tremor during epidural anesthesia was compared with normal shivering induced by rapid central venous infusion of approximately 4 l iced saline in six unanesthetized volunteers. Average skin temperature and cutaneous heat loss decreased during the control period, while tympanic membrane temperature remained stable. During the 1st h of epidural blockade, tympanic membrane temperature decreased 1.1 +/- 0.3 degrees C, and average skin temperature increased 0.9 +/- 0.5 degrees C. Cutaneous heat loss increased 16 +/- 6% (15 +/- 5 W), but metabolic heat production increased even more (and was associated with a shivering-like tremor). Tremor during epidural anesthesia and shivering induced by iced saline infusion had similar synchronous waxing-and-waning patterns. No abnormal EMG patterns were detected during epidural anesthesia. We conclude that central hypothermia during the 1st h of epidural anesthesia does not result from heat loss to the environment in excess of metabolic heat production, but results primarily from redistribution of body heat from central to peripheral tissues. Analysis of the tremor patterns suggests that oscillations recorded during epidural anesthesia in nonpregnant individuals is normal thermoregulatory shivering. Shivering occurred sooner and was more intense during iced saline infusion than during epidural anesthesia, despite comparable central hypothermia. The low intensity of shivering during epidural anesthesia, and in some individuals the delay in onset, may result from blockade of afferent cutaneous cold signals.  相似文献   

16.
BACKGROUND: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes approximately 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia--although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes approximately 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia. METHODS: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 degrees C. Their cores were subsequently cooled by central-venous administration of fluid at approximately 3 degrees C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects. RESULTS: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98+/-0.02 for vasoconstriction, and 0.96+/-0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21+/-8% to vasoconstriction, and 18+/-10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20+/-6% and 19+/-8%, respectively. CONCLUSIONS: The results in anesthetized volunteers were virtually identical to those reported previously in unanesthetized subjects. In both cases, the cutaneous contribution to control of vasoconstriction and shivering was linear and near 20%. These data indicate that a proportionality constant of approximately 20% can be used to compensate for experimentally induced skin-temperature manipulations in anesthetized as well as unanesthetized subjects.  相似文献   

17.
Although suppression of thermoregulatory mechanisms by anesthetics is generally assumed, the extent to which thermoregulatory responses are active during general anesthesia is not known. To evaluate the effect of anesthetics on thermoregulation, we investigated the threshold body core temperatures to induce peripheral cutaneous vasoconstriction and shivering in spontaneously breathing rabbits. Rabbits are anesthetized with halothane at 0.05, 0.2 and 0.4 MAC (minimum alveolar concentration). Internal whole body cooling was performed by perfusing the cool water through an intestinal U-shaped thermode placed in the colon. Core (esophagus) and peripheral (ear) temperatures were measured with thermistors. The esophageal temperatures at the beginning of peripheral cutaneous vasoconstriction and shivering induced by internal whole body cooling were determined. Peripheral cutaneous vasoconstriction was not significantly affected by halothane. However, the incidence of shivering was significantly decreased by halothane dose-dependently. Threshold of shivering (37.3 +/- 0.8 degrees C) was significantly lower than that of peripheral cutaneous vasoconstriction (38.9 +/- 1.1 degrees C). We conclude that the halothane can exert an influence on shivering.  相似文献   

18.
Widman J  Hammarqvist F  Selldén E 《Anesthesia and analgesia》2002,95(6):1757-62, table of contents
The thermic effect of amino acids is augmented under general anesthesia and counteracts hypothermia. Mild hypothermia may increase surgical bleeding. We studied whether amino acids also induce thermogenesis under spinal anesthesia and whether this endogenous heat production reduces bleeding during hip arthroplasty. Rectal temperature, oxygen uptake, and perioperative bleeding were measured in 22 patients receiving an IV amino acid mixture (Vamin 18), 240 kJ/h) for 1 h before and then during spinal anesthesia and in 24 control patients receiving acetated Ringer's solution. Blood loss was calculated after surgery by weighing the swabs and the content of the suction tubes after subtraction of the saline used. After surgery, the closed drains were weighed after 24 h. In the amino acid group, the preanesthesia temperature increased by 0.4 degrees C +/- 0.2 degrees C (P < 0.01) and was unchanged in controls. At end of surgery, core temperature had decreased by 0.9 degrees C +/- 0.4 degrees C in controls and by 0.4 degrees C +/- 0.3 degrees C in the amino acid patients (P < 0.01). Oxygen uptake increased by 26 +/- 7 mL/min, or 16% +/- 5% (P < 0.05), from baseline in the amino acid patients, whereas it was unchanged in the controls. Blood loss during surgery was significantly larger in the control patients (702 +/- 344 mL) than in the amino acid patients (516 +/- 272 mL) (P < 0.05). After surgery, there were no significant differences in shed blood volume. In conclusion, amino acid infusion also induced a thermogenic response under spinal anesthesia. In addition, the prevention of temperature decrease during spinal anesthesia seemed to have a positive effect on intraoperative blood loss. IMPLICATIONS: Infusion of a balanced mixture of amino acids during spinal anesthesia prevented core body temperature decrease. Bleeding was also less pronounced.  相似文献   

19.
Thermoregulation interacts with cardiovascular regulation within the central nervous system. We therefore evaluated the effects of head-down tilt on intraoperative thermal and cardiovascular regulation. Thirty-two patients undergoing lower-abdominal surgery were randomly assigned to the 1) supine, 2) 15 degrees -20 degrees head-down tilt, 3) leg-up, or 4) combination of leg-up and head-down tilt position. Core temperature and forearm minus fingertip skin-temperature gradients (an index of peripheral vasoconstriction) were monitored for 3 h after the induction of combined general and lumbar epidural anesthesia. We also determined cardiac output and central-venous and esophageal pressures. Neither right atrial transmural pressure nor cardiac index was altered in the Head-Down Tilt group, but both increased significantly in the Leg-Up groups. The vasoconstriction threshold was reduced in both leg-up positions but was not significantly decreased by head-down tilt. Final core temperatures were 35.2 degrees C +/- 0.2 degrees C (mean +/- SEM) in the Supine group, 35.0 degrees C +/- 0.2 degrees C in the Head-Down Tilt group, 34.2 degrees C +/- 0.2 degrees C in the Leg-Up group (P < 0.05 compared with supine), and 34.3 degrees C +/- 0.2 degrees C when leg-up and head-down tilt were combined (P < 0.05 compared with supine). These results confirm that elevating the legs increases right atrial transmural pressure, reduces the vasoconstriction threshold, and aggravates intraoperative hypothermia. Surprisingly, maintaining a head-down tilt did not increase right atrial pressure. IMPLICATIONS: Intraoperative hypothermia is exaggerated when patients are maintained in the leg-up position because the vasoconstriction threshold is reduced. However, head-down tilt (Trendelenburg position) does not reduce the vasoconstriction threshold or aggravate hypothermia. The head-down tilt position thus does not require special perioperative thermal precautions or management unless the leg-up position is used simultaneously.  相似文献   

20.
Background: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia-although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia.

Methods: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 [degree sign]C. Their cores were subsequently cooled by central-venous administration of fluid at [almost equal to] 3 [degree sign]C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects.

Results: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98 +/- 0.02 for vasoconstriction, and 0.96 +/- 0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21 +/- 8% to vasoconstriction, and 18 +/- 10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20 +/- 6% and 19 +/- 8%, respectively.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号