首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The limb phenotypes of Tbx2 and Tbx3 mutants are distinct: loss of Tbx2 results in isolated duplication of digit 4 in the hindlimb while loss of Tbx3 results in anterior polydactyly and posterior oligodactly in the forelimb. In the face of such disparate phenotypes, we sought to determine whether Tbx2 and Tbx3 have functional redundancy during development of the mouse limb. We found that sequential loss of alleles generates defects that are not simply additive of those observed in single mutants and that multiple structures in both the forelimb and hindlimb display compound sensitivity to decreased gene dosage.  相似文献   

3.
4.
5.
6.
7.
Background: Avian forelimb (wing) contains only three digits, and the three‐digit formation in the bird forelimb is one of the avian‐specific limb characteristics that have been evolutionarily inherited from the common ancestral form in dinosaurs. Despite many studies on digit formation in the chick limb bud, the developmental mechanisms giving rise to the three‐digit forelimb in birds have not been completely clarified. Results: To identify which cell populations of the early limb bud contribute to digit formation in the late limb bud, fate maps of the early fore‐ and hindlimb buds were prepared. Based on these fate maps, we found that the digit‐forming region in the forelimb bud is narrower than that in the hindlimb bud, suggesting that some developmental mechanisms on the anterior‐most region lead to a reduced number of digits in the forelimb. We also found temporal differences in the onset of appearance of the ANZ (anterior necrotic zone) as well as differences in the position of the anterior edge of the AER. Conclusions: Forelimb‐specific events in the anterior limb bud are possible developmental mechanisms that might generate the different cell fates in the fore‐ and hindlimb buds, regulating the number of digits in birds. Developmental Dynamics 243:741–752, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Results : The loss of function of two Sprouty genes, which encode feedback antagonists of receptor tyrosine kinase (RTK) signaling, phenocopy many defects associated with 22q11DS in the mouse. The stepwise reduction of Sprouty gene dosage resulted in different phenotypes emerging at specific steps, suggesting that the threshold up to which a given developmental process can tolerate increased RTK signaling is different. Tbx1 heterozygosity significantly exacerbated the severity of all these defects, which correlated with a substantial increase in RTK signaling. 相似文献   

9.
10.
11.
Defects in long-range regulatory elements have recently emerged as previously underestimated factors in the genesis of human congenital disorders. Léri-Weill dyschondrosteosis is a dominant skeletal malformation syndrome caused by mutations in the short stature homeobox gene SHOX. We have analysed four families with Léri-Weill dyschondrosteosis with deletions in the pseudoautosomal region but still with an intact SHOX coding region. Using fluorescence in situ hybridization and single nucleotide polymorphism studies, we identified an interval of approximately 200 kb that was deleted in all tested affected family members but retained in the unaffected members and in 100 control individuals. Comparative genomic analysis of this interval revealed eight highly conserved non-genic elements between 48 and 215 kb downstream of the SHOX gene. As mice do not have a Shox gene, we analysed the enhancer potential in chicken embryos using a green fluorescent protein reporter construct driven by the beta-globin promoter, by in ovo electroporation of the limb bud. We observed cis-regulatory activity in three of the eight non-genic elements in the developing limbs arguing for an extensive control region of this gene. These findings are consistent with the idea that the deleted region in the affected families contains several distinct elements that regulate Shox expression in the developing limb. Furthermore, the deletion of these elements in humans generates a phenotype apparently undistinguishable to those patients identified with mutations in the SHOX coding region and, for the first time, demonstrates the potential of an in vivo assay in chicken to monitor putative enhancer activity in relation to human disease.  相似文献   

12.
Vertebrate craniofacial and trunk myogenesis are regulated by distinct genetic programs. Tbx1, homologue of the del22q11.2 syndrome candidate gene TBX1, controls branchiomeric craniofacial muscle development. Here, we demonstrate using immunohistochemistry that myogenic regulatory factors are activated in Tbx1-positive cells within pharyngeal mesoderm. These cells are also Islet1 and Capsulin-positive and in the absence of Tbx1 persist in the core of the first arch. Sporadic hypoplastic mandibular muscles in Tbx1-/- embryos contain Pax7-positive myocytes with indistinguishable differentiation properties from wild-type muscles and have normal tendon attachments and fiber-type patterning. In contrast to TBX1 haploinsufficient del22q11.2 syndrome patients, no alteration in fiber-type distribution was detected in Tbx1+/- adult masseter and pharyngeal constrictor muscles. Furthermore, Tbx1-expressing limb muscles display normal patterning, differentiation, fiber-type growth, fiber-type distribution and fetal maturation in the absence of Tbx1. The critical requirement for Tbx1 during muscle development is thus in the robust onset of myogenic specification in pharyngeal mesoderm.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号