首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface chemical patterning of polystyrene (PS) dishes for long-term single-cell culture was accomplished by oxygen plasma treatment through the windows of a polydimethylsiloxane membrane mask that produced hydrophilic areas of different shapes and sizes, followed by overnight incubation with either Pluronic F108 solution or a mixture of Pluronic F108 solution and fibronectin. Selective cell attachment on pattern areas of PS dishes was investigated in light of cell seeding experiments and X-ray photoelectron spectroscopy measurements. Activation of the hydrophilic areas of patterned PS surfaces by serum proteins in the culture medium was conducive to cell attachment on the pattern areas of dishes incubated with only Pluronic solution. Preferential adsorption of fibronectin on hydrophilic pattern areas enhanced selective cell attachment on patterned dishes incubated with a mixture of Pluronic solution and fibronectin. Cell-culture experiments demonstrated an effect of surface patterning on both cell and nucleus shape and confirmed the long-term (>2 weeks) stability of the produced single-cell patterns in serum medium.  相似文献   

2.
Surface wettability is an important physicochemical property of biomaterials, and it would be more helpful for understanding this property if a wide range of wettability are employed. This study focused on the effect of surface wettability on fibroblast adhesion over a wide range of wettability using a single material without changing surface topography. Plasma polymerization with hexamethyldisiloxane followed by oxygen (O2)-plasma treatment was employed to modify the surfaces. The water contact angle of sample surfaces varied from 106 degrees (hydrophobicity) to almost 0 degrees (super-hydrophilicity). O2 functional groups were introduced on polymer surfaces during O2-plasma treatment. The cell attachment study confirmed that the more hydrophilic the surface, the more fibroblasts adhered in the initial stage that includes super-hydrophilic surfaces. Cells spread much more widely on the hydrophilic surfaces than on the hydrophobic surfaces. There was no significant difference in fibroblast proliferation, but cell spreading was much greater on the hydrophilic surfaces. The fibronectin adsorbed much more on a hydrophilic surface while albumin dominated on a hydrophobic surface in a competing mode. These findings suggest the importance of the surface wettability of biomaterials on initial cell attachment and spreading. The degree of wettability should be taken into account when a new biomaterial is to be employed.  相似文献   

3.
In this study, we synthesized a biomaterial whose surface inhibits non-specific protein and cell attachment. The polymer was designed to mimic the external cell plasma membrane properties through the introduction of particular chemical constituents of the cell membrane: phospholipid polar headgroups. This was done by copolymerizing phosphorylcholine (PC) groups into a polyurethane polymer backbone (PCPUR). Peptides known to induce specific cell attachment were subsequently bound to the surface of this copolymer in a photoadressible manner to obtain surfaces that allowed the attachment of cells in a specific pattern. Two polymers with different phosphorylcholine concentrations were synthesized and their bulk and surface properties were characterized through differential scanning calorimetry, wettability measurements, angle-resolved X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Protein and lipid adsorption investigation using optical waveguide light mode spectroscopy showed that the irreversible adsorption of both proteins and lipids is drastically reduced as a result of simultaneous contributions of the PC groups, molecular mobility and strong hydrophilicity of the polymers. Consequently, this leads to a marked reduction in the cellular attachment response, which further decreases with increasing PC concentration. Finally, when the polymer surface was photo-derivatized, attachment of the neural NG108-15 cell line occurred only on the areas of the PCPUR where the laminin CDPGYIGSR peptide sequence was photoimmobilized. Cell attachment was nevertheless found to be non-specific with respect to the peptide sequence used and reasons for such results are therefore discussed.  相似文献   

4.
Porous silicon is a promising biomaterial that is non-toxic and biodegradable. Surface modification can offer control over the degradation rate and can also impart properties that promote cell adhesion. In this study, we modified the surface of porous silicon surface by ozone oxidation, silanisation or coating with collagen or serum. For each surface, topography was characterised using atomic force microscopy, wettability by water contact angle measurements, degradation in aqueous buffer by interferometric reflectance spectroscopy and surface chemistry by Fourier-transform infrared spectroscopy. The adhesion of rat pheochromocytoma (PC12) and human lens epithelial cells to these surfaces was investigated. Cells were incubated on the surfaces for 4 and 24 h, and adhesion characteristics were determined by using a fluorescent vital stain and cell counts. Collagen coated and amino silanised porous silicon promoted cell attachment for both cell lines whereas cells attached poorly to ozone oxidised and polyethylene glycol silanised surfaces. We showed that the two cell lines had different adhesion characteristics on the various surfaces at different time points. The use of the vitality assays Alamar Blue (redox based assay) and neutral red (active cellular uptake assay) with porous silicon was also investigated. We reveal incompatibilities between certain resazurin (Alamar Blue), lysosomal incorporation assays (neutral red) and porous silicon.  相似文献   

5.
In vitro biocompatibility of an ultrafine grained zirconium   总被引:4,自引:0,他引:4  
We have investigated a novel ultrafine grained (UFG) Zr obtained by severe plastic deformation (SPD) which resulted in a refinement of the grain size by several orders of magnitude. Compared to conventional Zr, higher hardness values were measured on UFG Zr. Polished surfaces having similar topographical features from both materials were prepared, as assessed by atomic force microscopy (AFM). Surface hydrophobicity of Zr, evaluated by measuring water contact angles, was unaffected by grain size reduction. In vitro biocompatibility was addressed on conventional and UFG Zr surfaces and, for comparative purposes, a polished Ti6Al4V alloy was also investigated. Cell attachment and spreading, actin and beta-tubulin cytoskeleton reorganisation, fibronectin secretion and cellular distribution as well as cell viability were evaluated by culturing human osteoblastic Saos-2 cells on the surfaces. The osteoblastic response to conventional Zr was found to be essentially identical to Ti6Al4V and was not affected by grain size reduction. In order to evaluate the ability of the surfaces to promote osteogenic maturation and bone matrix mineralisation, human mesenchymal cells from bone marrow were switched to the osteoblastic phenotype by incubation in osteogenic induction media. Compared to undifferentiated mesenchymal cells, alkaline phosphatase activity and formation of mineralisation nodules were enhanced to the same extent on both Zr surfaces and Ti6Al4V alloy after induction of osteoblastic differentiation. In summary, improved mechanical properties together with excellent in vitro biocompatibility make UFG Zr a promising biomaterial for surgical implants.  相似文献   

6.
The physical, chemical and electrical properties of synthetic guidance devices are known to influence nerve regeneration in vivo. In the present study, neurons were cultured directly on electrically charged polymer growth substrates to determine if local electrical charges enhance nerve fibre outgrowth in vitro. Piezoelectric polymers such as polyvinylidene fluoride (PVDF) generate transient surface charges under minute mechanical strain. Mouse neuroblastoma (Nb2a) cells were cultured directly on electrically poled (i.e. piezoelectric) and unpoled (i.e. nonpiezoelectric) PVDF substrates in serum-free and serum-containing media. Nerve fibre outgrowth was analysed 24, 48, 72 and 96 h after plating. Piezoelectric PVDF substrates generated 2-3 mV at 1200 Hz when placed on standard incubator shelves and unpoled PVDF substrates showed no output. Nb2a cells grown on piezoelectric substrates exhibited significantly greater levels of process outgrowth and neurite lengths at all time periods for both media conditions. Detailed surface characterization of PVDF substrates using electron spectroscopy for chemical analysis (ESCA) and a comprehensive wettability profile revealed that poled and unpoled PVDF was chemically indistinguishable and showed similar surface wettabilities and adhesive properties. Therefore, we conclude that enhanced process outgrowth was induced by the film's piezoelectric output, making poled PVDF a unique biomaterial for which cell/polymer interactions are mediated predominantly through bulk electrical properties rather than surface properties.  相似文献   

7.
To facilitate tissue integration with biomaterials proteins and peptides frequently are immobilized on the biomaterial surface. In particular, extracellular matrix proteins--which interact specifically with integrin adhesion receptors on the cell surface--can stimulate initial cell attachment by serving both as a ligand for receptor-mediated attachment and as a stimulant of focal adhesion formation and cytoskeletal reorganization. Consequently, the strength of cell adhesion should depend both on the strength of cell/surface contacts and cytoskeleton-dependent properties of the cell (i.e., morphology, compliance). To examine this dual role of extracellular matrix proteins, murine fibroblasts were seeded onto self-assembled monolayers (SAMs) of dodecanethiolate coated with 0 to 0.45 microg/cm(2) of fibronectin (Fn) and then detached by hydrodynamic shear using a radial-flow chamber (RFC). Cell adhesion was characterized in terms of the critical wall shear stress for detachment (tau(wc)), and the compliance was evaluated from measurements of cell displacement and elongation as a function of the fibronectin concentration. Critical wall shear stress and cell displacement were found to be insensitive to Fn at concentrations below 0.23 microg/cm(2) while above this threshold tau(wc) increased and displacement decreased with increasing Fn concentration. Elongation of the cells in the direction of flow was independent of Fn concentration, but correlated linearly with tau(wc) for Fn densities below 0.23 microg/cm(2). These studies show that Fn concentration affects both tau(wc) and cell displacement under shear, and that tau(wc) is sensitive to cell compliance. In addition, they suggest that the dominant mechanism of cell detachment from hydrophobic substrates involves cell displacement.  相似文献   

8.
The effect of surface roughness of the titanium alloy Ti-6Al-4V (Ti alloy) on the short- and long-term response of human bone marrow cells in vitro and on protein adsorption was investigated. Three different values in a narrow range of surface roughness were used for the substrata (R(alpha): 0.320, 0.490 and 0.874 microm). Cell attachment, cell proliferation and differentiation (alkaline phosphatase specific activity) were determined past various incubation periods. The protein adsorption of bovine serum albumin and fibronectin, from single protein solutions, on rough and smooth Ti alloy surfaces was examined with two methods, X-ray photoelectron spectroscopy (XPS) and radiolabeling. Cell attachment and proliferation were surface roughness sensitive and increased as the roughness of Ti alloy increased. No statistically significant difference was observed in the expression of ALP activity on all three Ti alloy surfaces and culture plastic. Both methods, XPS and protein radiolabeling, showed that human serum albumin was adsorbed preferentially onto the smooth substratum. XPS technique showed that the rough substratum bound a higher amount of total protein (from culture medium supplied with 10% serum) and fibronectin (10-fold) than did the smooth one. The cell attachment may be explained by the differential adsorption of the two proteins onto smooth and rough Ti alloy surfaces.  相似文献   

9.
《Acta biomaterialia》2014,10(12):4956-4960
We present a protein immobilization system, based on the Src Homology 3 (SH3) affinity domain, allowing for a transient interaction between a fibronectin ligand and a biomaterial surface. This strategy leads to enhanced retention of the fibronectin fragment over adsorbed fibronectin, and increased cellular proliferation and motility over either covalently immobilized or adsorbed fibronectin. The results indicate that intermediate affinity protein immobilization could provide benefits for tissue engineering beyond the traditional immobilization techniques, adsorption or covalent attachment.  相似文献   

10.
Poly(L-lactide) (PLL) has been used as a bioabsorbable material in the medical and pharmaceutical fields. The unmodified hydrophobic PLL surface generally has low cell affinity; thus, modification of PLL film surface properties is necessary to improve its use as a biomaterial. Our surface modification method involved the use of photografting and typical wet chemistry to create branched architectures containing amine functionalities on the periphery of the grafted layers. Amine (-NH2) groups were first introduced on the PLL film surface by photoinduced grafting of 4,4'-diaminobenzophenone and the grafted branched architectures were created by subsequent reactions with succinic acid and tris(2-aminoethyl) amine. The resulting film surface was analyzed using contact angle goniometry and X-ray photoelectron spectroscopy. MC3T3 fibroblasts were cultured on unmodified PLL film and PLL films grafted with the branched structures and the films were subsequently analyzed by optical microscopy. The contact angle goniometry results showed an initial decrease and subsequent plateau in the water contact angles for the PLL films with each successive generation of the branched architectures. The X-ray photoelectron spectroscopy data provided insight into the structure of the grafted layer and revealed an increase in the nitrogen content with each generation. Optical micrographs showed enhanced cell attachment and viability on the surface-modified PLL films.  相似文献   

11.
Cell shapes induced by cell-substratum interactions are linked with proliferation, differentiation or apoptosis of cells. To clarify the relevance of specific surface characteristics, we applied self-assembled monolayers (SAM) of alkyl silanes exhibiting a variety of terminating functional groups. We first characterised the SAMs on glass or silicon wafers by measuring wettability, layer thickness and roughness. Water contact angle data revealed that methyl (CH(3)), bromine (Br), and vinyl (CH=CH(2)) groups lead to hydrophobic surfaces, while amine (NH(2)) and carboxyl (COOH) functions lead to moderately wettable surfaces, and polyethylene glycol (PEG) and hydroxyl (OH) groups created wettable substrata. The surfaces were found to be molecular smooth except for one type of NH(2) surface. The SDS-PAGE analysis of proteins adsorbed from bovine serum to the SAMs showed less protein adsorption to PEG and OH than to CH(3), NH(2) and COOH. Immunoblotting revealed that a key component of adsorbed proteins is vitronectin while fibronectin was not detectable. The interaction of human fibroblasts with CH(3), PEG and OH terminated SAMs was similarly weak while strong attachment, spreading, fibronectin matrix formation and growth were observed on COOH and NH(2). The strong interaction of fibroblasts with the latter SAMs was linked to an enhanced activity of integrins as observed after antibody-tagging of living cells.  相似文献   

12.
Fluorinated ethylenepropylene copolymer (FEP) and polyvinylidene fluoride (PVDF) can generate static and transient electrical charges, respectively, after bulk molecular rearrangements induced by electrical charging techniques. Neurons cultured on electrically active FEP and PVDF show increased levels of nerve fiber outgrowth compared to electrically neutral material. The purpose of the present study was to determine if the addition of charged surface groups to the surfaces of FEP and PVDF would modify the influence of bulk electrical charges on cultured neurons. Mouse neuroblastoma (Nb2a) cells were cultured on electrically charged and uncharged FEP and PVDF substrates with covalently modified surfaces containing hydroxyl (OH) and amine (NH2) groups. Surface chemical modification was performed on the entire surface or in discrete striped regions. Nb2a cells cultured on electrically active FEP and PVDF showed greater levels of differentiation than cells on electrically neutral substrates. The presence of NH2 groups attenuated these responses in serum-containing media. Cells attached to NH2 rich surfaces generally displayed a flatter morphology and tended to remain attached for longer time periods. Cells cultured on stripe-modified substrates in serum-containing media showed a strong preferential attachment to modified regions, especially on NH2 stripes. In summary, bulk electrical charges are more important than surface charges in stimulating Nb2a cell differentiation. Surface groups serve to modulate neuronal morphology and confer specific attachment promoting properties in serum-containing media. The development of an optimal neuronal regeneration template may require the incorporation of specific bulk and surface properties.  相似文献   

13.
Collagen has been widely used for tissue engineering. Here, we applied bioactive laminin-derived peptides as an additive for collagen, laminin-111, and fibronectin matrices resulting in peptide/collagen, peptide/laminin-111, and peptide/fibronectin matrices. Several syndecan-binding peptides, including AG73 (RKRLQVQLSIRT), enhanced the cell attachment activity of collagen matrices. AG73 synergistically enhanced not only cell attachment but also cell spreading on collagen matrices. AG73 also enhanced integrin-binding to the collagen matrices, including organization of actin stress fibers and promotion of Tyr397-focal adhesion kinase (FAK) phosphorylation. Additionally, AG73 enhanced neurite outgrowth on collagen matrices. These results suggest that the integrin-mediated biological activity of collagen matrices is synergistically enhanced by the syndecan-mediated cellular function of AG73. Further, cell attachment and spreading activity of laminin-111 and fibronectin matrices was also synergistically enhanced by AG73. The syndecan-binding peptides are useful to enhance the integrin-mediated biological activities of extracellular matrix (ECM) proteins, such as collagen, laminin-111, and fibronectin. The peptide/matrix mixed method is a new concept for biomaterial fabrication and has the potential for wide use in cell and tissue engineering.  相似文献   

14.
Hyaluronic acid (HA)-based polymers (hylans) are highly biocompatible and can be structurally modified to obtain desired mechanical properties. This study evaluated divinyl sulfone-crosslinked solid and particulate hylans as cellular scaffolds. These two hylan types differ in surface characteristics, mode of preparation, HA content, and extent of crosslinking. Neonatal rat aortic smooth muscle cells were cultured on hylan gels coated with matrix factors including collagen I, ECM gel, laminin, and fibronectin and on uncoated controls for < or =4 weeks. Cell attachment was sparse on uncoated controls but significantly enhanced on coated gels. Cell morphology was influenced by the identity of the matrix factors coated and the surface topography of the hylan gels. Cells attached to coated particulate gels appeared either highly spread (collagen, fibronectin) or irregularly shaped (ECM gel, laminin). Cells on laminin and fibronectin-coated solid gels were rounded and nonproliferative. Cells proliferated most rapidly on ECM gel-coated gels. The uneven surface of particulate gels induced more protein deposition and the subsequent attachment and active proliferation of cells. This study shows that surface texturizing and subsequent surface treatment with matrix factors enhances cell attachment and proliferation of hylans. These results are useful toward developing bioengineered materials based on cell-hylan composites.  相似文献   

15.
Surface properties of scaffolds play an important role in cell adhesion and growth. Biodegradable poly(alpha-hydroxy acids) have been widely used as scaffolding materials for tissue engineering; however, the lack of functional groups is a limitation. In this work, gelatin was successfully immobilized onto the surface of poly(alpha-hydroxy acids) films and porous scaffolds by a new entrapment process. The surface composition and properties were examined using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectra (XPS), and contact angle measurements. Control over the amount of entrapped gelatin was achieved by varying the solvent composition, the duration of soaking, the concentration of gelatin in solution, and chemical crosslinking. The amount of entrapped gelatin increased with the ratio of dioxane/water in the solvent mixture used. Chemical crosslinking after physical entrapment considerably increased the amount of retained gelatin on the surface of poly(alpha-hydroxy acids). Osteoblasts were cultured on these films and scaffolds. The surface modification significantly improved cell attachment and proliferation. Cell numbers on the surface-modified films and scaffolds were significantly higher than those on controls 4 h and 1 day after cell seeding. The osteoblasts showed higher proliferation on surface-modified scaffolds than on the control during 4 weeks of in vitro cultivation. More collagen fibers and other cell secretions were deposited on the surface-modified scaffolds than on the control scaffolds. This novel surface treatment strategy provides a convenient and universal way to modify the surface properties of three-dimensional scaffolds and thus promote cell adhesion and proliferation for tissue engineering.  相似文献   

16.
Cell-surface interactions of rat tooth germ cells on various biomaterials   总被引:2,自引:0,他引:2  
This is the first study to explore the effect of biomaterial on tooth germ cell adhesion and proliferation in vitro. The purpose of this study is to evaluate the effects of cell-surface interactions of tooth germ cells on biomaterials with various surface hydrophilicities. The biomaterials used in this study included polyvinyl alcohol (PVA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene-co-vinyl alcohol; EVAL), and polyvinylidene fluoride (PVDF). Cell morphology was observed by photomicroscopy. Cell growth was assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction activity and the characteristic expression of amelogenin and collagen type I in tooth germ cells was investigated using immunocytochemistry. The results indicated that adhesion and proliferation of tooth germ cells to biomaterials with moderate hydrophilicity/hydrophobicity was superior compared to most hydrophobic material PVDF or mosthydrophilic material PVA in this study. Cellular adhesion and proliferation was evident on all tested biomaterials except PVA. The cell spheroids on PVA appeared not to be proliferated and remained as well as reattachable to tissue culture plates. In conclusion, biomaterials with moderate hydrophilicity are suitable for adhesion and proliferation of tooth germ cells. The material PVA may be a good biomaterial for maintaining tooth germ cells in three-dimensional biological restoration.  相似文献   

17.
Protein adsorption and growth of primary human osteoblasts on self-assembled monolayers of alkylthiols on gold (SAMs) with carboxylic acid and hydroxyl and methyl termini were investigated. Single-component SAMs and SAMs patterned by photolithographic techniques were used. Cell growth on patterned SAMs demonstrated preferences for one pattern region in all combinations of alkylthiols, with the hierarchical preference COOH > OH > CH(3). Patterned SAMs and immunochemistry were used to investigate adsorption of fibronectin and albumin with respect to different alkylthiol termini. Fibronectin adsorption from both pure solution and serum containing cell culture medium (SDMEM) followed the sequence COOH > OH > CH(3). Albumin adsorption from pure solution followed the sequence OH > COOH > CH(3); from SDMEM the sequence was CH(3) > OH > COOH. Cell attachment to SAMs with the above termini, after preadsorption with fibronectin, albumin, or mixtures of fibronectin and albumin, was measured. Attachment was maximal on COOH-terminated SAMs precoated with fibronectin. Attachment to COOH was significantly reduced only when fibronectin was omitted from the protein preadsorption solution. On OH and CH(3) SAMs increasing the proportion of albumin in the solution was sufficient to significantly reduce cell attachment. The distribution vinculin and the integrins alpha(5)beta(1) and alpha(v)beta(3) indicated that focal contact formation by cells varied with alkylthiol termini in the following sequence: COOH > OH > CH(3).  相似文献   

18.
This article reports that surface modification of poly(dimethylsiloxane) (PDMS) influences fibronectin (Fn) adsorption and enhances cell attachment. Controlled adsorption of Fn on chemically activated polymer substrates is known to influence cellular function. Thin films of PDMS were spun cast on silicon wafers to obtain homogeneous and molecularly smooth surfaces. The films were made hydrophilic by exposure to ultraviolet ozone activation (PDMS*). The films then were characterized by contact angle goniometry, ellipsometry, atomic force microscopy (AFM), Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. Contact angle measurements indicated higher hydrophobicity of the nonactivated PDMS substrates than PDMS*. AFM scans of the substrates indicated higher surface roughness of PDMS* (Ra = 0.55 nm) than PDMS (Ra = 0.25 nm). Although Fn surface density (Gamma) was slightly higher on PDMS than on PDMS*, due to hydrophobic interactions between substrate and Fn, cell function was greatly enhanced on the Fn-coated PDMS* (PDMS*-Fn) than on PDMS (PDMS-Fn). Higher attachment of MC3T3-E1 osteoblast-like cells was observed on PDMS*-Fn than on PDMS-Fn. Moreover, cell spreading and cytoskeleton organization after 72 h was clearly favored on the Fn-coated PDMS* surfaces.  相似文献   

19.
α-Phase poly(vinylidene fluoride) (PVDF) has chains of zero dipole moments and is, therefore, nonpiezoelectric, while β-phase PVDF has the most significant piezoelectric properties among the polymorphs due to its polar chains. Although many reports describe PVDF as a suitable biomaterial due to its stability and biocompatibility, few considered the specific effects that the different polymorphs exert on cellular behaviour. We hypothesized that α- and β-phase PVDF will exert direct but different influences on cell attachment and metabolic activity. PVDF films were fabricated using N,N-dimethylformamide (DMF) and hexamethylphosphoramide (HMPA) by solvent casting. Samples were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. Films containing 83.5% α-phase PVDF (DMF–PVDFα) and 91.4% of β-phase PVDF (HMPA–PVDFβ within the crystalline regions were produced and used to evaluate in vitro attachment and metabolic activity of L929 cells. Cell metabolic activity on both PVDF conformations increased 3-fold over the 1-week culture period, with higher cell metabolic activity observed on DMF–PVDFα on day 5 of culture, compared to HMPA–PVDFβ. Cells grown on DMF–PVDFα were well-spread, flat and expressed spotted paxillin in focal adhesions that were mainly localized to perinuclear regions of the cells, while a high proportion of cells on HMPA–PVDFβ were bulging, round and expressed relatively fewer paxillin spots. Our results suggest that α-phase PVDF supports higher cell metabolic activity and better cell spreading compared to β-phase PVDF. Such variations can potentially be exploited for different biomedical applications.  相似文献   

20.
Polyurethanes are widely used as blood-contacting biomaterials, due to their good biocompatibility and mechanical properties. Nevertheless, their blood compatibility is still not adequate for more demanding applications. Surface modification is an effective way to improve the hemocompatibility for biomaterials. The purpose of the present study was to synthesize a novel nonthrombogenic biomaterial by modifying the surface of polyurethane. Ozonization was used to introduce active peroxide groups onto the segmented poly(ether-urethane) (SPEU) film surface and graft polymerization of N,N′-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate (DMAPS), a sulfobetaine structure, onto the ozone-activated SPEU surface was conducted. The SPEU-g-PDMAPS film was characterized by ATR-FTIR, XPS, and contact angle measurements. ATR-FTIR and XPS confirmed the graft polymerization. The grafted film possessed a relatively hydrophilic surface, as revealed by contact angle measurement. The blood compatibility of the grafted films was evaluated by a platelet-rich plasma (PRP) adhesion study and scanning electron microscopy, using SPEU film as the reference. No platelet adhesion was observed for the grafted films incubated with PRP at 37°C for 60 and 180 min. This new sulfobetaine structure grafted biomaterial might have potential for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号