首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei J  Zhang M  Zhu Y  Wang JH 《Neuroscience》2004,127(3):637-647
We investigated the role of calcium (Ca(2+))/calmodulin (CaM) signaling pathways in modulating GABA synaptic transmission at CA1 pyramidal neurons in hippocampal slices. Whole-cell pipettes were used to record type A GABA receptor (GABA(A)R)-gated inhibitory postsynaptic currents (IPSCs) and to perfuse intracellularly modulators in the presence of glutamate receptor antagonists. GABA(A)R-gated IPSCs were enhanced by the postsynaptic infusions of adenophostin (1 microM), a potent agonist of inositol-1,4,5-triphosphate receptor (IP(3)R) that induces Ca(2+) release. The enhancement was blocked by co-infusing either 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (10 mM) or CaM-binding peptide (100 microM). Moreover, the postsynaptic infusion of Ca(2+)-CaM (40/10 microM) enhanced both evoked and spontaneous GABA(A)R-gated IPSCs. The enhancement was attenuated by co-infusing 100 microM CaM-KII(281-301), an autoinhibitory peptide of CaM-dependent protein kinases. These results indicate that postsynaptic Ca(2+)-CaM signaling pathways essentially enhance GABAergic synaptic transmission. In the investigation of synaptic targets for the enhancement, we found that IP(3)R agonist-enhanced GABA(A)R-gated IPSCs were attenuated by co-infusing colchicine (30 microM), vincristine (3 microM) or cytochalasin D (1 microM) that inhibits tubulin or actin polymerization, implying that actin filament and microtubules are involved. We conclude that postsynaptic Ca(2+)-CaM signaling pathways strengthen the function of GABAergic synapses via a cytoskeleton-mediated mechanism, probably the recruitment of receptors in the postsynaptic membrane.  相似文献   

2.
Dextran-conjugated Ca(2+) indicators were injected into the accessory olfactory bulb of frogs in vivo to selectively fill presynaptic terminals of mitral cells at their termination in the ipsilateral amygdala. After one to three days of uptake and transport, the forebrain hemisphere anterior to the tectum was removed and maintained in vitro for simultaneous electrophysiological and optical measurements. Ca(2+) influx into these terminals was compared to synaptic transmission between mitral cells and amygdala neurons under conditions of reduced Ca(2+) influx resulting from reduced extracellular [Ca(2+)], blockade of N- and P/Q-type channels, and application of the cholinergic agonist carbachol. Reducing extracellular [Ca(2+)] had a non-linear effect on release; release was proportional to Ca(2+) influx raised to the power of approximately 3.6, as observed at numerous other synapses. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1 microM), blocked 77% of Ca(2+) influx and 88% of the postsynaptic field potential. The P/Q-type Ca(2+) channel blocker, omega-agatoxin-IVA (200 nM), blocked 19% of Ca(2+) influx and 25% of the postsynaptic field, while the two toxins combined to block 92% of Ca(2+) influx and 97% of the postsynaptic field. The relationship between toxin blockade of Ca(2+) influx and synaptic transmission was therefore only slightly non-linear; release was proportional to Ca(2+) influx raised to the power approximately 1.4. Carbachol (100 microM) acting via muscarinic receptors had no effect on the afferent volley, but rapidly and reversibly reduced Ca(2+) influx through both N- and P/Q-type channels by 51% and postsynaptic responses by 78%, i.e. release was proportional to Ca(2+) raised to the power approximately 2.5.The weak dependence of release on changes in Ca(2+) when channel toxins block channels suggests little overlap between Ca(2+) microdomains from channels supporting release or substantial segregation of channel subtypes between terminals. The proportionately greater reduction of transmission by muscarinic receptors compared to Ca(2+) channel toxins suggests that they directly affect the release machinery in addition to reducing Ca(2+) influx.  相似文献   

3.
We have previously shown that disabling forward-mode Na(+)-Ca(2+) exchange in amacrine cells greatly prolongs the depolarization-induced release of transmitter. To investigate the mechanism for this, we imaged [Ca(2+)](i) in segments of dendrites during depolarization. Removal of [Na(+)](o) produced no immediate effect on resting [Ca(2+)](i) but did prolong [Ca(2+)](i) transients induced by brief depolarization in both voltage-clamped and unclamped cells. In some cells, depolarization gave rise to stable patterns of higher and lower [Ca(2+)] over micrometer-length scales that collapsed once [Na(+)](o) was restored. Prolongation of [Ca(2+)](i) transients by removal of [Na(+)](o) is not due to reverse mode operation of Na(+)-Ca(2+) exchange but is instead a consequence of Ca(2+) release from endoplasmic reticulum (ER) stores over which Na(+)-Ca(2+) exchange normally exercises control. Even in normal [Na(+)](o), hotspots for [Ca(2+)] could be seen following depolarization, that are attributable to local Ca(2+)-induced Ca(2+) release. Hotspots were seen to be labile, probably reflecting the state of local stores or their Ca(2+) release channels. When ER stores were emptied of Ca(2+) by thapsigargin, [Ca(2+)] transients in dendrites were greatly reduced and unaffected by the removal of [Na(+)](o) implying that even when Na(+)-Ca(2+) exchange is working normally, the majority of the [Ca(2+)](i) increase by depolarization is due to internal release rather than influx across the plasma membrane. Na(+)-Ca(2+) exchange has an important role in controlling [Ca(2+)] dynamics in amacrine cell dendrites chiefly by moderating the positive feedback of the Ca(2+) amplifier.  相似文献   

4.
Action potentials, when arriving at presynaptic terminals, elicit Ca(2+) influx through voltage-gated Ca(2+) channels. Intracellular [Ca(2+)] elevation around the channels subsequently triggers synaptic vesicle exocytosis and also induces various protein reactions that regulate vesicle endocytosis and recycling to provide for long-term sustainability of synaptic transmission. Recent studies using membrane capacitance measurements, as well as high-resolution optical imaging, have revealed that the dominant type of synaptic vesicle endocytosis at central nervous system synapses is mediated by clathrin and dynamin. Furthermore, Ca(2+)-dependent mechanisms regulating endocytosis may operate in different ways depending on the distance from Ca(2+) channels: (1) intracellular Ca(2+) in the immediate vicinity of a Ca(2+) channel plays an essential role in triggering endocytosis, and (2) intracellular Ca(2+) traveling far from the channels has a modulatory effect on endocytosis at the periactive zone. Here, I integrate the latest progress in this field to propose a compartmental model for regulation of vesicle endocytosis at synapses and discuss the possible roles of presynaptic Ca(2+)-binding proteins including calmodulin, calcineurin and synaptotagmin.  相似文献   

5.
Nitric oxide (NO) is generated by multiple cell types in the vertebrate retina, including amacrine cells. We investigate the role of NO in the modulation of synaptic function using a culture system containing identified retinal amacrine cells. We find that moderate concentrations of NO alter GABA(A) receptor function to produce an enhancement of the GABA-gated current. Higher concentrations of NO also enhance GABA-gated currents, but this enhancement is primarily due to a substantial positive shift in the reversal potential of the current. Several pieces of evidence, including a similar effect on glycine-gated currents, indicate that the positive shift is due to an increase in cytosolic Cl-. This change in the chloride distribution is especially significant because it can invert the sign of GABA- and glycine-gated voltage responses. Furthermore, current- and voltage-clamp recordings from synaptic pairs of GABAergic amacrine cells demonstrate that NO transiently converts signaling at GABAergic synapses from inhibition to excitation. Persistence of the NO-induced shift in E(Cl-) in the absence of extracellular Cl- indicates that the increase in cytosolic Cl- is due to release of Cl- from an internal store. An NO-dependent release of Cl- from an internal store is also demonstrated for rat hippocampal neurons indicating that this mechanism is not restricted to the avian retina. Thus signaling in the CNS can be fundamentally altered by an NO-dependent mobilization of an internal Cl- store.  相似文献   

6.
The horizontal cell is a second-order retinal neuron that is depolarized in the dark and responds to light with graded potential changes. In such a nonspiking neuron, not only the voltage-gated ionic conductances but also Ca(2+) regulation mechanisms, e.g., the Na(+)/Ca(2+) exchange and the Ca(2+) pump, are considered to play important roles in generating the voltage responses. To elucidate how these physiological mechanisms interact and contribute to generating the responses of the horizontal cell, physiological experiments and computer simulations were made. Fura-2 fluorescence measurements made on dissociated carp horizontal cells showed that intracellular Ca(2+) concentration ([Ca(2+)]i) was maintained <100 nM in the resting state and increased with an initial transient to settle at a steady level of approximately 600 nM during prolonged applications of L-glutamate (L-glu, 100 microM). A preapplication of caffeine (10 mM) partially suppressed the initial transient of [Ca(2+)]i induced by L-glu but did not affect the L-glu-induced steady [Ca(2+)]i. This suggests that a part of the initial transient can be explained by the Ca(2+)-induced Ca(2+) release from the caffeine-sensitive Ca(2+) store. The Ca(2+) regulation mechanisms and the ionic conductances found in the horizontal cell were described by model equations and incorporated into a hemi-spherical cable model to simulate the isolated horizontal cell. The physiological ranges of parameters of the model equations describing the voltage-gated conductances, the glutamate-gated conductance and the Na(+)/Ca(2+) exchange were estimated by referring to previous experiments. The parameters of the model equation describing the Ca(2+) pump were estimated to reproduce the steady levels of [Ca(2+)]i measured by Fura-2 fluorescence measurements. Using the cable model with these parameters, we have repeated simulations so that the voltage response and [Ca(2+)]i change induced by L-glu applications were reproduced. The simulation study supports the following conclusions. 1) The Ca(2+)-dependent inactivation of the voltage-gated Ca(2+) conductance has a time constant of approximately 2.86 s. 2) The falling phase of the [Ca(2+)]i transient induced by L-glu is partially due to the inactivation of the voltage-gated Ca(2+) conductance. 3) Intracellular Ca(2+) is extruded mainly by the Na(+)/Ca(2+) exchange when [Ca(2+)]i is more than approximately 2 microM and by the Ca(2+) pump when [Ca(2+)]i is less than approximately 1 microM. 4) In the resting state, the Na(+)/Ca(2+) exchange may operate in the reverse mode to induce Ca(2+) influx and the Ca(2+) pump extrudes intracellular Ca(2+) to counteract the influx. The model equations of physiological mechanisms developed in the present study can be used to elucidate the underlying mechanisms of the light-induced response of the horizontal cell in situ.  相似文献   

7.
A variety of studies demonstrated a crucial role of mitochondria for clearance of Ca2+ loads in motoneurons. However, previous reports rarely addressed the potential influence of cell dialysis during patch-clamp recordings or temperature on mitochondrial processes. We therefore developed a protocol allowing investigation of Ca2+ dynamics in “undisturbed” AM-ester loaded hypoglossal motoneurons in a slice preparation. By comparing our findings to previous results, we argue against a significant disturbance of mitochondrial buffering by cell dialysis. By varying bath temperatures between 19 and 32 °C, we show that temperature alters the rate of mitochondrial uptake but not the relative contribution to maintenance of Ca2+ homeostasis. The results further indicate that mitochondria in hypoglossal motoneurons participate in intracellular Ca2+ regulation at concentrations much lower than has been generally observed for other neurons or neuroendocrine cells. Taken together, our findings further support the important role of mitochondria as regulators of Ca2+ homeostasis in motoneurons.  相似文献   

8.
In olfactory sensory neurons (OSNs), cytosolic Ca(2+) controls the gain and sensitivity of olfactory signaling. Important components of the molecular machinery that orchestrates OSN Ca(2+) dynamics have been described, but key details are still missing. Here, we demonstrate a critical physiological role of mitochondrial Ca(2+) mobilization in mouse OSNs. Combining a new mitochondrial Ca(2+) imaging approach with patch-clamp recordings, organelle mobility assays and ultrastructural analyses, our study identifies mitochondria as key determinants of olfactory signaling. We show that mitochondrial Ca(2+) mobilization during sensory stimulation shapes the cytosolic Ca(2+) response profile in OSNs, ensures a broad dynamic response range and maintains sensitivity of the spike generation machinery. When mitochondrial function is impaired, olfactory neurons function as simple stimulus detectors rather than as intensity encoders. Moreover, we describe activity-dependent recruitment of mitochondria to olfactory knobs, a mechanism that provides a context-dependent tool for OSNs to maintain cellular homeostasis and signaling integrity.  相似文献   

9.
Du JL  Yang XL 《Neuroscience》2002,113(4):779-784
Glycinergic inhibitory postsynaptic currents (IPSCs) focally elicited at the dendrites and axon terminals were recorded from bipolar cells in the bullfrog retinal slice, using the whole-cell clamp technique. IPSCs driven by input from interplexiform cells at bipolar cell dendrites (ipc-IPSCs) had a much slower decay time constant (25.2 +/- 7.8 ms) than IPSCs driven by input from amacrine cells at bipolar cell axon terminals (ac-IPSCs) (14.7 +/- 5.5 ms). Furthermore, peak-scaled non-stationary noise analysis revealed that the weighted mean single-channel conductance of the glycine receptors underlying bipolar cell dendritic ipc-IPSCs (20.8 +/- 6.6 pS) was significantly larger than that of those underlying bipolar cell axon terminal ac-IPSCs (12.9 +/- 2.9 pS). These results demonstrate that glycinergic synaptic transmission with different properties at bipolar cell dendrites and axon terminals differentially mediates intraretinal centrofugal signal transfer from the inner retina to the outer retina provided by interplexiform cells and lateral inhibition offered by amacrine cells in the inner retina.  相似文献   

10.
Ca(2+) signalling is one of the most important means in mammalian cells of relaying the action of hormones and neurotransmitters. The great diversity of agonist-induced Ca(2+) signatures, visualized by optical imaging techniques, can be explained by the production of intracellular messengers triggering Ca(2+) release from internal stores and/or by different coupling of Ca(2+) release to Ca(2+) entry. Several messengers, such as inositol trisphosphate and cyclic ADP-ribose, have been identified to date. More recent studies have reported the important role of a newly discovered Ca(2+) releasing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). These studies have shown important interactions of these messengers in the generation of specific Ca(2+) signals. NAADP acts at a very low concentration and seems to have a key role in sensitising cyclic ADP-ribose and inositol trisphosphate receptors. These points will be discussed in the present review.  相似文献   

11.
12.
The enzyme for the synthesis of epinephrine, phenylethanolamine-N-methyltransferase, has been localized, by an indirect immunofluorescent staining method, to a subpopulation of amacrine cells in the rat retina. The immunoreactive cells are located primarily in the inner nuclear layer and send a single process to the inner plexiform layer. Most of the immunoreactivity is found in the center of the inner plexiform layer. A small percentage of immunoreactive cell bodies were found in the inner plexiform layer and occasionally cells were observed in the ganglion cell layer. These epinephrine-containing amacrine cells are morphologically distinct from the dopamine-containing amacrine cells previously described by formaldehyde fluorescence and we speculate from reports in the literature that epinephrine-containing amacrine cells may play a role in modulating the activity of dopamine-containing amacrine cells.  相似文献   

13.
The translocation of synaptic Zn(2+) from nerve terminals into selectively vulnerable neurons may contribute to the death of these neurons after global ischemia. We hypothesized that cellular Zn(2+) overload might be lethal for reasons similar to cellular Ca(2+) overload and tested the hypothesis that Zn(2+) neurotoxicity might be mediated by the activation of nitric oxide synthase. Although Zn(2+) (30-300microM) altered nitric oxide synthase activity in cerebellar extracts in solution, it did not affect nitric oxide synthase activity in cultured murine neocortical neurons. Cultured neurons exposed to 300-500microM Zn(2+) for 5min under depolarizing conditions developed widespread degeneration over the next 24h that was unaffected by the concurrent addition of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine. Furthermore, Zn(2+) neurotoxicity was attenuated when nitric oxide synthase activity in the cultures was induced by exposure to cytokines, exogenous nitric oxide was added or nitric oxide production was pharmacologically enhanced. The unexpected protective effect of nitric oxide against Zn(2+) toxicity may be explained, at least in part, by reduction of toxic Zn(2+) entry. Exposure to nitric oxide donors reduced Ba(2+) current through high-voltage activated calcium channels, as well as K(+)-stimulated neuronal uptake of 45Ca(2+) or 65Zn(2+). The oxidizing agents thimerosal and 2,2'-dithiodipyridine also reduced K(+)-stimulated cellular 45Ca(2+) uptake, while akylation of thiols by pretreatment with N-ethylmaleimide blocked the reduction of 45Ca(2+) uptake by a nitric oxide donor.The results suggest that Zn(2+)-induced neuronal death is not mediated by the activation of nitric oxide synthase; rather, available nitric oxide may attenuate Zn(2+) neurotoxicity by reducing Zn(2+) entry through voltage-gated Ca(2+) channels, perhaps by oxidizing key thiol groups.  相似文献   

14.
15.
Reciprocal synaptic transmission between rod bipolar cells and presumed A17 amacrine cells was studied by whole cell voltage-clamp recording of rod bipolar cells in a rat retinal slice preparation. Depolarization of a rod bipolar cell evoked two identifiable types of Ca2+ current, a T-type current that activated at about -70 mV and a current with L-type pharmacology that activated at about -50 mV. Depolarization to greater than or equal to -50 mV also evoked an increase in the frequency of postsynaptic currents (PSCs). The PSCs reversed at approximately ECl (the chloride equilibrium potential), followed changes in ECl, and were blocked by gamma-aminobutyric acidA (GABAA) and GABAC receptor antagonists and thus were identified as GABAergic inhibitory PSCs (IPSCs). Bipolar cells with cut axons displayed the T-type current but lacked an L-type current and depolarization-evoked IPSCs. Thus L-type Ca2+ channels are placed strategically at the axon terminals to mediate transmitter release from rod bipolar cells. The IPSCs were blocked by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, indicating that non-NMDA receptors mediate the feed-forward bipolar-to-amacrine excitation. The NMDA receptor antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid had no consistent effect on the depolarization-evoked IPSCs, indicating that activation of NMDA receptors is not essential for the feedforward excitation. Tetrodotoxin (a blocker of voltage-gated Na+ channels) reversibly suppressed the reciprocal response in some cells but not in others, indicating that graded potentials are sufficient for transmitter release from A17 amacrine cells, but suggesting that voltage-gated Na+ channels, under some conditions, can contribute to transmitter release.  相似文献   

16.
Retinal amacrine cells are depolarized by the excitatory synaptic input from bipolar cells. When a graded depolarization exceeds the threshold level, trains of action potentials are generated. There have been several reports that both spikes and graded depolarization are sensitive to tetrodotoxin (TTX). In the present study, we investigated the contribution of voltage-gated currents to membrane depolarization by using rat GABAergic amacrine cells in culture recorded by the patch-clamp method. Injection of a negative current induced membrane hyperpolarization, the waveform of which can be well fitted by a single exponential function. Injection of positive current depolarized the cell, and the depolarization exceeded the amplitude expected from the passive properties of the membrane. The boosted depolarization sustained after the current was turned off. Either 1 microM TTX or 2 mM Co2+ suppressed the boosted depolarization, and co-application of TTX and Co2+ blocked it completely. Under the voltage clamp, we identified a transient Na+ current (fast I(Na)), a TTX-sensitive persistent current that reversed the polarity near the equilibrium potential of Na+ (I(NaP)), and three types of Ca2+ currents (I(Ca)), L, N, and the pharmacological agent-resistant type (R type). These findings suggest that the I(NaP) and I(Ca) of amacrine cells boost depolarization evoked by the excitatory synaptic input, and they may aid the spread of electrical signals among dendritic arbors of amacrine cells.  相似文献   

17.
The elevation of presynaptic calcium concentration is a crucial step in excitation-secretion coupling. However, the amplitudes of action-potential-induced presynaptic calcium transients can display high variability among different terminals. The aim of this study was to clarify whether, at individual boutons, synaptic strength correlates with the average amplitude of presynaptic calcium transients. Low-density collicular cultures were loaded with the calcium indicator Oregon Green bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) 1. Action potentials were blocked with tetrodotoxin. Presynaptic terminals were identified with FM4-64, a use-dependent vesicle marker. Presynaptic calcium influx was elicited by a focal electrical stimulation of single boutons. Whole cell patch-clamp and calcium imaging techniques were used to record GABAergic evoked inhibitory postsynaptic currents (eIPSCs) and presynaptic fluorescence changes in the stimulated terminal. To make the eIPSCs from different boutons comparable, they were normalized to the mean value of miniature IPSCs (mIPSCs) of the postsynaptic cell. Records from 47 boutons showed that eIPSCs varied between 0.5 and 3.0 and presynaptic calcium transients varied between 0.1 and 1.3. However, there was a strong correlation between the mean amplitudes of eIPSCs and presynaptic calcium responses. The eIPSC-[Ca(2+)](pre) relationship allows to use the amplitudes of presynaptic calcium transients as an indicator of release efficacy and, in a set of contacts made by one axon, to predict the relative impact of individual terminals.  相似文献   

18.
Large-conductance Ca(2+) and voltage-dependent K(+) channels (BK channels) in many tissues require high Ca(2+) concentrations for activation and therefore might be expected to be tightly coupled to Ca(2+) channels. However, in most cases, little is known about the relative organization of the BK channels and the Ca(2+) channels involved in their activation. We probed the nature of the organization of BK and Ca(2+) channels in rat chromaffin cells by manipulating Ca(2+) influx through Ca(2+) channels and by altering cellular Ca(2+) buffering using EGTA and bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid (BAPTA). The results were analyzed to determine the distance between Ca(2+) and BK channels that would be most consistent with the experimental data. Most BK channels are close enough to Ca(2+) channels to be resistant to the buffering action of millimolar of EGTA, but are far enough to be inhibited by BAPTA. Analysis of the EGTA/BAPTA results suggests that BK channels are at a distance of 50 to 160 nm from Ca(2+) channels. A model that assumes random distribution of Ca(2+) and BK channels fails to account for the observed [Ca(2+)](i) detected by BK channels, suggesting that a specific mechanism may exist to mediate the functional coupling between these channels. Importantly, the effects of EGTA and BAPTA cannot be explained by assuming a one-to-one coupling between Ca(2+) and BK channels. Rather, Ca(2+) influx through a number of Ca(2+) channels appears to act in concert to regulate the behavior of any individual BK channel. Thus differences in BK channel open probabilities may be explained by differences in the extent of Ca(2+) domain overlap at the sites of individual BK channels.  相似文献   

19.
Trus M  Wiser O  Goodnough MC  Atlas D 《Neuroscience》2001,104(2):599-607
Syntaxin 1A has a pronounced inhibitory effect on the activation kinetics and current amplitude of voltage-gated Ca(2+) channels. This study explores the molecular basis of syntaxin interaction with N- and Lc-type Ca(2+) channels by way of functional assays of channel gating in a Xenopus oocytes expression system. A chimera of syntaxin 1A and syntaxin 2 in which the transmembrane domain of syntaxin 2 replaced the transmembrane of syntaxin 1A (Sx1-2), significantly reduced the rate of activation of N- and Lc-channels. This shows a similar effect to that demonstrated by syntaxin 1A, though the current was not inhibited. The major sequence differences at the transmembrane of the syntaxin isoforms are that the two highly conserved cysteines Cys 271 and Cys 272 in syntaxin 1A correspond to the valines Val 272 and Val 273 in syntaxin 2 transmembrane. Mutating either cysteines in Sx1-1 (syntaxin 1A) to valines, did not affect modulation of the channel while a double mutant C271/272V was unable to regulate inward current. Transfer of these two cysteines to the transmembrane of syntaxin 2 by mutating Val 272 and Val 273 to Cys 272 and Cys 273 led to channel inhibition. When cleaved by botulinum toxin, the syntaxin 1A fragments, amino acids 1-253 and 254-288, which includes the transmembrane domain, were both unable to inhibit current amplitude but retained the ability to modify the activation kinetics of the channel. A full-length syntaxin 1A and the integrity of the two cysteines within the transmembrane are crucial for coordinating Ca(2+) entry through the N- and Lc-channels.These results suggest that upon membrane depolarization, the voltage-gated N- and Lc-type Ca(2+)-channels signal the exocytotic machinery by interacting with syntaxin 1A at the transmembrane and the cytosolic domains. Cleavage with botulinum toxin disrupts the coupling of the N- and Lc-type channels with syntaxin 1A and abolishes exocytosis, supporting the hypothesis that these channels actively participate in Ca(2+) regulated secretion.  相似文献   

20.
The mechanism of termination of Ca(2+)-induced Ca2+ release (CICR) from the sarcoplasmic reticulum has been investigated in voltage clamped cut crayfish muscle fibres loaded with rhod-2. During depolarizing steps evoking calcium current (ICa), Ca2+ release was first activated. Then the release rapidly (tau approximately 6 ms) declined, as evidenced by the rate of change of the intracellular fluorescence signal representing a Ca2+ transient. The rapid termination of release was not accounted for by inactivation of the trigger ICa or depletion of Ca2+ from the SR, since the rate at which release declined was constant under conditions where the rate of ICa inactivation and the amount of Ca2+ released varied widely. Pre-elevations of [Ca2+]i with prepulses or photolysis of caged Ca2+ caused depression of Ca2+ release during a subsequent test pulse. When the rate of ICa onset was varied by applying voltage ramps with different slopes, currents with fast onset elicited larger Ca2+ release than calcium currents with slower onset, even though the amplitude of the currents was the same. These results suggest that a Ca(2+)-dependent negative control mechanism exists which mediates the termination of CICR independently of the duration of the trigger ICa and before significant depletion of Ca2+ in the SR occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号