首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four recombinant vaccinia viruses were constructed for expression of different portions of the 17D yellow fever virus (YFV-17D) open reading frame. A recombinant, vP869, expressing prM and E induced high titers of neutralizing and hemagglutination inhibiting antibodies in mice and was protective against intracranial challenge with the French neurotropic strain of YFV. Levels of protection were equivalent to those achieved by immunization with the YFV-17D vaccine virus. Recombinant vaccinia viruses expressing E and NS1, C prM, E, NS1, or only NS1 failed to protect mice against challenge with YFV despite eliciting antibodies to NS1. The vP869-infected HeLa cells produced a particulate extracellular hemagglutinin (HA) similar to that produced by YFV-infected cells, supporting previous studies with Japanese encephalitis virus (Mason et al., 1991), suggesting that the ability of recombinant vaccinia virus to produce extracellular HA particles is important for effective flavivirus immunity.  相似文献   

2.
Immunization with recombinant vaccinia viruses that specified the synthesis of Japanese encephalitis virus (JEV) glycoproteins protected mice from a lethal intraperitoneal challenge with JEV. Recombinants which coexpressed the genes for the structural glycoproteins, prM and E, elicited high levels of neutralizing (NEUT) and hemagglutination inhibiting (HAI) antibodies in mice and protected mice from a lethal challenge by JEV. Recombinants expressing only the gene for the nonstructural glycoprotein, NS1, induced antibodies to NS1 but provided low levels of protection from a similar challenge dose of JEV. Antibodies to the NS3 protein in postchallenge sera, representing the degree of infection with challenge virus, were inversely correlated to NEUT and HAI titers and levels of protection. These results indicate that although vaccinia recombinants expressing NS1 can provide some protection from lethal JEV infection, recombinants expressing prM and E elicited higher levels of protective immunity.  相似文献   

3.
A highly attenuated strain of vaccinia virus (NYVAC) was engineered to express the Japanese encephalitis virus (JEV) prM, E, and NS1 genes or the prM and E genes. The recombinant viruses were tested as vaccine candidates in pigs, a natural host of JEV. JEV-neutralizing and hemagglutination-inhibiting antibodies appeared in swine sera 7 days after immunization with 10(8) PFU of the recombinant viruses and increased after a second dose at 28 days. The JEV levels detected in the serum after JEV challenge (d56) of the swine with 2 x 10(5) PFU of JEV were significantly reduced in animals inoculated with the recombinant viruses. These results demonstrate the ability of these NYVAC-vectored recombinants to protect pigs from JEV viremia.  相似文献   

4.
P W Mason 《Virology》1989,169(2):354-364
The Japanese encephalitis virus (JE) structural glycoprotein (E) and two nonstructural glycoproteins (NS1 and NS1') were processed differently by JE-infected vertebrate and invertebrate cell lines. All three proteins were released slowly (t1/2 greater than 6 hr) from JE-infected monkey cells (Vero cells). Mosquito cell lines released E at a similar rate (t1/2 greater than 8 hr), while NS1 and NS1' were retained in an undegraded form in the cell layer. The proteolytic processing of the three proteins appeared identical in both cell types, but some differences in N-linked glycosylation were observed. E, NS1, and NS1' found within the infected cells of both types contained high-mannose oligosaccharide groups for more than 8 hr after synthesis. Additional sugar residues were added to the single E protein oligosaccharide group prior to release from Vero cells, while sugar residues were trimmed from the E protein oligosaccharide group prior to release from mosquito cells. The forms of NS1 and NS1' found in the culture fluid of infected Vero cells contained one complex and one high-mannose oligosaccharide. All three glycoproteins released from JE-infected Vero cells were associated with extracellular particles, the virion in the case of E and a low density particle in the case of and NS1' exhibited amphipathic properties in Triton X-114 extraction experiments. Taken together, these results suggest that both the structural (E) and nonstructural (NS1 and NS1') glycoproteins were pathway of the infected Vero cells, assembled into particles, and then released into the extracellular fluid.  相似文献   

5.
W F Fan  P W Mason 《Virology》1990,177(2):470-476
The biosynthesis of the flavivirus nonstructural glycoprotein, NS1, has important implications for (1) vaccine production, since NS1 immunity can protect animals from flavivirus infection; and (2) virion maturation, since NS1 is coretained with immature forms of the structural glycoprotein E in the endoplasmic reticulum (ER) of infected cells. To examine the molecular basis for NS1 retention within the ER we have expressed fragments of Japanese encephalitis virus (JEV) cDNA encoding NS1 in BHK cells. These transient expression studies showed that the JEV NS1 protein was faithfully processed when expressed in isolation, and have revealed that NS1 expressed in the absence of any other viral genes behaves like the NS1 protein found in JEV-infected cells with respect to retention in the ER, secretion, glycosylation, membrane association, and dimerization.  相似文献   

6.
Y Matsuura  M Miyamoto  T Sato  C Morita  K Yasui 《Virology》1989,173(2):674-682
Recombinant baculoviruses containing the coding sequences of the viral structural proteins, i.e., the capsid (C) protein, the precursor to premembrane (preM) protein, and the envelope (E) protein, as well as a nonstructural protein, NS1, of Japanese encephalitis virus (JEV) were constructed. Infection of Spodoptera frugiperda cells with these recombinant viruses produced PreM and E proteins. The E proteins synthesized by the recombinants were shown to be glycosylated and similar in size to the authentic E protein. The E protein was found on the surface of infected cells. The antigenic properties of recombinant E proteins were evaluated using a panel of monoclonal antibodies produced against JEV E protein. It was demonstrated that all of the epitopes detectable on the authentic JEV E protein were present on the recombinant E protein expressed by a recombinant baculovirus containing the coding sequence for a part of C, PreM, E, and a part of NS1 proteins. However, for E protein expressed by a recombinant baculovirus having the coding sequence of only a part of PreM, but all of E and a part of NS1, one of the flavivirus cross-reactive epitopes was not detected. Mice immunized with cells infected with the recombinant baculoviruses developed neutralization antibodies.  相似文献   

7.
Extracellular subviral particles produced by HeLa cells infected with a recombinant vaccinia virus encoding the prM and E genes of Japanese encephalitis virus (JEV) were purified and characterized. These particles contained the JEV prM/M and E proteins embedded in a lipid bilayer, and RNA was not detected in particles using the polymerase chain reaction and primers recognizing a part of the JEV E gene. The particles were uniformly spherical with a 20-nm diameter and had 5-nm projections on their surface. Mice that received a single inoculation of the purified extracellular particles emulsified with Freund's complete adjuvant were fully protected against 4.9 x 10(5) LD50 of JEV. Comparison of the neutralizing and hemagglutination-inhibiting antibody titers and radioimmunoprecipitation data showed that immunization with the particles induced an immune response similar to that following inoculation with the recombinant vaccinia virus.  相似文献   

8.
M Flamand  V Deubel  M Girard 《Virology》1992,191(2):826-836
The nonstructural protein NS1 of Japanese encephalitis virus (JEV) was expressed at a high level under the control of the polyhedrin promoter in Spodoptera frugiperda (Sf9) insect cells using a recombinant baculovirus. Recombinant NS1 was designed to contain its natural signal sequence at its N-terminus and no C-terminal hydrophobic domain that could act as a membrane anchor. This recombinant protein exhibited similar size to native NS1 expressed in Aedes albopictus (C6/36) insect cells infected with wild-type JEV. The signal sequence of NS1 allowed translocation of the protein into the endoplasmic reticulum where it underwent glycosylation. A small fraction of synthesized NS1 was able, in the absence of any other viral protein, to associate as a homodimer, showing similar characteristics to the native dimer. Interestingly, this recombinant dimeric form seemed to be exported and released in the extracellular medium of infected cell culture. During its transport, one of the two N-linked oligosaccharides of the polymannose type was processed to an endoglycosidase H-resistant form, suggesting that the protein had passed through the Golgi compartment before reaching the cell surface. Moreover, Triton X-114 partitioning analysis showed that monomeric NS1 behaved essentially as a hydrophilic protein, whereas both intracellular and extracellular dimeric NS1 were either free of or associated to membraneous components.  相似文献   

9.
IgM antibody- and IgG antibody-capture enzyme-linked immunosorbent assays (MAC/GAC-ELISAs) targeted at envelope protein (E) of dengue viruses (DENV), West Nile virus, and Japanese encephalitis virus (JEV) are widely used as serodiagnostic tests for presumptive confirmation of viral infection. Antibodies directed against the flavivirus nonstructural protein 1 (NS1) have been proposed as serological markers of natural infections among vaccinated populations. The aim of the current study is to optimize an IgM and IgG antibody-capture ELISA (MAC/GAC-ELISA) to detect anti-NS1 antibodies and compare it with anti-E MAC/GAC-ELISA. Plasmids to express premembrane/envelope (prM/E) or NS1 proteins of six medically important flaviviruses, including dengue viruses (DENV-1 to DENV-4), West Nile virus (WNV), and Japanese encephalitis virus (JEV), were constructed. These plasmids were used for the production of prM/E-containing virus-like particles (VLPs) and secreted NS1 (sNS1) from COS-1 cells. Archived clinical specimens from patients with confirmed DENV, JEV, and WNV infections, along with naive sera, were subjected to NS1-MAC/GAC-ELISAs before or after depletion of anti-prM/E antibodies by preabsorption with or without VLPs. Human serum specimens from previously confirmed DENV infections showed significantly enhanced positive-to-negative (P/N) ratios for NS1-MAC/GAC-ELISAs after the depletion of anti-prM/E antibodies. No statistical differences in sensitivities and specificities were found between the newly developed NS1- and VLP-MAC/GAC-ELISAs. Further application of the assays to WNV- and JEV-infected serum panels showed similar results. A novel approach to perform MAC/GAC-ELISAs for NS1 antibody detection was successfully developed with great potential to differentiate antibodies elicited by the tetravalent chimeric yellow fever-17D/dengue vaccine or DENV infection.  相似文献   

10.
The effect of tunicamycin (Tm), a glycosylation inhibitor, on the epitopes expressed on Japanese encephalitis virus (JEV) glycoprotein E (gpE) in porcine kidney stable (PS) cells was studied. At Tm concentration of 2 micrograms/ml, the virus-infected cells showed markedly reduced or no reactivity with any of the monoclonal antibodies (MAbs) directed against JEV gpE except NHs-2 and also with polyclonal antibodies (PAbs) directed against JEV. With the increase in Tm concentration to 3 micrograms/ml, a complete loss of the conventionally detected reactivity of the MAbs except NHs-2 was recorded, while the Pabs showed no decrease in their reactivity. However, the MAb NHs-2 and PAbs lost their reactivity when the cells treated with 3 micrograms/ml Tm were stained for epitopes expressed on their surface indicating that glycosylation plays a role in this phenomenon. Tissue culture fluid (TCF) displayed a low virus content in the presence of 3 micrograms/ml Tm, indicating probably a down-regulation of virus maturation inside the cells. Since preM and NS-1 proteins possess besides gpE conserved N-glycosylation sites and play a role in the maturation of JEV, their expression in nascent, i.e. non-glycosylated form might be responsible for the observed low virus content of TCF. Thus, the glycosylation of JEV gpE seems essential for the acquisition of native conformation of its epitopes and their expression in cells.  相似文献   

11.
乙型脑炎重组痘苗病毒J3免疫性的研究   总被引:3,自引:0,他引:3  
用含有日本脑炎病毒(JEV)结构蛋白PrM、E和非结构蛋白NS1、NS2A基因的重组痘苗病毒J3免疫家兔,能较快地诱生抗JEV抗体,其滴度可随免疫次数的增加和免疫时间的延长而增高。此抗血清可被动保护不同毒株JEV的致死性攻击,该保护作用与其中抗体和血凝抑制抗体有关。  相似文献   

12.
Tick-borne encephalitis virus (TBEV) was propagated in porcine embryo kidney (PS) cells until 48 h whereas human kidney (RH) cells maintained the virus persistence during at least 2 months. One of possible reasons of flavivirus chronic infection might be abnormal NS1 gene expression. Immunoblotting with monoclonal antibodies (MAbs) revealed the similarity of the intracellular and secreted NS1 nonstructural glycoprotein size and linear antigenic determinants in both the infected cell lines. However, according to the competitive binding of MAbs with the TBEV NS1 extracellular glycoprotein, its contiguous epitopes differed for acute or persistent infection. To map the TBEV NS1 glycoprotein antigenic determinants its recombinant analogues were used. All the studied MAbs could bind with the full-length NS1 recombinant protein. Deletion of the TBEV NS1 gene internal region resulted in defective NS1d1 protein without the region between 269 and 333 a.a. Lack of NS1d1 binding with 20B4 MAb and diminished binding with 22H8 and 17C3 MAbs permitted to map their antigenic determinants within or nearby deleted region, respectively. Interaction of other MAbs with the NS1 and NS1d1 recombinant proteins did not differ, suggesting that their epitopes were located in the region of N-terminal 268 a.a. or C-terminal 19 a.a. of the TBEV NS1 protein. The second NS1d2 truncated protein contained the first N-terminal 33 a.a. of the TBEV NS1 protein and was able to bind with 29G9 MAb. Taken together the data stand for the differences in the N-terminal structure of the TBEV NS1 multimers secreted from the acute and persistent infected cells whereas the intracellular and secreted monomer processing was the same. The modified NS1 protein oligomers in the RH cellular line might slow virus replication and could result in the TBEV persistence.  相似文献   

13.
Tunicamycin has different effects on the glycosylation of the two envelope glycoproteins of mouse hepatitis virus (MHV), a coronavirus. Unlike envelope glycoproteins of other viruses, the transmembrane glycoprotein El is glycosylated normally in the presence of tunicamycin. This suggests that glycosylation of El does not involve transfer of core oligosaccharides from dolichol pyrophosphate intermediates to asparagine residues, but may occur by 0-linked glycosylation of serine or threonine residues. Synthesis of the peplomeric glycoprotein E2 is not readily detectable in the presence of tunicamycin. Inhibition of N-linked glycosylation of E2 by tunicamycin either prevents synthesis or facilitates degradation of the protein moiety of E2. Radiolabeling with carbohydrate precursors and borate gel electrophoresis of glycopeptides show that different oligcsaccharide side chains are attached to El and E2. The two coronavirus envelope glycoproteins thus appear to be glycosylated by different mechanisms. In tunicamycin-treated cells, noninfectious virions lacking peplomers are formed at intracytoplasmic membranes and released from the cells. These virions contain normal amounts of nucleocapsid protein and glycosylated El, but lack E2. Thus the transmembrane glycoprotein El is the only viral glycoprotein required for the formation of the viral envelope or for virus maturation and release. The peplomeric glycoprotein E2 appears to be required for attachment to virus receptors on the plasma membrane. The coronavirus envelope envelope glycoprotein E1 appears to be a novel type of viral glycoprotein which is post-translationally glycosylated by a tunicamycin-resistant process that yields oligosaccharide side chains different from those of N-linked glycoproteins. These findings suggest that El may be particularly useful as a model for studying the biosynthesis, glycosylation, and intracellular transport of 0-linked glycoproteins.  相似文献   

14.
Summary. The dengue 2 virus (DENV-2) NS1 glycoprotein contains two potential sites for N-linked glycosylation at Asn-130 and Asn-207. NS1 produced in infected cells is glycosylated at both of these sites. We used site-directed mutagenesis of a DENV-2, strain 16681, full length infectious clone to create mutant viruses lacking the Asn-130, Asn-207 or both of these NS1 glycosylation sites in order to investigate the effects of deglycosylation. Ablation of both NS1 glycosylation sites resulted in unstable viruses that acquired numerous additional mutations; these viruses were not further characterized. Viruses altered at the Asn-130 site exhibited growth characteristics similar to the wild-type (WT) 16681 virus in LLC-MK2 cells and reduced growth in C6/36 cells. Viruses mutated at the Asn-207 site achieved similar titers in LLC-MK2 cells compared to WT, however, the appearance of cytopathic effect was delayed and growth of these viruses in C6/36 cells was also reduced compared to WT virus. The plaque size of mutant viruses altered at the Asn-130 site did not differ from that of the WT virus, while mutants altered at the Asn-207 site exhibited a reduced and mixed plaque size. Temperature sensitivity studies comparing the growth of the viruses at 37°C and 39°C showed no significant differences compared to the WT virus. Immunofluorescent antibody staining of infected cells showed that for WT 16681 virus or the Asn-130 site mutant viruses NS1 was located throughout the cytoplasm, however, Asn-207 site mutant virus NS1 protein appeared to be localized to the perinuclear region. Viruses deglycosylated at either site exhibited a significant reduction in mouse neurovirulence compared to the WT virus. The results of our studies indicate that glycosylation of the DENV-2 virus NS1 protein may influence NS1 protein processing/transport as well as the pathogenicity of the virus.  相似文献   

15.
A cDNA copy of RNA segment 4 of influenza C/Cal/78 virus was cloned into an SV40 vector and expressed in CV-1 cells. The gene product expressed from the SV40 recombinant virus was immunoprecipitated by monoclonal antibodies directed against the influenza C virus glycoprotein. Cells infected with the recombinant virus also exhibited C virus-specific hemagglutinin and O-acetylesterase activity. This suggests that the same C virus protein is associated with receptor-binding as well as receptor-destroying activity. The latter viral activity was measured using as substrates bovine submaxillary mucin or a low molecular weight compound p-nitrophenylacetate. In analogy to the parainfluenza virus HN protein, the influenza C virus glycoprotein was termed HE, because it possesses hemagglutinin and esterase (receptor-destroying) activity.  相似文献   

16.
Fragmentation of E gene of JEV into smaller fragments, none of the fragments either in plasmids form or in recombinant protein form can induce optimal protection against the virus infection. It is only when DNA priming-protein boosting strategies are used then the N-terminal E(A) and the C-terminal E(B) showed full protection against JEV as those induced by commercial vaccine, provided both fragments are preceded in the N-terminal by a signal peptide M(15) derived from C-terminal of prM gene in JEV genome. When the subfragments of E(A): E(A1) and E(A2) and E(B): E(B1) and E(B2) are tested, only E(A1) subfragment can replace E(A) in protein boosting to induce optimal protection against JEV, E(A2), E(B1), E(B2) in plasmid or protein forms are not. Therefore, along the E gene (978-2330 bp) N-terminal, E(A1) (978-1580 bp) and C-terminal E(B) (1851-2330 bp) are the most effective in inducing immunity against JEV but not the middle fragment E(A2) (1518-1877 bp) (see for orientation of E(A1), E(A2) and E(B) in E gene). Under the notion that molecular complexity determines the outcome of immune response of the host, E(B) being shorter, simpler in molecular structure and can be easily expressed in soluble form in E. coli (as opposed to insoluble E(A1)), E(B) probably will be the choice as a candidate vaccine to protect the host against JEV infection.  相似文献   

17.
We have used multi-pin peptide synthesis strategy to identify B-cell epitopes on two small dengue virus proteins, capsid and NS4a. We have identified several linear, immunodominant epitopes on both these proteins. Almost all these epitopes mapped to regions predicted to be hydrophilic based on Kyte and Doolittle profiles. Of the capsid epitopes identified in this study, the most immunogenic ones mapped to the C-terminal alpha4 helix, which lies on the solvent-exposed surface of the capsid dimer. The capsid epitopes were dengue-specific in that they could recognize antibodies in dengue virus-, but not yellow fever virus (YFV)- or Japanese encephalitis virus (JEV)-immune sera. This study has demonstrated the presence of anti-NS4a antibodies in dengue-patient sera definitively, for the first time, using authentic NS4a-derived pin-bound peptides as capture antigens. All the NS4a epitopes mapped to the amino-terminal third of the NS4a molecule. Our study suggests that the immunodominant epitopes of these two dengue proteins might have the potential to be used as a part of a recombinant multi-epitope protein containing carefully chosen E and NS1 epitopes for the detection of dengue infections with a high degree of sensitivity and specificity.  相似文献   

18.
Classical swine fever virus (CSFV) harbors three envelope glycoproteins (Erns, E1 and E2). Previous studies have demonstrated that removal of specific glycosylation sites within these proteins yielded attenuated and immunogenic CSFV mutants. Here we analyzed the effects of lack of glycosylation of baculovirus-expressed Erns, E1, and E2 proteins on immunogenicity. Interestingly, Erns, E1, and E2 proteins lacking proper post-translational modifications, most noticeable lack of glycosylation, failed to induce a detectable virus neutralizing antibody (NA) response and protection against CSFV. Similarly, no NA or protection was observed in pigs immunized with E1 glycoprotein. Analysis of Erns and E2 proteins with single site glycosylation mutations revealed that detectable antibody responses, but not protection against lethal CSFV challenge is affected by removal of specific glycosylation sites. In addition, it was observed that single administration of purified Erns glycoprotein induced an effective protection against CSFV infection.  相似文献   

19.
Truncated and full-length versions of the hepatitis C virus protein domain encoding a presumptive envelope glycoprotein designated E2/NS1 were stably expressed in CHO cell lines. Characterization of the processing events involved in the maturation of E2/NS1 revealed that a high-mannose form resident in the endoplasmic reticulum was the most abundant form detected intracellularly. The ionophore carboxyl cyanide m-chlorophenyl-hydrazone was used to show that the E2/NS1 glycoprotein resided in the endoplasmic reticulum. The full-length form of E2/NS1 appeared to be cell-associated and could not be detected as a secreted product. C-terminal truncated molecules could be detected in the extracellular media as fully processed glycoproteins containing terminal sialic acid additions. These truncated glycoproteins are predicted to be biologically relevant targets of the host immune response and are therefore potential subunit vaccine candidates.  相似文献   

20.
Flavivirus NS4A has an N-terminal hydrophilic cytoplasmic portion; however, the role of this portion remains poorly understood. In this study, we show that a recombinant dengue type 1 virus (DENV-1) in which a subportion (amino acids 27–34) of the N-terminal portion of NS4A is replaced by the corresponding region from Japanese encephalitis virus (JEV) is defective in replication. Using the defective mutant clone NS4A(27–34JEV), we recovered suppressor mutant viruses that carry various non-synonymous mutations. Site-directed mutational analysis indicated that a single non-synonymous mutation in NS4B that is found in the suppressor viruses is sufficient to restore NS4A(27–34JEV). Recombinant DENV-1 with single mutations in NS4B had increased growth properties as compared to the wild-type virus and NS4A(27–34JEV) virus bearing the same NS4B mutation. Collectively, our results suggest that the NS4B mutation enhanced the growth of DENV-1, irrespective of the sequence of the 27–34 subportion NS4A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号