首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
An important aspect of motivated behavior is that organisms will perform complex instrumental behaviors to gain access to stimuli such as food. In the present study, food-deprived rats were tested in an operant chamber in which the animals had a choice between pressing a lever to obtain a more-preferred food (Bioserve pellets), or free feeding on a less-preferred food (lab chow). Typically, rats pressed the lever to obtain the preferred food pellets, and ate little of the less-preferred food even though it was freely available. Pre-fed rats showed suppression of both lever pressing and feeding. Systemic administration of 0.1 mg/kg haloperidol (HP) led to a dramatic shift in the behavior of these rats, such that the number of lever presses was substantially reduced, but the amount of less-preferred food consumed showed a significant increase. This result occurred if the rats pressed a lever on either a CRF or FR5 schedule. Injection of 3.5-7.0 micrograms HP directly into the nucleus accumbens, or intra-accumbens injections of 6-hydroxy-dopamine, also decreased lever pressing for food and increased feeding on laboratory chow. Thus, interference with brain dopamine suppressed a highly active instrumental response for food, although the behavior of the animal was still directed towards food acquisition and consumption.  相似文献   

2.
Serotonin 5-HT(1B) receptors modulate behavioral responses to cocaine, but the effects of cocaine on endogenous 5-HT(1B) receptor expression are not known. Therefore, we examined the effect of binge cocaine administration on 5-HT1B mRNA expression in rat brain. We found that chronic, but not acute, binge cocaine exposure increased 5-HT(1B) mRNA by approximately 80% in nucleus accumbens shell and dorsal striatum. Surprisingly, 5-HT(1B) mRNA was increased in nucleus accumbens shell after chronic vehicle treatment as well, but this effect was driven by animals that were housed with cocaine-treated animals. Thus, 5-HT(1B) mRNA is upregulated by repeated exposure to cocaine and perhaps by social stress as well; both of these factors are relevant to the risk for relapse in cocaine addiction.  相似文献   

3.
4.

Aim:

Glutamatergic neurotransmission in the nucleus accumbens (NAc) is crucial for the relapse to heroin seeking. The aim of this study was to determine whether mGluR5 in the NAc core or shell involved in heroin seeking behavior in rats.

Methods:

Male SD rats were self-administered heroin under a fixed-ratio 1 (FR1) reinforcement schedule for 14 d, and subsequently withdrawn for 2 weeks. The selective mGluR5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 5, 15 and 50 nmol per side) was then microinjected into the NAc core or shell 10 min before a heroin-seeking test induced by context, cues or heroin priming.

Results:

Microinjection of MPEP into the NAc shell dose-dependently decreased the heroin seeking induced by context, cues or heroin priming. In contrast, microinjection of MPEP into the NAc core did not alter the heroin seeking induced by cues or heroin priming. In addition, microinjection with MPEP (15 nmol per side) in the NAc shell reversed both the percentage of open arms entries (OE%) and the percentage of time spent in open arms (OT%) after heroin withdrawal. Microinjection of MPEP (50 nmol per side) in the striatum as a control location did not affect the heroin seeking behavior. Microinjection of MPEP in the 3 locations did not change the locomotion activities.

Conclusion:

Blockade of mGluR5 in NAc shell in rats specifically suppresses the relapse to heroin-seeking and anxiety-like behavior, suggesting that mGluR5 antagonists may be a potential candidate for the therapy of heroin addiction.  相似文献   

5.
The present study examined the effects of acute and repeated administration of electroconvulsive shock (ECS) on levels of D1 and D2 receptor mRNAs in the nucleus accumbens and striatum (caudate-putamen) of the rat. Quantitative in situ hybridisation with35S-labelled oligonucleotide probes specific for D1 and D2 receptor mRNAs was utilised. Compared to controls, rats receiving a single ECS showed higher levels of both D1 and D2 receptor mRNAs in the nucleus accumbens 4 h, but not 24 h, after treatment. Similarly, rats receiving ECS repeatedly (five ECS in 10 days) also exhibited higher levels of D1 and D2 receptor mRNAs in the nucleus accumbens 4 h, but not 24 h, after the last treatment. The effects of single and repeated ECS treatment on dopamine receptor mRNA levels were localised to the caudal region of the nucleus accumbens. No statistically significant changes in mRNA levels were detected in the striatum of rats treated with either acute or repeated ECS. We discuss the possibility that increased expression of D1 and D2 receptors in the nucleus accumbens may be involved in the dopamine-enhancing properties of ECS detected in behavioural studies.  相似文献   

6.
The goal of this study was to determine whether dopamine D2 and/or D1 receptors in the shell and the core of the nucleus accumbens of rats have a differential role in turning behaviour. Unilateral injection of a mixture of the dopamine D2 receptor agonist quinpirole (10 µg) and the dopamine D1 receptor agonist 1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7, 8-diol (SKF 38393, 5 µg) into the shell of the nucleus accumbens produced contralateral turning, when doses which per se were ineffective were injected. This effect was far greater than that found after similar injections into the core of the nucleus accumbens. The effect elicited from the shell was significantly attenuated by prior administration of either the dopamine D2 receptor antagonistl-sulpiride (25 ng/0.5 µl) or the dopamine D1 receptor antagonist (8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol (SCH 23390, 0.5 µg/0.5 µl) into the same region. These data together with the fact thatl-sulpiride is known to be a valid tool to differentiate the involvement of distinct regions within the shell underlie the conclusion that dopamine D2 and D1 receptors in the shell, but not the core, of the nucleus accumbens play a critical role in the contralateral turning induced by unilateral injection of dopamine receptor agonists into this nucleus. The results are discussed in view of the known output pathways of the shell.  相似文献   

7.
The conditioned place preference technique was used to assess the affective properties of the direct dopamine D1 agonist, SKF38393, and the direct D2 agonist, LY171555 (quinpirole). A three compartment apparatus was used: the animals' pre-experimental preference for the two choice compartments was equal and, within each experimental group, half the rats received drug pairings in each choice compartment. Intraperitoneal injections of SKF38393 produced conditioned place aversions at all doses tested (1.0–4.0 mg/kg); LY171555 produced weak conditioned place preferences at 1.0 and 2.0 mg/kg, but no reliable effect at 4.0 mg/kg. Bilateral intra-accumbens microinjections of SKF38393 produced strong preferences at all doses tested (0.5–2.0 µg/side); LY171555 produced strong preferences at two doses (0.5 and 1.0 µg/side) and no effect at a third dose (2.0 µg/side). These results suggest that activation of either D1 or D2 receptors in the nucleus accumbens can produce reward, and that D1 receptors (and possibly also D2 receptors) located elsewhere in the brain or in the periphery may mediate aversive effects.  相似文献   

8.
Nucleus accumbens dopamine is implicated in the primary and conditioned reinforcing properties of abused drugs. In the present study, specific impairments in responding for intravenous cocaine (0.3 mg/inf/0.1 ml/5 s) under a fixed-ratio 1 (FR-1) or second-order schedule (FI 15 min (FR10:S)) were investigated following infusion of the dopamine antagonist, α-flupenthixol, into either the nucleus accumbens core or shell. Infusion of α-flupenthixol into the core decreased cocaine intake under the FR-1 and second-order schedules. By comparison, blockade of nucleus accumbens shell dopamine receptors increased cocaine intake under the FR-1 schedule. Under the second-order schedule, cocaine intake and the number of responses was decreased. Effects on responding were more apparent after self-administered cocaine, when impairments in the latency to receive cocaine infusions were no longer evident. These results are discussed with reference to a role for nucleus accumbens shell dopamine in instrumental responding, and a role of nucleus accumbens core dopamine in incentive motivation, perhaps under the control of contextual stimuli.  相似文献   

9.
The purpose of the present experiment was to investigate the involvement of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell in the control over cocaine-seeking behavior by drug-associated cues. Rats were trained under a second-order schedule of reinforcement for cocaine with five infusions of cocaine being available in each daily session. The NMDA receptor antagonist AP-5 and the AMPA/KA receptor antagonist LY293558 were infused directly into the core or shell. LY293558 infused into the core produced a dose-dependent decrease in responding during both the first, cocaine-unaffected interval and also after cocaine had been self-administered in subsequent intervals. By contrast, AP-5 infused into the core had no effect on responding. Infusion of AP-5 into the shell had the limited effect of decreasing responding during the second interval only. There were no effects of LY293558 infused into the shell. These results indicate that NMDA and AMPA receptor-mediated glutamate transmission in the core and shell are dissociably involved in cocaine-seeking behavior controlled in part by drug-associated cues.  相似文献   

10.

Rationale

Conditioned behavioral responses to discrete drug-associated cues can be modulated by the environmental context in which those cues are experienced, a process that may facilitate relapse in humans. Rodent models of drug self-administration have been adapted to reveal the capacity of contexts to trigger drug seeking, thereby enabling neurobiological investigations of this effect.

Objectives

We tested the hypothesis that dopamine transmission in the nucleus accumbens, a neural structure that mediates reinforcement, is necessary for context-induced reinstatement of responding for ethanol-associated cues.

Methods

Rats pressed one lever (active) for oral ethanol (0.1 ml; 10% v/v) in operant conditioning chambers distinguished by specific visual, olfactory, and tactile contextual stimuli. Ethanol delivery was paired with a discrete (4 s) light-noise stimulus. Responses on a second lever (inactive) were not reinforced. Behavior was then extinguished by withholding ethanol but not the discrete stimulus in a different context. Reinstatement, expressed as elevated responding for the discrete stimulus without ethanol delivery, was tested by placing rats into the prior self-administration context after administration of saline or the dopamine D1 receptor antagonist, SCH 23390 (0.006, 0.06, and 0.6 μg/side), into the nucleus accumbens core or shell.

Results

Compared with extinction responding, active lever pressing in saline-pretreated rats was enhanced by placement into the prior ethanol self-administration context. SCH 23390 dose-dependently reduced reinstatement after infusion into the core or shell.

Conclusion

These findings suggest a critical role for dopamine acting via D1 receptors in the nucleus accumbens in the reinstatement of responding for ethanol cues triggered by placement into an ethanol-associated context.  相似文献   

11.
The administration of psychostimulant drugs or stress can elicit a sensitized response to the stimulating and reinforcing properties of the drug. We previously demonstrated that a single restraint stress session enhanced d-amphetamine (d-AMPH)-induced locomotion the day after the stress session, which lasted up to 8 days. The present experiments were designed to identify the contribution of major dopamine (DA) brain areas in the short- and long-lasting enhancement of d-AMPH-induced locomotion following a single stress, and to test the involvement of N-methyl-D-aspartate (NMDA) receptors in that phenomena. To achieve our goal, 24 h and 8 days after a 2-h restraint stress session either with or without a NMDA receptor blockade, we measured locomotor activity and DA overflow in nucleus accumbens (NAcc) core and shell and caudate putamen (CPu) following a d-AMPH injection (0.5 mg/kg i.p.). The stimulant effect of d-AMPH on DA overflow was enhanced in all nuclei at 24 h after a single stress, while at 8 days the enhanced responsiveness was maintained only in the NAcc core. When the rats were administered with MK-801 (0.1 mg/kg i.p.) 30 min before restraint stress, the d-AMPH-induced enhancement on locomotor activity and DA neurotransmission was prevented in all studied brain areas at both times. These findings show that a glutamate-dopamine link is underlying the short- and long- term d-AMPH-induced enhancement on DA and locomotor activity following stress. The persistent glutamate-dependent DA enhancement in NAcc core highlights the relevance of this region in the long-term proactive effects of stress on vulnerability to drug abuse.  相似文献   

12.
RATIONALE: It has been suggested that the nucleus accumbens (NAcc) may be involved in heroin reward, and the core and shell regions respond differently following administration of a number of drugs of abuse. OBJECTIVE: The possible role of the NAcc core and shell subregions in the acquisition of heroin self-administration behaviour was investigated. METHODS: Rats were given selective excitotoxic lesions of either the nucleus accumbens core or shell before the acquisition of responding for i.v. heroin (0.04 mg/infusion) under a continuous reinforcement schedule in daily 3 h sessions. After sham-lesioned rats reached a stable baseline, a between-sessions heroin dose-response function was established. RESULTS: Rats with lesions of the NAcc shell did not differ significantly from sham controls in either the acquisition of heroin self-administration or in their heroin dose-response function. The NAcc core lesion group showed reduced levels of responding during the acquisition of heroin self-administration and a reduction in responding during the heroin dose-response function, although this behaviour was sensitive to changes in the dose of heroin. CONCLUSIONS: The NAcc shell does not appear to be critical for heroin self-administration, whereas the NAcc core, although apparently not essential in mediating the rewarding effect of i.v. heroin, may mediate processes that are of special importance during the acquisition of instrumental behaviour.  相似文献   

13.
BACKGROUND AND PURPOSE: Evidence indicates that the endocannabinoid, 2-arachidonoylglycerol (2-AG), increases food intake when injected into the nucleus accumbens shell (NAcS), thereby potentially activating hypothalamic nuclei involved in food intake regulation. We aimed to evaluate potential orexigenic effects of the endocannabinoid anandamide and of AA5HT, a fatty acid amide hydrolase (FAAH) inhibitor, and OMDM-1, an inhibitor of anandamide uptake, injected in the NAcS, as well as the effect of these treatments on activation of hypothalamic nuclei. EXPERIMENTAL APPROACH: Drugs were given into the NAcS of rats and food intake quantified during the next 4 h. In other groups, after the same treatments the brains were processed for c-Fos immunohistochemistry with focus on hypothalamic nuclei. Additional groups were used to quantify endocannabinoid levels in the nucleus accumbens and the hypothalamus after AA5HT and OMDM-1 intra-NAcS injections. KEY RESULTS: Our results indicate that the above treatments stimulate food intake during 4 h post-injection. They also increase c-Fos immunoreactivity in hypothalamic nuclei. The CB(1) antagonist, AM251, blocked these effects. Finally, we found elevated levels of 2-AG, but not anandamide, after intra-NAcS injections of AA5HT. CONCLUSIONS AND IMPLICATIONS: These data support the involvement of the endocannabinoid system in feeding behavior at the level of the NAcS and hypothalamus. In addition, this is the first experimental demonstration that the pharmacological inhibition of endocannabinoid inactivation in the NAcS stimulates food intake, suggesting that the endocannabinoid degrading proteins can be a target for treating eating disorders.  相似文献   

14.
Expression of cocaine-evoked motor behaviors appears to be dependent on dopamine neurotransmission particularly in the target area of the mesolimbic system, i.e. the nucleus accumbens (NAc). To test potential anatomical component of the locomotor effects of cocaine and expression of its behavioral sensitization, male Wistar rats were implanted with bilateral cannulae aimed at the two subregions of the NAc (the shell or the core) and then intracranially injected with cocaine (locomotor activity) or injected with cocaine given either systemically or intracranially following the repeated (5 days) systemic drug administration (sensitization). Sensitization was measured at early (5-day) and late (21-day) withdrawal periods. Acute administration of intra-NAc shell cocaine (6.73-50 microg/side) in a dose-dependent manner increased locomotor activity in rats; significant hyperactivation was observed after 25 and 50 microg/side of cocaine. Intra-NAc core injection of cocaine (12.5-50 microg/side) did not change rats' locomotor activity. After 5- or 21-day withdrawal, behavioral sensitization (ca. 2 times higher locomotor activity than that after acute drug administration) was observed when cocaine was injected either systemically (10 mg/kg) or intra-NAc shell (12.5-25 microg/side) in animals repeatedly treated with cocaine (10 mg/kg). No difference was observed in the response to the challenge with intra-NAc core cocaine (12.5-25 micorg/side) in rats treated repeatedly with cocaine at either withdrawal period. The above findings show the differential regulation of motor responses to cocaine within the subregions of the NAc. They also indicate a preferential effect for the NAc shell in expression of the acute and sensitizing effects of cocaine in rats.  相似文献   

15.
Haloperidol (2.5-10 micrograms) injected bilaterally into the ventro-rostral striatum or into the nucleus accumbens induced dose-dependent catalepsy whereas its injection into the dorso-rostral striatum (2.5 micrograms) was ineffective. Similarly, the specific antagonist of D1 receptors, SCH 23390 (1-5 micrograms), injected into the ventro-rostral striatum or nucleus accumbens, as well as the specific antagonist of D2 receptors, sulpiride, injected into the ventro-rostral striatum (0.02-15 micrograms) or nucleus accumbens (1-15 micrograms), induced a dose-dependent catalepsy. Both drugs (SCH 23390 2 micrograms, sulpiride 0.5 micrograms) were ineffective when injected into the dorso-rostral striatum. Doses of sulpiride about 100 times lower than those injected into the nucleus accumbens were sufficient to evoke an equipotent catalepsy when injected into the ventro-rostral striatum. However, similar doses of haloperidol and SCH 23390, injected into the ventro-rostral striatum and nucleus accumbens, evoked a similar catalepsy. It is concluded that (1) the catalepsy induced by systemic administration of haloperidol seems to result from the action of this drug on both the ventro-rostral striatum and the nucleus accumbens, (2) both D1 and D2 dopamine receptors in the ventro-rostral striatum are involved in the cataleptogenic action of neuroleptics, and (3) in the nucleus accumbens, only D1 dopamine receptors seem to play an important role in this phenomenon.  相似文献   

16.
17.
Rationale Experimental evidence indicates that the mesolimbic dopamine (DA) pathway innervating the ventral striatum is critically involved in the motivational effects of drug abuse. However, the role of DA transmission of the two main subdivisions of the nucleus accumbens (NAc), the shell and the core, in the motivational properties of nicotine is unknown. Objectives The aim of this study was to investigate the role of DA D1 and D2 receptors of the rat NAc shell and core in the motivational effects of nicotine using a conditioned place preference (CPP) paradigm. Methods The effect of the intracerebral infusion of DA antagonists specific for DA D1 (SCH 39166) and D2 receptors (l-sulpiride) was studied in a single-trial place-conditioning paradigm with fixed assignment of the drug to the unpreferred compartment. Results Nicotine induced significant CPP at the dose of 0.4 and 0.6 mg/kg subcutaneously (s.c.). Intra-NAc shell infusion of SCH 39166 (6.25, 12.5, 25 and 50 ng bilaterally, 10 min before nicotine administration), impaired in a dose-dependent manner the acquisition of CPP by nicotine (0.4 mg/kg s.c.). SCH 39166 failed to affect nicotine CPP when infused into the NAc core. l-Sulpiride (25 and 50 ng bilaterally) had no effect on acquisition after intra-Nac shell infusion. SCH 39166 and l-sulpiride were ineffective after infusion in the NAc shell and core 10 min before the test session. Conclusions The results indicate that dopamine D1 but not D2 receptors of the NAc shell are specifically involved in the acquisition of nicotine-induced CPP.  相似文献   

18.
Muscarinic acetylcholine receptors in the nucleus accumbens play an important role in mediating the reinforcing effects of cocaine. However, there is a paucity of data regarding the role of accumbal muscarinic acetylcholine receptors in the reinstatement of cocaine-seeking behavior. The goal of these experiments was to assess the role of muscarinic acetylcholine receptors in the nucleus accumbens core and shell in cocaine and sucrose priming-induced reinstatement. Rats were initially trained to self-administer cocaine or sucrose on a fixed-ratio schedule of reinforcement. Lever-pressing behavior was then extinguished and followed by a subsequent reinstatement phase during which operant responding was induced by either a systemic injection of cocaine in cocaine-experienced rats or non-contingent delivery of sucrose pellets in subjects with a history of sucrose self-administration. Results indicated that systemic administration of the muscarinic acetylcholine receptor antagonist scopolamine (5.0 mg/kg, i.p.) dose-dependently attenuated cocaine, but not sucrose, reinstatement. Furthermore, administration of scopolamine (36.0 μg) directly into the nucleus accumbens shell or core attenuated cocaine priming-induced reinstatement. In contrast, infusion of scopolamine (36.0 μg) directly into the accumbens core, but not shell, attenuated sucrose reinstatement, which suggests that muscarinic acetylcholine receptors in these two subregions of the nucleus accumbens have differential roles in sucrose seeking. Taken together, these results indicate that cocaine priming-induced reinstatement is mediated, in part, by increased signaling through muscarinic acetylcholine receptors in the shell subregion of the nucleus accumbens. Muscarinic acetylcholine receptors in the core of the accumbens, in contrast, appear to play a more general (i.e. not cocaine specific) role in motivated behaviors.  相似文献   

19.
Apomorphine, used in small doses (20-50 micrograms/kg), induced an increase in the activity of an endogenous inhibitor of cAMP dependent protein kinases (Walsh inhibitor, type I inhibitor) in nucleus accumbens of the rat. The action of apomorphine was blocked by sulpiride and aminophylline and enhanced by SCH-23390. Pretreatment with 6-OH-dopamine resulted in a shift of the dose-response curve for apomorphine to the left, suggesting supersensitivity of D2 receptors. Moreover, stimulation of D2 receptors induced a decrease in phosphorylation of DARPP-32, a specific protein, located in neurones containing D1 receptors. Large doses of apomorphine (over 0.5 mg/kg) provoked a decrease in type I inhibitor activity, blocked by SCH-23390 and enhanced by sulpiride and aminophylline. Moreover, SCH-23390 blocked a decrease in type I inhibitor activity induced by large doses of sulpiride and sulpiride blocked an increase in type I inhibitor activity produced by large doses of SCH-23390. The results suggest that D1 and D2 receptors in the nucleus accumbens could cooperate with the same adenylate cyclase and could be located on the same neurones.  相似文献   

20.
Enhanced dopamine transmission in the nucleus accumbens plays an important role in cocaine priming-induced reinstatement of drug-seeking behavior. However, the contribution of each dopamine receptor subtype to this behavior remains unclear. The present experiments were designed to assess the role of D2-like dopamine receptors in the nucleus accumbens core and shell subregions in cocaine priming-induced reinstatement of drug seeking. Rats were trained to lever press for cocaine using a fixed ratio (FR) 5 schedule of reinforcement. After approximately 18 days of cocaine self-administration, the animals underwent an extinction phase during which cocaine was replaced with saline. Daily extinction sessions were conducted until responding was less than 10% of the response rate maintained by cocaine self-administration. Following the extinction phase, priming-induced reinstatement of cocaine-seeking behavior was assessed. A range of doses of antagonists selective for D2- (sulpiride, 0.2 or 2.0 microg), D3- (U99194A, 3.9 or 7.8 microg), or D4- (L-750,667, 5.5 or 11 microg) dopamine receptors were microinjected into either the nucleus accumbens core, shell or lateral septum prior to a priming injection of cocaine (10 mg/kg, i.p.). Following administration into the shell, but not core or lateral septum, sulpiride dose-dependently attenuated reinstatement induced by a cocaine priming injection. In contrast, U99194A and L-750,667 failed to influence cocaine seeking at any of the doses tested in either accumbal subregion. Collectively, these findings indicate that activation of D2 dopamine receptors mediates cocaine priming-induced reinstatement of cocaine seeking in a region-specific manner within the nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号