首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel synthesis route has been developed to produce a high-purity mixed AB-type carbonate-substituted hydroxyapatite (CHA) with a carbonate content that is comparable to the type and level observed in bone mineral. This method involves the aqueous precipitation in the presence of carbonate ions in solution of a calcium phosphate apatite with a Ca/P molar ratio greater than the stoichiometric value of 1.67 for hydroxyapatite (HA). The resulting calcium-rich carbonate-apatite is sintered/heat-treated in a carbon dioxide atmosphere to produce a single-phase, crystalline carbonate-substituted hydroxyapatite. In contrast to previous methods for producing B- or AB-type carbonate-substituted hydroxyapatites, no sodium or ammonium ions, which would be present in the reaction mixture from the sodium or ammonium carbonates commonly used as a source of carbonate ions, were present in the final product. The chemical and phase compositions of the carbonate-substituted hydroxyapatite was characterized by X-ray fluorescence and X-ray diffraction, respectively, and the level and nature of the carbonate substitution were studied using C-H-N analysis and Fourier transform infrared spectroscopy, respectively. The carbonate substitution improves the densification of hydroxyapatite and reduces the sintering temperature required to achieve near-full density by approximately 200 degrees C compared to stoichiometric HA. Initial studies have shown that these carbonate-substituted hydroxyapatites have improved mechanical and biologic properties compared to stoichiometric hydroxyapatite.  相似文献   

2.
Bioactive titanium metal, which forms a bonelike apatite layer on its surface in the body and bonds to the bone through the apatite layer, can be prepared by NaOH and heat treatments to form an amorphous sodium titanate layer on the metal. In the present study, the mechanism of apatite formation on the bioactive titanium metal has been investigated in vitro. The metal surface was examined using transmission electron microscopy and energy dispersive X-ray spectrometry as a function of the soaking time in a simulated body fluid (SBF) and complemented with atomic emission spectroscopy analysis of the fluid. It was found that, immediately after immersion in the SBF, the metal exchanged Na(+) ions from the surface sodium titanate with H(3)O(+) ions in the fluid to form Ti-OH groups on its surface. The Ti-OH groups, immediately after they were formed, incorporated the calcium ions in the fluid to form an amorphous calcium titanate. After a long soaking time, the amorphous calcium titanate incorporated the phosphate ions in the fluid to form an amorphous calcium phosphate with a low Ca/P atomic ratio of 1.40. The amorphous calcium phosphate thereafter converted into bonelike crystalline apatite with a Ca/P ratio of 1.65, which is equal to the value of bone mineral. The initial formation of the amorphous calcium titanate is proposed to be a consequence of the electrostatic interaction of negatively charged units of titania, which are dissociated from the Ti-OH groups, with the positively charged calcium ions in the fluid. The amorphous calcium titanate is speculated to gain a positive charge and to interact with the negatively charged phosphate ions in the fluid to form the amorphous calcium phosphate, which eventually stabilizes into bonelike crystalline apatite.  相似文献   

3.
The role of adhesion molecules like osteopontin and bone sialoprotein, both containing the Arg-Gly-Asp sequence have been shown to have a role in mineral formation, whereas fibronectin (FN), another adhesive protein, was never studied during the mineralization processes. The formation and maturation of biological apatite crystals are under matrix control, and one of the roles of specific crystal proteins is to control the nucleation and growth of biological apatite during the mineralization process (promotion or inhibition). In the case of calcium phosphate ceramic used as a bone substitute, a dissolution-precipitation process occurs after implantation before the bone ingrowth and bone mineralization. The early precipitation consists of common biological apatite crystals. These crystals are the result of secondary nucleation and a heteroepitaxic growth process on synthetic residual crystals. In in vivo studies, hydroxyapatite crystals were implanted subcutaneously into mice for 1 or 2 weeks. Fibronectin immunogold labeling of the newly formed crystals on surfaces of high-resolution transmission electron microscopy sections of retrieved implants revealed the close association of these precipitated crystals with FN. In in vitro experiments using a solution of human FN incubated in the presence of calcium phosphate crystals, we obtained apatite crystal precipitation. The fibronectin network observed in high-resolution transmission electron microscopy showed numerous clusters of very small particles (1 nm in diameter and 2 nm in length), whereas the same experiment realized as control on albumin revealed no crystal precipitation. These results demonstrate for the first time the role of FN in early biological crystal nucleation. This process could have important biological significance in accounting for ectopic calcification, primary nucleation in calcified tissue, and bone ingrowth on calcium phosphate ceramics.  相似文献   

4.
Lin FH  Liao CJ  Chen KS  Su JS  Lin CP 《Biomaterials》2001,22(22):2981-2992
In the present study six types of tricalcium phosphate ceramic were prepared and soaked in distilled water for different periods to investigate whether a surface apatite layer was formed on TCP ceramics or not. X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and functional groups of TCP ceramics for different soaking periods. Calcium and phosphate ions released from TCP ceramics during soaking were recorded by atomic absorption analysis and ion-coupled plasma. Results revealed that alphaTCP, alphaTCP/betaTCP mixture (alphabetaTCP) and betaTCP ceramic were gradually dissolved. There was no apatite layer formed on their surface after being immersed in distilled water for different durations of time. Mg-TCP ceramic, tricalcium phosphate doped with Mg ions, exhibited a lower dissolution rate than the other types of TCP ceramics. Apatite crystals were also not formed on the surface of Mg-TCP ceramic when immersed in distilled water. Tribasic calcium phosphate, prepared from wet precipitation method, was converted to betaTCP/HAP (HbetaTCP) or alphaTCP/betaTCP/HAP (HalphabetaTCP) crystalline composition at different sintering temperatures (1,150 degrees C and 1,300 degrees C). The surface apatite layer did not appear on HbetaTCP ceramic after soaking. We observed that petal-like apatite was formed on the HalphabetaTCP ceramic surface after being immersed for 2 weeks. alphaTCP phase of HalphabetaTCP ceramic was not directly converted to apatite during soaking. The surface apatite layer formed on the HalphabetaTCP ceramic surface was due to the precipitation of the calcium and phosphate ions released from alphaTCP dissolution. HAP, which existed in the structure of HalphabetaTCP ceramic, plays a role as apatite-precipitating seed to uptake calcium and phosphate ions. TCP ceramics which lacked alphaTCP and HAP content neither converted to apatite nor formed surface apatite on their surfaces during immersion.  相似文献   

5.
The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0–54 wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.  相似文献   

6.
林欣  侯敏 《中国组织工程研究》2013,17(34):6067-3072
背景:作为优良的生物吸收性骨移植材料,碳酸磷灰石团块通常通过烧结过程来制备,然而,烧结过程中造成的碳酸含量流失将导致其生物吸收性明显下降,低于生体骨,从而影响新骨的生成。 目的:合成低结晶性碳酸磷灰石团块作为骨移植材料并研究其性能。 方法:通过氢氧化钙团块的碳酸化生成碳酸钙团块,浸泡在60 ℃、1 mol/L磷酸二氢铵盐溶液中1-14 d,并对各样本通过径向抗拉强度测试进行生物力学性能分析,通过X射线衍射分析、红外吸收光谱测定、扫描电子显微镜观察与碳酸含量、钙磷元素测定等进行理化性能分析。 结果与结论:结果发现,经过磷酸二氢铵盐溶液处理14 d后,碳酸钙已几乎完全转化成为结晶度较低的B型碳酸磷灰石;最终生成物的径向抗拉强度值为(10.27±1.08) MPa,满足骨缺损移植材料的机械强度要求;其碳酸含量为(4.80±0.50)%,与生体骨的碳酸含量极其接近;钙磷摩尔比为1.63±0.01,提示为贫钙型碳酸磷灰石。结果证实,实验将碳酸钙团块浸泡在60 ℃,1 mol/L的磷酸二氢铵盐溶液中,成功合成了具有足够强度的低结晶性B型碳酸磷灰石团块,方法简单可行。  相似文献   

7.
Bone consists of a mineral phase (carbonate apatite) and an organic phase (principally collagen). Cancellous bone is characterized by interconnecting porosity necessary for tissue ingrowth and nourishment of bone cells. The purpose of the present study was to fabricate macroporous carbonate apatite (CAP) blocks with interconnecting porosity as potential bone substitute biomaterials by hydrothermal conversion of alpha-TCP foam in carbonate solution. The fabrication of the macroporous CAP was accomplished in two steps: (1) preparation of alpha-TCP foams using polyurethane foams as templates, and (2) hydrothermal conversion at 200 degrees C of alpha-TCP foam in the presence of ammonium carbonate solutions of different concentrations. The maximum carbonate content of the resultant CAP foam was approximately 7.4 wt %. The mean porosity of the CAP foam was as high as 93 vol %. The macroporous CAP blocks or granules prepared in this manner has properties similar to that of bone in mineral composition and in having interconnecting macroporosity necessary for osteoconductivity and tissue ingrowth. On the basis of composition and interconnecting macroporosity, the CAP foam materials could be ideal biomaterials for bone repair and as scaffolds for tissue engineering.  相似文献   

8.
Cerruti M  Greenspan D  Powers K 《Biomaterials》2005,26(14):1665-1674
Bioglass 45S5 is a silica-based melt-derived glass, used in medical field as a bone regenerative material because of the deposition of a layer of hydroxy carbonate apatite (HCA) on the surface of the glass when immersed in body fluid. The present paper studies the early steps of reaction of 2-microm sized particles of Bioglass, in solutions buffered with TRIS at different pH, by means of ICP-ES and FTIR spectroscopy. Only at pH 8 could a total reconstruction of the glass be observed, with the formation of both a silica and a calcium phosphate rich layers. At higher pH, selective dissolution of the glass was hindered by the immediate precipitation of a layer of calcium phosphate, whereas at lower pH a total breakdown of the glass occurred and no calcium phosphate precipitation was noted. The use of the ATR-liquid cell allowed the observation of the reaction in real time, and this showed that the process of silica formation is not separable from cation leaching from the glass, as well as the formation of the calcium phosphate rich layer.  相似文献   

9.
Favorable cell-material interaction and the absence of undesirable reaction from the host body defence system play a critical role in determining the success and long-term survival of the implants. Substitution of various elements into hydroxyapatite (HA) has been done to alter its chemical composition, thereby mimicking that of the bone mineral. In this study, a cosubstituted nanosized apatite (Ag/Si-HA) containing Ag (0.3 wt %) and Si (0.8 wt %) was synthesized by an aqueous precipitation technique. The synthesized Ag/Si-HA displayed a rod-like morphology of dimensions ~50 nm in length and ~15 nm in width, as observed from the transmission electron microscope image. With an increase in temperature, the aspect ratio of nanosized Ag/Si-HA decreased, whilst the size increased. Autoclaving was used to achieve sufficient crystallinity while maintaining the rod-like morphology and size that were comparable to that of the bone apatite. A pure Ag/Si-HA was produced without any undesirable secondary phases, as evidenced from the X-ray diffraction and thermal gravimetric results. The Ag/Si cosubstitution affected the lattice cell parameters, in particularly the a- and c- axes which further led to an expansion of the unit cell volume. In addition, the relative intensity of the hydroxyl vibrational bands was reduced. These results demonstrated that a stable phase-pure Ag/Si-HA was produced using an aqueous precipitation reaction.  相似文献   

10.
A composite material consisting of carbonate apatite (CAp) and type I atelocollagen (AtCol) (88/12 in wt/wt%) was designed for use as an artificial bone substitute. CAp was synthesized at 58 degrees C by a solution-precipitation method and then heated at either 980 degrees C or 1,200 degrees C. In this study, type I AtCol was purified from bovine tail skins. A CAp-AtCol mixture was prepared by centirfugation and condensed into composite rods or disks. The scanning electron-microscopic (SEM) characterization indicated that the CAp synthesized at 58 degrees C displayed a crystallinity similar to that of natural bone and had a high porosity (mean pore size: about 3-10 microns in diameter). SEM also revealed that the CAp heated at 980 degrees C was more porous than that sintered at 1,200 degrees C, and the 1,200 degrees C-heated particles were more uniformly encapsulated by the AtCol fibers than the 980 degrees C-heated ones. A Fourier transformed-infrared spectroscopic analysis showed that the bands characteristic of carbonate ions were clearly observed in the 58 degrees C-synthesized CAp. To enhance the intramolecular cross-linking between the collagen molecules, CAp-AtCol composites were irradiated by ultraviolet (UV) ray (wave length 254 nm) for 4 hours or vacuum-dried at 150 degrees C for 2 hours. Compared to the non cross-linked composites, the UV-irradiated or dehydrothermally cross-linked composites showed significantly (p < 0.05) low collagen degradation and swelling ratio. Preliminary mechanical data demonstrated that the compressive strengths of the CAp-AtCol composites were higher than the values reported for bone.  相似文献   

11.
The challenges in engineering bone scaffolds reflect the complexity of bone as an organ. The organic-inorganic hybrid system design aims to provide signals within a conductive apatite layer to promote cell adhesion, proliferation and ultimately differentiation into bone tissue. Dual functioning peptides designed to specifically adhere to the apatite layer, while promoting cell adhesion via cell recognition sequences, may increase cell adhesion, leading to increased osteogenesis. The aim of this study is to identify peptide sequences with preferential adsorption towards apatite-based materials. Bone-like mineral films and hydroxyapatite disks were panned with a phage library to elucidate peptide sequences with favorable adsorption. Peptide sequences were analyzed using the web-based biotechnology tool RELIC and validated with a modified ELISA, in addition to being investigated using a newly developed method of high-throughput computational modeling. Peptides having the highest affinity and greatest potential to be incorporated into a dual functioning peptide design are APWHLSSQYSRT, VTKHLNQISQSY and STLPIPHEFSRE. These experiments provide a method of rationally designing peptides that adhere to apatite and that may improve bone tissue regeneration. This work also provides structure for investigating peptide/protein adsorption on apatite substrates with varied carbonate, or other impurity, content.  相似文献   

12.
Guo Y  Zhou Y  Jia D 《Acta biomaterialia》2008,4(2):334-342
Hierarchically porous hydroxycarbonate apatite is known to have a high bioactivity to regenerate bone, but its application in bone graft substitutes has been restricted due to its poor mechanical properties. This drawback has been addressed by (i) depositing calcium carbonate coatings on Ti6Al4V substrates by electrophoresis; and (ii) converting the coatings to hydroxycarbonate apatite coatings with hierarchically porous structures by treatment with a phosphate buffer solution (PBS). After soaking calcium carbonate coatings in PBS for 1 day, calcium-deficient hydroxycarbonate apatite nanocrystals are deposited on the surfaces of calcium carbonate particles via a dissolution-precipitation reaction. The aggregation of the nanocrystals produces plate-like hydroxycarbonate apatite. Mesopores with a pore size of approximately 3.8nm and macropores or apertures with an aperture size of approximately 1 microm are formed within and among the plates, respectively. After soaking for 9 days, the pore size of mesopores decreases and the mesopores disappear partly due to the crystal growth of hydroxycarbonate apatite. Simulated body fluid immersion tests reveal that the good in vitro bioactivity of hydroxycarbonate apatite coatings is attributed to the calcium deficiencies in apatite lattice and the hierarchically porous structures.  相似文献   

13.
Graded surface structure of bioactive titanium prepared by chemical treatment.   总被引:19,自引:0,他引:19  
An NaOH treatment of pure titanium (Ti) forms a sodium titanate hydrogel surface layer with a smooth graded interface structure to the Ti metal substrate. Subsequent heat treatment at 600 degrees C of the NaOH-treated Ti forms an amorphous sodium titanate surface layer with a smooth graded interface structure similar to the Ti metal substrate. These treated Ti metals both form an apatite surface layer with a smooth graded interface structure to the Ti metal substrates in simulated body fluid (SBF). The smooth graded interface structures give a tight bond of the apatite layer to the substrates. Heat treatment at 800 degrees C of the NaOH-treated Ti forms crystalline sodium titanate and a rutile surface layer with a graded interface structure to the Ti metal substrate, which is intervened by a thick titanium oxide. This substrate forms an apatite layer with a graded interface structure to the Ti metal substrate, which is intervened by a thick titanium oxide in SBF. This irregular graded structure gives a less tight bond of the apatite layer to the substrate.  相似文献   

14.
Polyethylene terephthalate (PET), ethylene-vinyl alcohol copolymer (EVOH) and Nylon 6 in plate form were treated with silane-coupling agents, a titanium alkoxide-alcohol solution and a hot HCl solution to form a thin crystalline titanium oxide layer. When placed in a simulated body fluid with ion concentrations nearly equal to those of the human blood plasma, nanosized bone-like apatite formed uniformly on the surfaces of these treated polymers: within 2 days for PET and Nylon 6, and 7 days for EVOH. This indicates that such titania-modified polymers might form bone-like apatite in the living body, and bond to living bone through this apatite layer. Three-dimensional fabrics of these polymer fibers, with open spaces in various sizes, are expected to be useful as bone substitutes, as they will be integrated with the natural bone.  相似文献   

15.
Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol-gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)-based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)-based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA- and nBG-based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process.  相似文献   

16.
The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.  相似文献   

17.
Novel ABA-type amphiphilic triblock copolymers composed of poly (ethylene glycol) (PEG) as hydrophilic segment and poly (2,2-dimethyltrimethylene carbonate) (PDTC) as hydrophobic segment were synthesized by ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (DTC) initiated by dihydroxyl PEG. The influence of introducing PEG block on crystalline behavior of PDTC segment was investigated by DSC. Polymeric micelles in aqueous medium were characterized by fluorescence spectroscopy and dynamic light scattering. The critical micelle concentration of these copolymers was in the range of 5.1-50.5 mg/L. Particle size was 80-280 nm. Core-shell-type nanoparticles were prepared by the dialysis technique. Zeta potential was measured by laser Doppler anemometry, and all nanoparticles had negative zeta potential. Transmission electron microscopy images demonstrated that these nanoparticles were spherical in shape. Anticancer drug 5-fluorouracil (5-Fu) as a model drug was loaded in the polymeric nanoparticles. X-ray powder diffraction demonstrated that 5-Fu was encapsulated into polymeric nanoparticles as molecular dispersion. In vitro cytotoxicity of nanoparticles was evaluated by MTT assay. In vitro release behavior of 5-Fu was investigated, and sustained drug release was achieved.  相似文献   

18.
The influence of the carbonate content in apatites on the adhesion and the proliferation of MC3T3-E1 osteoblastic cells was investigated. B-type carbonated apatites (DCAps) were prepared by the hydrolysis of monetite (CaHPO4, DCP) in solutions with a carbonate concentration ranging from 0.001 to 0.075 mol l?1. Stoichiometric hydroxyapatite (DCAp0) was synthesized in carbonate-free solution. MC3T3-E1 cells were seeded on the compacted DCAps and cell adhesion and proliferation were analysed after 24 h and 7 days, respectively, using a MTS assay and fluorescence microscopy. Cell adhesion tends to increase with increasing carbonate content for carbonate contents between 0 and 6.9 wt.% and levels out to an acceptable value (±50% compared to the control) for carbonate contents between 6.9 and 16.1 wt.%. Only DCAps with a carbonate content equal to or higher than 11% support high cell proliferation comparable to the control. On the latter DCAps, the cells have a spread morphology and form a near-confluent layer. A decrease in charge density and crystallinity at the apatite surface, as well as the formation of more spheroidal crystals with increasing carbonate content, might attribute to changes in composition and three-dimensional structure of the protein adsorption layer and hence to the observed cell behaviour. Consequently, only DCAps with a high carbonate content, mimicking early in vivo mineralization, are possible candidates for bone regeneration.  相似文献   

19.
Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. It was found that MC3T3-E1 cells cultured on the biomimetically deposited carbonate apatite coating demonstrated the greatest proliferation rate and the highest differentiation potential. Cells on the biomimetically deposited octacalcium phosphate coating had lower proliferation rate before day 7, but higher after that, than those on the electrolytically deposited carbonate apatite coating. There was no difference on the expression of early differentiation markers, that is, alkaline phosphatase activity and collagen content, between biomimetically deposited octacalcium phosphate and electrolytically deposited carbonate apatite coatings. However, higher expression of late differentiation markers, that is, osteocalcin and bone sialoprotein mRNA, was found on the biomimetically deposited octacalcium phosphate coating on day 14. These results suggest that the difference in in vitro osteoblast cell performance of calcium phosphate coatings might relate to their physicochemical properties. Biomimetic carbonate apatite coating is the most favorable surface for the proliferation and differentiation of MC3T3-E1 cells.  相似文献   

20.
Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo   总被引:10,自引:0,他引:10  
Chen QZ  Wong CT  Lu WW  Cheung KM  Leong JC  Luk KD 《Biomaterials》2004,25(18):4243-4254
The formation and strengthening mechanisms of bone bonding of crystalline hydroxyapatite (HA) has been investigated using high-resolution transmission electron microscope (HRTEM) and energy-dispersive X-ray (EDX) analysis. A series of results were obtained: (i) a layer of amorphous HA, which has almost the same chemistry as the implanted HA, was formed on the surface of crystalline HA particles prior to dissolution; (ii) at 3 months a bone-like tissue formed a bonding zone between mature bone and the HA implant, composed of nanocrystalline and amorphous apatite; and (iii) at 6 months, mature bone was in direct contact with HA particles, and collagen fibres were perpendicularly inserted into the surface layer of implanted HA crystals. Findings (i) and (ii) indicated the following dissolution-precipitation process. (i) The crystalline HA transforms into amorphous HA; (ii) the amorphous HA dissolves into the surrounding solution, resulting in over-saturation; and (iii) the nanocrystallites are precipitated from the over-saturated solution in the presence of collagen fibres. A preliminary analysis indicated several conclusions: (i) the transition from crystalline to amorphous HA might be the controlling step in the bone bonding of crystalline HA; (ii) biological interdigitation (or incorporation) of collagen fibres with HA and chemical bonding of a apatite layer were both necessary to strengthen and toughen a bone bond, not only for the bonding between bone and HA at 6 months, but also for the bonding zone at 3 months, which would otherwise be very fragile due to the inherited brittleness of polycrystalline ceramics; and (iii) perpendicular interdigitation is an effective way for collagen fibres to impart their unique combination of flexibility and strength to the interface which they are keying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号