首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult neurogenesis mainly occurs in two brain regions, the subventricular zone and the dentate gyrus (DG) of the hippocampus. Neuropeptide Y (NPY) is widely expressed throughout the brain and is known to enhance in vitro hippocampal cell proliferation. Mice lacking either NPY or the Y1 receptor display lower levels of cell proliferation, thereby suggesting a role for NPY in basal in vivo neurogenesis. Here, we investigated whether exogenous NPY stimulates DG progenitors proliferation in vivo. We show that intracerebroventricular administration of NPY increases DG cell proliferation and promotes neuronal differentiation in C57BL/6 adult mice. In these mice, the proliferative effect of NPY is mediated by the Y1 and not the Y2 receptor, as a Y1 ([Leu31,Pro34]), but not a Y2 (NPY3–36), receptor agonist enhanced proliferation. In addition, no NPY‐induced DG cellular proliferation is observed following NPY injection when coadministered with a Y1 antagonist or in the Y1 receptor knockout mouse. These results are in line with data obtained in Y1?/? mice, demonstrating that NPY regulates in vivo hippocampal neurogenesis. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Emotional behavior in aged neuropeptide Y (NPY) Y2 knockout mice   总被引:1,自引:0,他引:1  
Neuropeptide Y (NPY) was shown to modulate anxiety- and depression-related behaviors in various animal models. Previous studies demonstrated that NPY Y2 receptor knockout (KO) mice display an anxiolytic- and antidepressant-like phenotype compared with control animals. However, the long-term effect of the deletion of this receptor in aged animals is unknown. Thus, anxiety- and depression-related behaviors were investigated in 2-yr-old NPY Y2 KO mice. Aged NPY Y2 KO mice display an anxiolytic-like profile as assessed in the elevated plus-maze and open field, providing further support for a role for Y2 receptors in anxiety-related behaviors. Furthermore, aged NPY Y2 KO mice have significantly lower immobility scores in the forced swim test; supproting the role for this receptor in antidepressand-like behaviors. These data provide further evidence that modulators of the NPY Y2 receptor subtype are drug targets for the treatment of anxiety and mood disorders in human subjects.  相似文献   

3.
Concentrations of neuropeptide Y (NPY) have been determined in 12 areas of control brains and compared to those found in brains from patients with Alzheimer's type dementia (ATD). The distribution of NPY in the control brains was compared with those reported previously. Highest concentrations were identified in the subcortical structures, in particular, nucleus accumbens (203 +/- 21.7 pmol/g), amygdala (136.7 +/- 15.8 pmol/g), and substantia innominata (109.0 +/- 12.6 pmol/g). A significant elevation in NPY concentrations was identified in the region of the substantia innominata of Alzheimer brains (controls: 109.0 +/- 12.6 pmol/g, ATD: 206 +/- 28.2 pmol/g, P less than 0.001). This change in NPY concentration was similar to the increase in somatostatin concentration in this region of ATD brain. In contrast, although cortical concentrations of somatostatin were reduced in ATD, no change was found in the concentrations of NPY in the 4 regions of cerebral cortex and the remaining subcortical areas examined.  相似文献   

4.
Neuropeptide Y (NPY) is a 36 amino acid peptide, which among others, plays a pivotal role in stress response. Although previous studies confirmed that NPY release is increased by stress in several species, the exact mechanism of the stress-induced NPY release has not been elucidated yet.In the present study, we examined, with morphological means, the possibility that catecholamines directly influence NPY release in the human hypothalamus. Since the use of electron microscopic techniques is virtually impossible in immunostained human samples due to the long post mortem time, double-label immunohistochemistry was utilised in order to reveal the putative catecholaminergic-NPY associations.The present study is the first to demonstrate juxtapositions between the catecholaminergic, tyrosine hydroxylase (TH)/dopamine-beta hydroxylase (DBH)-immunoreactive (IR) and NPY-IR neural elements in the human hypothalamus. These en passant type associations are most numerous in the infundibular and periventricular areas of the human diencephalon. Here, NPY-IR neurons often form several contacts with catecholaminergic fibre varicosities, without any observable gaps between the contacting elements, suggesting that these juxtapositions may represent functional synapses. The lack of phenylethanolamine N-methyltransferase (PNMT)-NPY juxtapositions and the relatively few observed DBH-NPY associations suggest that the vast majority of the observed TH-NPY juxtapositions represent dopaminergic synapses. Since catecholamines are known to be the crucial components of the stress response, the presence of direct, catecholaminergic (primarily dopaminergic)-NPY-IR synapses may explain the increased NPY release during stress. The released NPY in turn is believed to play an active role in the responses that are directed to maintain the homeostasis during stressful conditions.  相似文献   

5.
Changes in the concentration of a newly discovered peptide, neuropeptide Y (NPY) have been determined in the developing rat brain using a recently developed radioimmunoassay and chromatographic analysis. NPY was present in the brain stem (14.8 ± 5.6 pmol/g) and diencephalon (12.1 ± 12.1 pmol/g) in the earliest embryos studied (14 days postconception), but appeared only on the 19th day postconception in the cerebral cortex. The concentrations of NPY showed a rapid postnatal rise in all regions examined. The finding of NPY early in the development of the embryonic rat brain and particularly in caudal regions has some similarities to the pattern of development of the catecholaminergic system.  相似文献   

6.
NPY is synthesized in the hypothalamic arcuate nucleus (ARC), and NPY injected into the paraventricular nucleus (PVN), the main site of NPY release, induces hyperphagia and reduces energy expenditure. Hypothalamic NPY and mRNA and NPY levels are increased in fatty Zucker rats, consistent with increased NPY release. This could explain the hyperphagia and reduced energy expenditure, which lead to obesity in the fatty Zucker rat. We have therefore compared NPY secretion in the PVN of conscious fatty and lean Zucker rats using push-pull sampling. The NPY secretory profile was consistently higher in fatty Zucker rats than in lean rats throughout the 3-h study period (P < 0.01), and mean NPY secretion over the whole 3 h was increased 2-fold in the fatty rats (P < 0.001). We conclude that fatty Zucker rats have increased NPY release in the PVN. This observation further supports the hypothesis that increased activity of the NPYergic ARC-PVN pathway may contribute to obesity in the fatty Zucker syndrome.  相似文献   

7.
The geniculohypothalamic tract carries visual information from the intergeniculate leaflet to the suprachiasmatic circadian pacemaker. NPY, found in this projection, has been shown to affect the phase of behavioral rhythms and influence photic entrainment. We now demonstrate that NPY, when briefly applied to the geniculate projection sites of rat SCN in vitro, induces permanent phase-shifts in the rhythm of neuronal electrical activity at two separate phases of the circadian cycle.  相似文献   

8.
Iritani S  Niizato K  Nawa H  Ikeda K 《Brain research》2000,852(2):475-478
The distribution of neuropeptide Y (NPY) and Brain-Derived Neurotrophic Factor (BDNF) in the hippocampal formation of monkey and rat brains was studied immunohistochemically. The NPY-neuronal system is more highly developed in the monkey compared to that in the rat. The distribution of NPY-positive products was coincident with that of abundant BDNF-positive deposits. These observations suggest that the role of BDNF and the interaction of BDNF-NPY may differ between species.  相似文献   

9.
Multiple administrations of the psychotominetic drug, phencyclidine-HC1 (PCP), decreased striatal neuropeptide Y-like immunoreactivity (NPY-LI) levels in a dose-dependent manner. Single or multiple PCP administrations decreased striatal NPY levels after 10–12 h; levels returned to control 24 h after a single dose or 58 h after multiple doses. In contrast, no significant changes were seen in nigral NPY levels with either acute or multiple-dose PCP treatments. The role of monoamine, σ or opioid receptors in PCP-induced striatal NPY changes was evaluated. When administered alone, the α1-adrenergic antagonist, prazosin, the σ antagonist, BMY 14802, and the dopamine D2 antagonist, sulpiride decreased striatal NPY levels; however, only prazosin and the dopamine D1 antagonist, SCH 23390, significantly attenuated PCP-induced changes. Administration of the γ-aminobutyric acid transaminase (GABA-T) inhibitors, amino-oxyacetic acid (AOAA) or γ-vinyl-GABA (GVG, vigabatrin, MDL 71,754) alone had no effect on striatal NPY-LI levels while administration of these indirect GABA agonists prior to or concurrently with PCP treatment completely blocked PCP-induced changes in striatal NPY-LI levels. The effect of the non-competitive (NMDA) receptor antagonist, MK-801, on striatal NPY-LI content resembled that of PCP and was also blocked by the two indirect GABA agonists. These data suggest that NPY systems are modulated by glutamatergic activity (specifically by the NMDA receptor) and that the interaction between these two transmitter systems is mediated by GABAergic mechanisms.  相似文献   

10.
目的探讨神经肽Y(neuropeptide Y,NPY)对海马神经元"癫痫样"动作电位的影响。方法用无镁细胞外液处理原代培养12 d的海马神经元3 h,诱导海马神经元癫痫样放电,建立海马神经元癫痫样放电模型;用全细胞膜片钳电流钳模式检测神经元动作电位,分别给予0.1μmol/L和1μmol/L NPY各1μL,给药时间10 s,观察其对神经元动作电位频率及波幅的影响。结果无镁细胞外液处理神经元3 h,可以形成稳定的海马神经元癫痫样放电模型,频率16~23 Hz,波幅75~96 mV。模型组神经元动作电位频率为(18.00±2.32)Hz,而0.1μmol/L和1μmol/L NPY组分别为(4.75±1.04)Hz和(1.50±0.75)Hz。与模型组相比较,两种浓度NPY组均降低了动作电位发放的频率(P<0.05)。模型组神经元动作电位波幅为(82.25±5.17)mV,而0.1μmol/L和1μmol/L NPY组分别为(49.75±2.49)mV和(40.00±2.20)mV。与模型组相比较,两种浓度NPY组均降低了动作电位发放的波幅(P<0.05)。两种浓度NPY之间相比较,也有统计学差异(P<0.05)。1μmol/LNPY明显抑制了动作电位发放的频率和波幅。结论 NPY能够抑制无镁细胞外液诱发的神经元癫痫样电活动,为应用NPY抑制癫痫发作提供了细胞电生理学证据。  相似文献   

11.
Neuropeptide Y (NPY), corticotropin releasing factor (CRF) and noradrenaline play important roles in the regulation of a number of endocrine and autonomic functions. NPY is co-localised with noradrenaline in the central nervous system and has been observed to modulate noradrenaline release. Recent morphological and physiological studies also support co-modulatory interactions between NPY and CRF. Earlier in vivo studies in our laboratory showed a potentiation of K(+)-stimulated noradrenaline release following NPY administration, possibly due to an NPY Y1 receptor mechanism. In this study, in vitro superfusion techniques were established to simultaneously monitor the release of endogenous noradrenaline and CRF from the hypothalamus of adult rats and to examine the direct neuromodulatory action of NPY on the overflow of CRF and noradrenaline. Administration of 0.10 microM NPY significantly increased CRF overflow to 395% basal levels and reduced hypothalamic noradrenaline overflow to 61% of basal levels. These effects were blocked by prior administration of the NPY Y1 receptor antagonist GR231118. Thus, this study suggests that NPY, working through a Y1 receptor, has dual and opposing effects on CRF and noradrenaline overflow in vitro.  相似文献   

12.
The pharmacology and brain mRNA distribution of the neuropeptide Y (NPY) rat Y5 (rY5) receptor has led to the hypothesis that this receptor might mediate the hypothalamic feeding response to NPY in addition to many other physiologic functions. However, through the use of autoradiographic techniques, only very low levels of Y5-like immunoreactive (Y5-ir) binding are detected in the rat brain. To localize the Y5 protein in the rat brain, polyclonal antibodies were raised to the carboxyl terminus of the rY5 receptor. The resulting antisera were affinity purified and characterized by specific binding to HEK293 cells that had been stably transfected with the rY5 receptor. Utilizing immunohistochemical techniques, we found a discrete pattern of Y5-ir in the rat brain. In initial studies, very low levels of Y5-ir were detected, and TSA amplification was required to visualize the staining. Areas with the highest levels of expression in clude the piriform cortex, supraoptic nucleus, and hippocampus. Areas with moderate levels of expression include the lateral septum, amygdala, arcuate nucleus, paraventricular hypothalamic nucleus, locus coeruleus, and cerebellum. With several exceptions, this pattern of distribution is consistent with earlier reports of rY5 mRNA and receptor protein expression.  相似文献   

13.
Protein synthesis by rat hippocampal slices maintained in vitro   总被引:1,自引:0,他引:1  
The present study evaluates protein synthesis in rat hippocampal slices maintained in vitro. Transverse slices of hippocampus were prepared from both adult rats and rat pups during postnatal development and incubated in a gassed (95% O2/5% CO2) balanced salt medium containing 5 nM 3H-leucine. The time course of 3H-leucine incorporation into TCA-precipitable protein was determined using slices removed from the media after 5, 10, 20, 30, 40, 60, and 120 min of incubation. The pattern of 3H-amino acid incorporation was evaluated by fixing slices with paraformaldehyde, embedding the slices in plastic, and sectioning the slices end on and en face for autoradiographic analysis. Biochemical analysis of 300 and 400 micron slices revealed that incorporation of leucine into protein proceeds at a constant rate. The autoradiographic analysis revealed that in adult hippocampal slices of 300-600 micron thickness there was complete penetration of 3H-leucine with no indication of a gradient in the extent of incorporation throughout the slice. The pattern of grain density within 300-600 micron slices matches that previously reported after in vivo injections of radiolabeled amino acid, where grain density is highest over neuronal cell bodies and lower over the laminae that contain dendritic processes and axons (Phillips et al: Mol Brain Res 2:251-261, 1987). Hippocampal slices of 200, 800, and 1,000 micron thickness showed irregular labeling. Slices of 200 micron were filled with pyknotic nuclei and vacuoles and exhibited patchy labeling. In 800 micron slices there were isolated areas of good preservation within the slice core, but these areas exhibited little incorporation. Relative to the 300-600 micron slices, there was a higher number of pyknotic nuclei and a much deeper layer of necrosis along the cut edges. Slices of 1,000 micron thickness showed poor preservation throughout and low levels of incorporation. Biochemical studies revealed a much higher rate of incorporation in the slices prepared from postnatal animals. Autoradiography of the slices from developing rats revealed that penetration was excellent and incorporation appeared to be greater as judged by an overall higher grain density. We believe that rat hippocampal slices provide a good in vitro model of protein metabolism that will be useful for studies of protein synthesis in isolated cell body and dendritic laminae and for the evaluation of whether protein synthesis in particular laminae is regulated by synaptic activity.  相似文献   

14.
Neurons containing serotonin (5-HT), a potent anorexic agent, come into contact with neuropeptide Y-ergic neurons, that project from the arcuate nucleus (ARC) to the paraventricular nucleus (PVN). NPY powerfully stimulates feeding and induces obesity when injected repeatedly into the PVN. We hypothesize that 5-HT tonically inhibits the ARC-PVN neurons and that balance between the two systems determines feeding and energy homeostasis. This study aimed to determine whether central injection of the 5-HT synthesis inhibitor p-chlorophenylalanine (pCPA), which increases feeding, increased hypothalamic NPY and NPY mRNA levels. pCPA (10 mg/kg in 3 μl) was administered into the third ventricle either as a single injection (n = 8) or daily for 7 days (n = 8). Control rats received a similar injection of saline. pCPA significantly increased food intake compared with controls after both single and repeated injections (P < 0.05). NPY levels were measured by radioimmunoassay in microdissected hypothalamic extracts. NPY levels in the acutely treated group were significantly increased in the paraventricular nucleus (PVN; by 41%,P = 0.01), anterior hypothalamic area (AHA; by 34%,P < 0.01) and lateral hypothalamic area (LHA; by 41%,P < 0.02). In the 7-day-treated group, NPY levels were also increased in the same areas, i.e. PVN (by 24%,P < 0.01), AHA (by 30%,P < 0.01) and LHA (by 38%,P = 0.01). There were no significant changes in the ARC or any other region or in hypothalamic NPY mRNA levels. pCPA administration increased NPY levels in several regions notably the PVN. This is a major site of NPY release, where NPY injection induces feeding. We suggest that the hyperphagia induced by pCPA is mediated by increased NPY levels and secretion in the PVN. This is further evidence for interactions between NPY and 5-HT in the control of energy homeostasis.  相似文献   

15.
Neuropeptide Y (NPY) has been implicated in the modulation of hippocampal neuronal activity and in the pathophysiology of several neurological disorders involving the hippocampal formation. Thus, this study examines the light and electron microscopic immunoperoxidase labeling of a rabbit polyclonal antibody against porcine NPY in single sections through each lamina of the CA1 and CA3 regions of the hippocampus and the dentate gyrus (DG) of normal adult rats. By light microscopy, the majority of perikarya with intense NPY-like immunoreactivity (NPY-LI) were located in stratum oriens of CA1 and CA3 of the hippocampus and in the hilus of the DG. Fine varicose processes with NPY-LI were found in all layers of the hippocampal formation, but were densest in the outer third of the molecular layer of the DG. The density of NPY-labeling was greater in the ventral portion of the hippocampal formation. By electron microscopy, most NPY-containing perikarya in all three hippocampal regions were: small (8-12 microns) or medium-sized (12-18 microns) and elongated; or medium-sized and round. A dense accumulation of NPY-LI was commonly observed within the individual saccules of Golgi complexes and some rough endoplasmic reticulum in the cytoplasm. Perikarya and dendrites with NPY-LI usually were directly apposed to other neuronal processes (mostly terminals) and lacked astrocytic appositions. The majority of terminals in contact with NPY immunoreactive neurons were unlabeled and synapsed with the shafts of large and small dendrites. In CA1 and CA3 of the hippocampus, the types of synapses formed by the unlabeled terminals were not significantly different; however, more asymmetric synapses than symmetric synapses were formed by the unlabeled terminals on the shafts of small NPY-labeled dendrites in the DG. The terminals with NPY-LI (0.25-1.2 microns) contained many small, clear vesicles and 0-2 large, dense-core vesicles. The types of synapses (i.e., asymmetric and symmetric) and distribution of NPY-labeled terminals on the targets were remarkably similar in each lamina of the hippocampal subregions. The NPY-labeled terminals usually synapsed with one unlabeled perikaryon or dendrite. However, others synapsed either (1) with two unlabeled perikarya or dendrites simultaneously or (2) with one NPY-containing perikaryon or dendrite. Most of the terminals with NPY-LI formed symmetric junctions with the shafts of small (distal) dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The number and distribution of subpopulations of hilar interneurons containing neuropeptide Y (NPY), somatostatin (SOM), or γ-aminobutyric acid (GABA) immunoreactivities were examined in the hilus of the dentate gyrus following removal of the cholinergic septal inputs. One, 2, 4, 8, 12, and 24 weeks after intracerebroventricular injections of immunotoxin, consisting of antibody to the low-affinity nerve growth factor receptor conjugated to saporin (192 IgG-saporin), lesioned rats were processed simultaneously with controls for NPY, SOM, or GABA immunolabeling. Across all time points, the number of NPY-labeled neurons was reduced to a statistically significant level (paired t-test, P = 0.001) in the injected rats (73% of control values, on average). The decrease in the number of NPY-labeled neurons was not limited to any particular subregion rostrally but appeared greater in the central region caudally. The size of NPY-labeled neurons did not differ statistically between control and immunolesioned rats examined at 1, 2, and 24 week time points. In contrast, the number of both SOM- and GABA-immunoreactive neurons in injected rats did not appear to be affected in any consistent manner. Examination of the hilus in adjacent Nissl-stained sections with the optical dissector revealed that although the total number of small nonprincipal cells (5–15 μm in diameter) did not appear affected at the 4-week time point, there was a statistically significant (P = 0.03) reduction across the 8–24-week time points (to 80% of control values, on average). Dual-labeling studies on separate rats showed that a small subpopulation of the NPY- and SOM-labeled neurons, primarily in the infragranular hilus, were colocalized with neurons containing GABA immunoreactivity (18% and 5%, respectively). These studies demonstrate that removal of the cholinergic septal inputs (1) can cause relatively rapid, selective decreases in the number of NPY-immunoreactive hippocampal interneurons and (2) appears to lead to the death of hippocampal interneurons over a longer time course. The changes in NPY immunoreactivity seem to occur in the portion of interneurons that probably does not contain either SOM or GABA immunoreactivity. J. Comp. Neurol. 386:46–59, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The ovarian hormone progesterone is neuroprotective in some animal models of neurodegeneration. Progesterone actions in the brain may partly be mediated by the locally produced metabolites 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone. The neuroprotective effects of these two metabolites of progesterone were assessed in this study. Ovariectomized Wistar rats were injected with kainic acid, to induce excitotoxic neuronal death in the hippocampus, and with different doses of 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone. The number of surviving neurones in the hilus of the dentate gyrus of the hippocampus was assessed with the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurones and in the induction of vimentin expression in reactive astrocytes, a sign of neural damage. Low doses of 5alpha-dihydroprogesterone (0.25 and 0.5 mg/kg body weight, b.w.) prevented the loss of hilar neurones and the appearance of vimentin immunoreactivity in astrocytes. Higher doses (1-2 mg/kg b.w.) were not neuroprotective. By contrast, low doses of 3alpha,5alpha-tetrahydroprogesterone (0.25-1 mg/kg b.w.) were unable to protect the hilus from kainic acid while higher doses (2-4 mg/kg b.w.) were protective. The different optimal neuroprotective doses of 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone suggest that these two steroids may protect neurones using different mechanisms. The neuroprotective effects of 3alpha,5alpha-tetrahydroprogesterone may be exerted by the inhibition of neuronal activity via the GABAA receptor. This latter possibility is supported by the observation that 3beta,5alpha-tetrahydroprogesterone, an isomer of 3alpha,5alpha-tetrahydroprogesterone that does not bind to GABAA receptor, was not neuroprotective. In summary, our findings suggest that progesterone neuroprotective effects may be, at least in part, mediated by its reduced metabolites 5alpha-dihydroprogesterone and 3alpha,5alpha-tetrahydroprogesterone.  相似文献   

18.
Neuropeptide Y (NPY) has been detected immunocytochemically in cerebral cortex and subcortical white matter of the primate frontal, parietal, temporal, and occipital lobes. Because little is known about NPY in the primate insular lobe and because peptides play an important role in normal neuronal functioning and alterations in brain peptides are associated with certain neurological diseases, we studied the presence, distribution, and structural characteristics of NPY-immunostained elements at the light microscopic level in the insula ofMacaca fascicularis. We used free-floating sections, rabbit anti-porcine NPY serum, and the avidin and biotinylated peroxidase complex technique. Neuropeptide Y-immunostained neurons were demonstrated in layers II, III, and V/VI, and in the adjoining subcortical white matter. Immunostaining was localized to neuronal somata, neuronal processes, and a delicate plexus in the neuropil. The majority of NPY-immunostained neurons were non-pyramidal, had round somata 10–20 μm in major transverse diameter, and two or three neuronal processes. Computer-aided quantitative analysis of the length, breadth, and area of NPY-stained neurons was performed. Our findings are consistent with observations by others on the presence, laminar distribution, and structural characteristics of NPY-immunostained elements at the light microscoscopic level in other cerebral lobes of non-human primates.  相似文献   

19.
In the arcuate nucleus which is richly innervated by both proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons, it has been shown that NPY fibers are in synaptic contact with POMC cell bodies. In order to determine whether NPY could influence POMC neuronal activity, we have studied the effects of NPY and some NPY analogs on POMC gene expression using quantitative in situ hybridization. The following peptides NPY, [Leu31, Pro34]-NPY (a Y1 receptor agonist), and NPY13–36 (a Y2 receptor agonist) were injected into the left lateral cerebral ventricle of adult male rats 4 h before being perfused for histological procedures. The intracerebroventricular injection of NPY and NPY13–36 induced a significant decrease in the number of grains overlying the labelled neurons. On the other hand, the Y1 receptor agonist [Leu31, Pro34]-NPY did not modify POMC mRNA levels. These data then strongly suggest that NPY negatively regulates the genetic expression of POMC neurons via the Y2 NPY receptor subtype.  相似文献   

20.
The feasibility of using the difference method of quantitative microdialysis to measure neuropeptide Y (NPY) was evaluated in vitro and in vivo. The accuracy of this method was tested in vitro under steady-state conditions for 3 test solutions containing known concentrations of NPY. The estimated concentrations of NPY were 1.2 ± 0.6, 3.7 ± 0.9, and 15.1 ± 0.7 pg/μl (mean ± SEM) in agreement with the actual concentrations of NPY in the test solutions which were 1.1 ± 0.8, 4.6 ± 0.6, and 14.6 ± 0.5 pg/μl (mean ± SEM of solution samples), respectively. The responsiveness of the estimated NPYext measure to changes in the external concentration of NPY was also evaluated in vitro. An accurate estimate of NPYext was obtained within the first sampling period (within 15 min) after a 2–3-fold increase in the test solution concentration of NPY and within 2–3 sampling periods (15–45 min) in response to a 2–3-fold decrease in the test solution concentration of NPY. In vivo, the estimated basal concentration of NPY in dialysis samples from probes in the medial basal hypothalamus of anesthetized female rats (n = 4) was 4.0 ± 1.6 pg/μl and increased to 9.5 ± 0.3 pg/μl during K+ stimulation. Relative recovery was 22% in vivo under steady-state conditions and ranged from 14% to 30% during dynamic conditions. These results demonstrate that the difference method of quantitative microdialysis accurately estimates picomolar concentrations of NPY in vitro, and is sufficiently sensitive to detect basal and increasing concentrations of NPY in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号