首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study tested the hypothesis that preventing neutrophil adhesion during reperfusion, by blocking either the neutrophil membrane CD18 integrin complex or its endothelial and myocyte ligand, intercellular adhesion molecule-1 (ICAM-1), would reduce myocardial inflammation and edema and improve reflow and ventricular function after heart preservation and transplantation. After cardioplegia and insertion of a left ventricular balloon, rabbit hearts were heterotopically transplanted into recipient rabbits either immediately (immediate, n = 12) or after preservation in 4 degrees C saline (3 hours of ischemia, n = 33). Forty-five minutes before reperfusion, recipients of preserved hearts received intravenous infusions of either saline (vehicle, n = 13), anti-CD18 monoclonal antibody (Mab) R15.7 (2 mg/kg) (anti-CD18, n = 10), or anti-ICAM-1 Mab R1.1 (2 mg/kg) (anti-ICAM, n = 10). During 3 hours of reperfusion the slope of the peak-systolic pressure-volume relation and its volume-axis intercept, the exponential elastic coefficient of the end-diastolic pressure-volume relation, the unstressed ventricular volume, and the time constant of the exponential left ventricular pressure decay after dP/dtmin were serially measured. Myocardial blood flow was measured with microspheres from which coronary vascular resistance was calculated. After explanation, the degree of myocardial inflammation, estimated by tissue neutrophil sequestration (myeloperoxidase assay) and myocardial water content were determined. Within each group no significant differences in measurements made at 1, 2, and 3 hours of reperfusion were noted. Compared with the immediate transplantation group, the vehicle group demonstrated a significant increase in myeloperoxidase activity (3380 +/- 456 versus 1712 +/- 552 microU/gm, p < 0.05), coronary vascular resistance (115.5 +/- 13.4 versus 70.5 +/- 10.6 U/gm, p < 0.05), and myocardial water content (79.8% +/- 0.4% versus 75.6% +/- 1.3%, p < 0.05), a significant decrease in unstressed ventricular volume (a leftward shift in the end-diastolic pressure-volume relation) (-0.49 +/- 0.24 versus 0.28 +/- 0.21 ml, p < 0.05), and a marked prolongation in exponential left ventricular pressure delay after dP/dtmin (156.64 +/- 3.81 versus 37.25 +/- 3.34 msec, p < 0.01).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Zhao P  Zuo Z 《Anesthesiology》2004,101(3):695-703
BACKGROUND: Perinatal stroke is a common human disease. Neonatal brains are immature and engaged in active synaptogenesis. Preconditioning adult rats with the volatile anesthetic isoflurane induces neuroprotection. Whether isoflurane preconditioning induces neuroprotection in neonates is not known. METHODS: Seven-day-old Sprague-Dawley rats had left common carotid arterial ligation followed by hypoxia with 8% oxygen for 1, 2, or 2.5 h at 37 degrees C. Isoflurane preconditioning with 1 or 1.5% isoflurane for 30 min was performed at 24 h before the brain hypoxia/ischemia. The inducible nitric oxide synthase inhibitor aminoguanidine (200 mg/kg, intraperitoneally) was administered 30 min before the isoflurane pretreatment. The weight ratio of left to right cerebral hemispheres at 7 days after the brain hypoxia/ischemia was calculated. The mortality during the period from cerebral hypoxia/ischemia to 7 days afterwards was monitored. In another experiment, 6-day-old rats were exposed to 1.5% isoflurane for 30 min. The cerebral hemispheres were removed at various time points for Western analysis of inducible nitric oxide synthase. RESULTS: The mortality was about 40% in neonates with brain hypoxia/ischemia for 2 h or 2.5 h and was not altered by isoflurane preconditioning. The weight ratio of left/right cerebral hemispheres in the survivors was 0.99 +/- 0.02, 0.65 +/- 0.19, and 0.86 +/- 0.15 (n = 7-18) for the rats in control, brain hypoxia/ischemia for 2.5 h, and isoflurane preconditioning plus brain hypoxia/ischemia for 2.5 h groups, respectively (P < 0.05 for the comparisons between control versus brain hypoxia/ischemia and brain hypoxia/ischemia versus isoflurane preconditioning plus brain hypoxia/ischemia). This isoflurane preconditioning-induced neuroprotection was abolished by aminoguanidine (the weight ratio was 0.61 +/- 0.18, n = 12). Isoflurane induced a time-dependent increase in the inducible nitric oxide synthase proteins. CONCLUSIONS: Isoflurane preconditioning induces neuroprotection in neonatal rats. This neuroprotection is inducible nitric oxide synthase-dependent.  相似文献   

3.
OBJECTIVES: Hemodynamic instability and generalized organ dysfunction are common after cardiopulmonary bypass in human beings. Previous studies have suggested that alterations of nitric oxide metabolism may be associated with this impaired function. Using a canine model we tested whether nitric oxide synthase activity is increased after cardiopulmonary bypass. We also tested whether administration of a nitric oxide donor can influence nitric oxide synthase activity after cardiopulmonary bypass. METHODS: After induction of anesthesia, dogs were randomized to receive cardiopulmonary bypass (n = 12) or to serve as controls (n = 12). They were further randomized to receive a continuous infusion of a nitric oxide donor, S-nitrosoglutathione, or an equivalent volume of placebo. Cardiopulmonary bypass was maintained for 90 minutes, and then 4 hours later dogs were put to death. Cardiac and coronary artery sections were frozen in liquid nitrogen immediately after death for later determination of nitric oxide synthase activity using a citrulline assay. RESULTS: After cardiopulmonary bypass, 4 of 6 placebo-treated but only 2 of 6 S-nitrosoglutathione treated animals required phenylephrine infusion (3.1 +/- 3.1 microgram/min and 0.2 +/- 0.4 microgram/min, respectively, P =.05) to maintain a predetermined blood pressure. Furthermore, after cardiopulmonary bypass, Ca2+-dependent nitric oxide synthase activity in the left ventricle, atrium, and coronary artery did not increase compared with activity in the control animals, but Ca2+-independent nitric oxide synthase activity did increase (P =.005): left ventricle (+28.0% +/- 9.0%), atrium (+45.0% +/- 12.0%) and coronary artery (+17.0% +/- 12.0%). CONCLUSIONS: We have found that (1) cardiopulmonary bypass results in increased activity of Ca2+-independent nitric oxide synthase, (2) S-nitrosoglutathione can prevent the increase of Ca2+-independent nitric oxide synthase after cardiopulmonary bypass, and (3) Ca2+-independent nitric oxide synthase may contribute to hemodynamic dysfunction after cardiopulmonary bypass.  相似文献   

4.
Background: Perinatal stroke is a common human disease. Neonatal brains are immature and engaged in active synaptogenesis. Preconditioning adult rats with the volatile anesthetic isoflurane induces neuroprotection. Whether isoflurane preconditioning induces neuroprotection in neonates is not known.

Methods: Seven-day-old Sprague-Dawley rats had left common carotid arterial ligation followed by hypoxia with 8% oxygen for 1, 2, or 2.5 h at 37[degrees]C. Isoflurane preconditioning with 1 or 1.5% isoflurane for 30 min was performed at 24 h before the brain hypoxia/ischemia. The inducible nitric oxide synthase inhibitor aminoguanidine (200 mg/kg, intraperitoneally) was administered 30 min before the isoflurane pretreatment. The weight ratio of left to right cerebral hemispheres at 7 days after the brain hypoxia/ischemia was calculated. The mortality during the period from cerebral hypoxia/ischemia to 7 days afterwards was monitored. In another experiment, 6-day-old rats were exposed to 1.5% isoflurane for 30 min. The cerebral hemispheres were removed at various time points for Western analysis of inducible nitric oxide synthase.

Results: The mortality was about 40% in neonates with brain hypoxia/ischemia for 2 h or 2.5 h and was not altered by isoflurane preconditioning. The weight ratio of left/right cerebral hemispheres in the survivors was 0.99 +/- 0.02, 0.65 +/- 0.19, and 0.86 +/- 0.15 (n = 7-18) for the rats in control, brain hypoxia/ischemia for 2.5 h, and isoflurane preconditioning plus brain hypoxia/ischemia for 2.5 h groups, respectively (P < 0.05 for the comparisons between control versus brain hypoxia/ischemia and brain hypoxia/ischemia versus isoflurane preconditioning plus brain hypoxia/ischemia). This isoflurane preconditioning-induced neuroprotection was abolished by aminoguanidine (the weight ratio was 0.61 +/- 0.18, n = 12). Isoflurane induced a time-dependent increase in the inducible nitric oxide synthase proteins.  相似文献   


5.
BACKGROUND: Prolonged hypothermic circulatory arrest (HCA) causes neurologic injury. However, the mechanism of this injury is unknown. We hypothesized that HCA causes nitric oxide production to result in neuronal necrosis. This study was undertaken to determine whether the neuronal nitric oxide synthase inhibitor 17477AR reduces necrosis after HCA. METHODS: Thirty-two dogs underwent 2 hours of HCA at 18 degrees C. Nitric oxide synthase catalytic assay and intracerebral microdialysis for nitric oxide production were performed in acute nonsurvival experiments (n = 16). Sixteen animals survived for 72 hours after HCA: Group 1 (n = 9) was treated with 17477AR (Astra Arcus), and group 2 (n = 7) received vehicle only. Animals were scored from 0 (normal) to 500 (coma) for neurologic function and from 0 (normal) to 100 (severe) for neuronal necrosis. RESULTS: Administration of 17477AR reduced nitric oxide production in the striatum by 94% (HCA alone), 3.65+/-2.42 micromol/L; HCA and 17477AR, 0.20+/-0.14 micromol/L citrulline). Dogs treated with 17477AR after HCA had superior neurologic function (62.22+/-29.82 for group 1 versus 141.86+/-61.53 for group 2, p = 0.019) and significantly reduced neuronal necrosis (9.33+/-4.67 for group 1 versus 38.14+/-2.23 for group 2, p<0.00001) compared with untreated HCA dogs. CONCLUSIONS: Our results provide evidence that neuronal nitric oxide synthase mediates neuronal necrosis after HCA and plays a significant role in HCA-induced neurotoxicity. Pharmacologic strategies to inhibit neuronal nitric oxide synthase after the ischemic period of HCA may be clinically beneficial.  相似文献   

6.
OBJECTIVES: The preconditioning effects of the adjunctive, cardiac-specific sodium-hydrogen ion exchange inhibitor cariporide (cariporide mesilate, HOE 642) were studied in hearts subjected to 30 minutes of normothermic ischemia and reperfusion to assess myocardial and endothelial changes. METHODS: Sixteen Yorkshire-Duroc pigs (27-34 kg) receiving cardiopulmonary bypass underwent either cardiopulmonary bypass alone (control, n = 4) or 30 minutes of normothermic ischemia, followed by 30 minutes of blood reperfusion (n = 12). Six hearts were treated with 5 mg/kg cariporide administered intravenously 15 minutes before ischemia. RESULTS: Cardiopulmonary bypass alone caused no changes. Conversely, 30 minutes of global normothermic ischemia caused 33% mortality and, in survivors, depression of left ventricular function to 22% +/- 6% of baseline preload recruitable stroke work and increased creatine kinase MB by 406% (88 +/- 13 U/L), conjugated dienes by 17% (161 +/- 0.2 AU/mL), and myeloperoxidase activity by 297% (0.036 +/- 0.005 U/g). Myocardial edema developed (3.5% water gain). Coronary sinus endothelin 1 increased by 111% (2.05 +/- 0.38 pg/mL), and nitric oxide production decreased by 10%. These adverse effects were limited by pretreatment with cariporide, which allowed complete survival and restored preload recruitable stroke work to 78% +/- 11%. Measurements of creatine kinase MB, conjugated dienes, myeloperoxidase, water, and endothelin 1 returned to baseline values, and nitric oxide production was accentuated 3-fold. CONCLUSIONS: These observations show that adjunctive pretreatment with cariporide delays myocardial and endothelial injury during ischemia and reperfusion, limits oxygen-derived radical injury, restores function, reduces edema, and preserves endothelin and nitric oxide balance at normal values. The myeloperoxidase changes show that less white blood cell adherence supports reduced reperfusion endothelial damage.  相似文献   

7.
BACKGROUND: Surgical coronary revascularization with cardiopulmonary bypass and cardioplegia has been associated with reperfusion injury. The serine protease inhibitor aprotinin has been suggested to reduce reperfusion injury, yet a clinically relevant study examining regional ischemia under conditions of cardiopulmonary bypass and cardioplegia has not been performed. METHODS: Pigs were subjected to 30 minutes of regional myocardial ischemia by distal left anterior descending coronary artery occlusion, followed by 60 minutes of cardiopulmonary bypass with 45 minutes of cardioplegic arrest and 90 minutes of post-cardiopulmonary bypass reperfusion. The treatment group (n = 6) was administered aprotinin systemically (40,000 kallikrein-inhibiting units [KIU]/kg intravenous loading dose, 40,000 KIU/kg pump prime, and 10,000 KIU x kg(-1) x h(-1) intravenous continuous infusion). Control animals (n = 6) received crystalloid solution. Global and regional myocardial functions were analyzed by the left ventricular+dP/dt and the percentage segment shortening, respectively. Left ventricular infarct size was measured by tetrazolium staining. Tissue myeloperoxidase activity was measured. Myocardial sections were immunohistochemically stained for nitrotyrosine. Coronary microvessel function was studied by videomicroscopy. RESULTS: Myocardial infarct size was decreased with aprotinin treatment (27.0% +/- 3.5% vs 45.3% +/- 3.0%, aprotinin vs control; P <.05). Myocardium from the ischemic territory showed diminished nitrotyrosine staining in aprotinin-treated animals versus controls, and this was significant by grade (1.3 +/- 0.2 vs 3.2 +/- 0.2, aprotinin vs control; P <.01). In the aprotinin group, coronary microvessel relaxation improved most in response to the endothelium-dependent agonist adenosine diphosphate (44.7% +/- 3.2% vs 19.7% +/- 1.7%, aprotinin vs control; P <.01). No significant improvements in myocardial function were observed with aprotinin treatment. CONCLUSIONS: Aprotinin reduces reperfusion injury after regional ischemia and cardioplegic arrest. Protease inhibition may represent a molecular strategy to prevent postoperative myocardial injury after surgical revascularization with cardiopulmonary bypass.  相似文献   

8.
BACKGROUND: The aim of this study was to investigate the effects of inducible nitric oxide synthase inhibition by aminoguanidine on endotoxin-induced reduction in mesenteric blood flow. METHODS: Twenty Sprague-Dawley rats (180-230 g) allocated into four groups were administered either Escherichia coli endotoxin 1 mg/kg intraperitoneally or its solvent saline and were pretreated with either aminoguanidine (15 mg/kg intraperitoneally 20 min before and 2 h after endotoxin injection) or saline. Some 4 h after endotoxin injection, animals were anaesthetized, arterial blood pressure and mesenteric blood flow were measured and the resistance in the mesenteric vascular beds was then calculated. The effect of phenylephrine (1-30 microg/kg intravenously) on these parameters was also investigated. RESULTS: Endotoxin did not significantly modify the mean arterial blood pressure but decreased mesenteric blood flow by increasing the vascular resistance (mean(s.e.m.) 7.8(1.0) versus 13.7(1.2) mmHg per min per ml for control versus endotoxin groups; n = 5, P = 0.0099). Aminoguanidine alone had no effect on either the mean arterial blood pressure or mesenteric blood flow, but it completely blocked the effects of endotoxin. On the other hand, endotoxin significantly attenuated the responsiveness to phenylephrine which was restored by aminoguanidine. CONCLUSION: The present results indicate that endotoxin decreases the mesenteric vascular blood flow by increasing vascular resistance and decreases responsiveness to phenylephrine. The effects of endotoxin were inhibited by aminoguanidine. The mesenteric vasoconstriction in response to endotoxin might not be explained by the overproduction of nitric oxide; other actions of aminoguanidine may explain its inhibitory effect. Presented in part to the 10th Annual Meeting of the Surgical Infection Society - Europe, Istanbul, Turkey, May 1997  相似文献   

9.
OBJECTIVE(S): The effects of hypertonic saline on ventricular function are controversial, whether it is increasing contractility or preload. There are no data, however, on the influence of hypertonic saline in a stunned myocardium. DESIGN: This study was prospective and randomized in order to analyze the effects of hypertonic saline solution (7.5%) on myocardial function and systemic hemodynamics in a porcine model of ischemia and reperfusion. SETTING: A university teaching hospital, animal research laboratory. PARTICIPANTS: Twelve adult domestic swine. INTERVENTIONS: Myocardial stunning was produced by the complete occlusion of the proximal left anterior descending artery for 15 minutes followed by reperfusion. Five minutes after reperfusion, the animals were assigned to receive 4 mL/kg of hypertonic saline (n = 7) or normal saline (n = 5) over 10 minutes. Pressure-tipped catheters were placed in the left ventricular cavity and aorta. The dimensions of the left ventricle were measured with ultrasonic microcrystals. Cardiac output was measured with transit time ultrasound. Data were recorded continuously and compared before the occlusion, 5 minutes after reperfusion, and at the end of the infusion. MEASUREMENTS AND MAIN RESULTS: Compared with baseline, ventricular function was significantly depressed after left anterior descending artery occlusion. Left ventricular dP/dT and its end-systolic pressure-volume slope decreased (38% and 52%, respectively; p < 0.05), with a concomitant increase in systemic vascular resistance. The administration of hypertonic saline significantly improved left ventricular function (Emax 1,422 +/- 198 mmHg/mL, and dP/dT 3.2 +/- 0.4 mmHg/s v normal saline group values of 1,156 +/- 172 and 2.5 +/- 0.5, respectively; p < 0.05), cardiac output (2.5 +/- 0.5 v 1.84 +/- 0.4 L/min, p < 0.05), and lowered systemic vascular resistance (from 28.8 +/- 2.3 to 23.5 +/- 1.4, p < 0.05), with no significant changes with normal saline administration. CONCLUSIONS: After transient myocardial ischemia, hypertonic saline administered over a short period of time acts as an inodilator by increasing contractility while simultaneously lowering systemic vascular resistance.  相似文献   

10.
OBJECTIVE: Nitric oxide regulates vascular tone, inhibits platelet aggregation, and inhibits leukocyte adhesion, all of which are important modulators of ischemia-reperfusion injury. This study aimed to determine the effects of endothelial constitutive nitric oxide synthase gene transfer on ischemia-reperfusion injury in a rat lung transplant model. METHODS: In group I, donor animals were injected intravenously with 5 x 10(9) pfu of adenovirus-encoding endothelial constitutive nitric oxide synthase. Groups II and III served as controls, whereby donor animals were injected with either 5 x 10(9) pfu of adenovirus encoding beta-galactosidase or saline solution, respectively. Twenty-four hours after injection, left lungs were harvested and preserved for 18 hours at 4 degrees C, then implanted into isogeneic recipients, which were put to death 24 hours later. Recombinant endothelial constitutive nitric oxide synthase gene expression was evaluated by Western blotting and immunohistochemistry. Lung grafts were assessed by measuring arterial oxygenation, myeloperoxidase activity, and wet/dry weight ratios. RESULTS: Western blotting confirmed the overexpression of endothelial constitutive nitric oxide synthase in lungs so transfected compared with controls. Twenty-four hours after reperfusion, mean arterial oxygenation was significantly improved in group I compared with group II and III controls (189.4 +/- 47.1 mm Hg vs 71.7 +/- 8.9 mm Hg and 67.8 +/- 12.2 mm Hg, P =.02, P =.01, respectively). Myeloperoxidase activity, a reflection of tissue neutrophil sequestration, was also significantly reduced in group I compared with groups II and III (0.136 +/- 0.038 DeltaOD/mg/min vs 0. 587 +/- 0.077 and 0.489 +/- 0.126 DeltaOD/mg/min, P =.001, P =.01, respectively). CONCLUSION: Adenovirus-mediated gene transfer with endothelial constitutive nitric oxide synthase ameliorates ischemia-reperfusion injury as manifested by significantly improved oxygenation and decreased neutrophil sequestration in transplanted lung isografts. Endothelial constitutive nitric oxide synthase gene transfer may reduce acute lung dysfunction after lung transplantation.  相似文献   

11.
Effects of supplemental L-arginine during warm blood cardioplegia.   总被引:8,自引:0,他引:8  
OBJECTIVES: Effects of supplemental L-arginine, nitric oxide precursor, during warm blood cardioplegia were assessed in the blood perfused isolated rat heart. METHODS: The isolated hearts were perfused with blood at 37 degrees C from a support rat. After 20 minutes of aerobic perfusion, the hearts were arrested for 60 minutes with warm blood cardioplegia given at 20-minute intervals. This was followed by 60 minutes of reperfusion. The hearts were divided into the following three groups according to the supplemental drugs added to the cardioplegic solution. The control group (n = 10) received standard warm blood cardioplegia. The L-ARG group (n = 10) received warm blood cardioplegia supplemented with L-arginine (3 mmol/l). The L-NAME group (n = 10) received warm blood cardioplegia supplemented with L-arginine (3 mmol/l) and L-nitro-arginine methyl ester, a competitive inhibitor of nitric oxide synthase (1 mmol/l). After 60 minutes of cardioplegic arrest, cardiac function, myocardial metabolism and myocardial release of circulating adhesion molecules were measured during reperfusion. RESULTS: Left ventricular end-diastolic pressure was significantly lower (p<0.05) in the L-ARG group than in the control group and the L-NAME group during reperfusion. Isovolumic left ventricular developed pressure, dp/dt and coronary blood flow were significantly greater (p< 0.05) in the L-ARG group during reperfusion. The L-ARG group resulted in early recovery of lactate metabolism during reperfusion. Myocardial release of circulating intercellular adhesion molecule-1 (ICAM-1) and E-selectin were significantly less (p<0.05) in the L-ARG group at 15 minutes of reperfusion. CONCLUSIONS: The results suggest that augmented nitric oxide by adding L-arginine to warm blood cardioplegia can preserve left ventricular function and ameliorate endothelial inflammation. The technique can be a novel cardioprotective strategy in patients undergoing cardiac surgery.  相似文献   

12.
Castañeda AA  Kim YS  Chang LK  Cui Y  Mercer DW 《Surgery》2000,128(3):422-428
BACKGROUND: Bombesin prevents gastric injury primarily by the release of endogenous gastrin. Gastroprotection by exogenous gastrin is negated by nitric oxide synthase inhibition, which implicates a role for nitric oxide as a protective mediator. Because both endothelial and inducible isoforms of this enzyme can play a role in mucosal defense, this study was done to examine the contrasting effects of 2 nitric oxide synthase inhibitors on bombesin-induced gastroprotection. METHODS: Rats were given subcutaneous saline or bombesin (10-100 microg/kg) 30 minutes before they received a 1-mL orogastric bolus of acidified ethanol (150 mmol/L of hydrochloric acid/50% ethanol) and rats were killed 5 minutes later for assessment of macroscopic injury (mm(2)). Gastric mucosal blood flow was measured by laser Doppler. Endothelial, neural, and inducible nitric oxide synthase were assessed by using Western immunoblot. RESULTS: Bombesin decreased gastric mucosal damage, and dose-dependently increased blood flow when compared with saline-treated rats. Endothelial but not neural or inducible nitric oxide synthase immunoreactivity was increased by bombesin. In additional studies, intraperitoneal administration of N(G)-nitro-l-arginine methyl ester (l-NAME, 5-10 mg/kg), a nonselective nitric oxide synthase inhibitor, negated bombesin-induced gastroprotection and hyperemia, whereas the selective inducible inhibitor aminoguanidine (45 mg/kg) did not. Subcutaneous (SC) l-arginine (300 mg/kg), but not d-arginine, abolished the effects of l-NAME. CONCLUSIONS: Taken together, these data suggest that nitric oxide produced by the endothelial isoform of nitric oxide synthase plays an important role in mediating the gastroprotective and hyperemic actions associated with bombesin.  相似文献   

13.
BACKGROUND: The bradykinin (BK)-induced endothelium-dependent relaxation is impaired in the presence of elevated potassium concentration enhancing the vasospastic tendency of large coronary arteries. Inhibition of the angiotensin-converting enzyme responsible for bradykinin degradation was found to enhance the endothelium-dependent relaxation by BK. The aim of the present study was to investigate the effect of phosphoramidon, known to inhibit a BK-metabolizing neutral endopeptidase enzyme, on relaxation of porcine-isolated coronary artery in depolarizing solution. METHODS: Endothelium intact porcine coronary artery rings were studied in organ chambers. The rings were isometrically contracted with potassium chloride (30 mmol/L) and the response to BK (1 to 1,000 nmol/L)-induced relaxation was investigated in the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine (300 micromol/L) alone and in combination with the cyclooxygenase inhibitor indomethacin (10 micromol/L), and that of the inhibitor of calcium-dependent potassium channels tetraethylammonium (7 mmol/L). Under these conditions, phosphoramidon (10 micromol/L), an inhibitor of a neutral endopeptidase enzyme (EC.3.4.24.11.), which is responsible for the degradation of BK, was used to enhance the endothelium-dependent relaxation. RESULTS: Phosphoramidon potentiated the maximum vasorelaxant effect of BK in Nomega-nitro-L-arginine (control 26.6%+/-10.86% versus phosphoramidon 49.05%+/-4.52%; n = 6, p < 0.05) or in Nomega-nitro-L-arginine + indomethacin-pretreated rings (control 20.7%+/-9.92% versus phosphoramidon 42.0%+/-12.26%; n = 5, p < 0.05) and this increased vasodilation was not modified by tetraethylammonium. CONCLUSIONS: In the present study phosphoramidon potentiated the effect of BK in the absence of nitric oxide and prostaglandins in porcine-isolated coronary artery. This effect did not depend on tetraethylammonium-sensitive potassium channels. Phosphoramidon may be a useful pharmacologic tool for preserving the vasorelaxing capacity of coronary arteries after cardioplegia.  相似文献   

14.
We have investigated the role of nitric oxide (NO) as mediator of the secondary growth of a traumatic cortical necrosis. For this purpose, a highly standardized focal lesion of the brain was induced in 46 Sprague-Dawley rats by cold injury. Twenty-four hours later--the timepoint of maximal lesion spread--the animals were sacrificed and brains were removed for histomorphometry of the maximal necrosis area and volume. The animals were divided into five experimental groups. Group I received the NO donor L-arginine as i.v. bolus 10 min prior to trauma (300 mg/kg body weight; n = 10) and a second bolus of the same dosage intraperitoneally 1 h after trauma. Group II (n = 10)--serving as control of group I--was infused with an i.v. bolus of 1 mL/kg isotonic saline 10 min prior to and a subsequent bolus i.p. 1 h after trauma. Group III (n = 8) received 100 mg/kg b.w. of the inducible NOS (iNOS) inhibitor aminoguanidine (AG) 1 h before and 8 h after trauma by intraperitoneal route. Group IV was administered with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NNA; 100 mg/kg b.w., i.p.; n = 8); group V--the controls of group III and IV--was administered with isotonic saline (1 mL/kg b.w. i.p.; n = 10) 1 h before and 8 h after trauma. In the control group with i.v./i.p. sham treatment (II), the focal lesion led to a cortical necrosis with a maximum area of 3.1 +/- 0.3 mm2 and a lesion volume of 5.7 +/- 0.5 mm3 at 24 h after trauma. In animals with administration of L-arginine, the focal lesion had a maximum area of 3.1 +/- 0.3 mm2 and a volume of 5.3 +/- 0.5 mm3. Hence, the NO donor did not affect the secondary growth of necrosis. Animals with i.p. sham treatment (group V) had a maximal lesion area of 3.6 +/- 0.2 mm2 and lesion volume of 6.2 +/- 0.4 mm3. Administration of aminoguanidine afforded significant attenuation of the lesion growth. Accordingly, the maximal area of necrosis spread only to 2.8 +/- 0.2 mm2 with a volume of 4.5 +/- 0.5 mm3, respectively, at 24 h after trauma (p < 0.01 vs group V). On the other hand, administration of L-NNA did not influence the maximal lesion area (3.7 +/- 0.2 mm2) or lesion volume (6.5 +/- 0.5 mm3) evolving at 24 h after trauma. Thus, neither the enhancement of the formation of NO by L-arginine nor gross inhibition of the synthesis of NO by L-NNA did affect the secondary spread of the necrosis from a focal trauma. The marked attenuation of the posttraumatic necrosis growth by the iNOS inhibitor aminoguanidine strongly indicates an important role of iNOS product in this phenomenon. These findings, thus, demonstrate that the expansion of a primary necrotic focal lesion is a secondary process which can be therapeutically inhibited. Thereby, the growth of a focal tissue necrosis from trauma is clearly identified as a manifestation of secondary brain damage. This information is deemed important for the better understanding of the pathophysiology of traumatic brain injury and for the targeted development of specific treatment modalities.  相似文献   

15.
Nerve root dysfunction and sciatic pain in disc herniation are considered to be caused by mechanical compression and related to the presence of nucleus pulposus in the epidural space. Autologous nucleus pulposus has been shown to induce endoneural edema and to decrease nerve-conduction velocity in spinal nerve roots in experimental disc herniation models, and inflammatory mediators have been suggested to be involved in these mechanisms. Nitric oxide, a potent inflammatory mediator, is implicated in vasoregulation, neurotransmission, and neuropathic pain. Nitric oxide synthesis can be induced by different cytokines, e.g., tumor necrosis factor-alpha, which recently was shown to be of pathophysiological importance in experimental disc herniation. The enzyme nitric oxide synthase mediates the production of nitric oxide. Three series of experiments were performed in rat and pig disc herniation models to (a) investigate nitric oxide synthase activity in spinal nerve roots after exposure to autologous nucleus pulposus and (b) evaluate the effects of systemic treatment with aminoguanidine, a nitric oxide synthase inhibitor, on vascular permeability and nerve-conduction velocity. In a disc herniation model in the rat, calcium-independent nitric oxide synthase activity was measured in nerve roots exposed to nucleus pulposus; however, no nitric oxide synthase activity was detected in nerve roots from animals that underwent a sham operation, reflecting increased inducible nitric oxide synthase activity. In nucleus pulposus-exposed spinal nerve roots in the pig, the edema was less severe after systemic aminoguanidine administration than without aminoguanidine treatment. Aminoguanidine treatment also significantly reduced the negative effect of nucleus pulposus on nerve-conduction velocity in spinal nerve roots in the pig. These results demonstrate that nucleus pulposus increases inducible nitric oxide synthase activity in spinal nerve roots and that nitric oxide synthase inhibition reduces nucleus pulposus-induced edema and prevents reduction of nerve-conduction velocity. Furthermore, the results suggest that nitric oxide is involved in the pathophysiological effects of nucleus pulposus in disc herniation.  相似文献   

16.
OBJECTIVE: Myocardial ischemia and reperfusion induced by cardioplegic arrest subjects the heart to free radical-mediated stress. The purpose of our study was to investigate the effect of cardioplegia-induced ischemia and reperfusion on myocardial formation and distribution of (1) nitrotyrosine as an indicator for peroxynitrite-mediated tissue injury resulting from increased nitric oxide release and (2) 8-isoprostane as an indicator for oxygen-derived free radical-mediated lipid peroxidation. METHODS: In 10 patients undergoing coronary artery operations (64 +/- 6 [mean +/- SD] years, 3 women and 7 men) subjected to cardiopulmonary bypass and intermittent cold blood cardioplegia, we collected transmural left ventricular biopsy specimens before and at the end of cardiopulmonary bypass. Specimens were cut at 10 micro m and subjected to immunocytochemical staining against the nitric oxide-producing enzyme constitutive nitric oxide synthase, cyclic guanosine monophosphate (intracellular second messenger of nitric oxide), nitrotyrosine, and 8-isoprostane by using polyclonal antibodies. For global left ventricular function determination, we measured the fractional area of contraction using transesophageal echocardiography. RESULTS: Nitric oxide synthase activity in cardiac myocytes increased from 34 +/- 10 gray units before cardiopulmonary bypass to 47 +/- 12 gray units at the end of bypass (P =.015), and all hearts showed increased cyclic guanosine monophosphate content in both myocytes and endothelial cells at the end of bypass. The number of nitrotyrosine-positive capillaries increased from 36 +/- 29/mm(2) before bypass to 82 +/- 47/mm(2) at the end of bypass (P =.012), and 8-isoprostane-positive capillaries increased from 92 +/- 72/mm(2) before bypass to 209 +/- 108/mm(2) at the end of bypass (P =.005). The fractional area of contraction was 53% +/- 12% before bypass and 56% +/- 12% after bypass (P =.47) but was slightly decreased to 45% +/- 14% at 4 hours after bypass (P =.121). CONCLUSIONS: Our data show that cardioplegia-induced myocardial ischemia and reperfusion is associated with nitrotyrosine and 8-isoprostane formation mainly in the coronary endothelium, indicating injury mediated by both peroxynitrite and oxygen-derived free radicals. Because nitric oxide synthase activation was accompanied with increased cyclic guanosine monophosphate, these data suggest that direct effects of nitric oxide on cardiac myocytes, as well as nitric oxide-mediated coronary endothelial injury, might contribute to injury associated with cardioplegia and cardiopulmonary bypass.  相似文献   

17.
BACKGROUND: Circulatory failure in multiple organ dysfunction syndromes (MODS) is characterized with systemic vasodilation, diminished blood flow to various vascular beds. The aim of this study was to investigate the effects of selective inhibition of nitric oxide on the mesenteric arterial blood flow (MABF), survival and organ injury of the liver, kidney, lung and spleen in zymosan-induced MODS. MATERIALS AND METHODS: Forty Swiss albino mice (20-40 g), 7 to 9 weeks old, were obtained. Animals were randomly divided into four groups. The first group were treated intraperitoneally (i.p) with vehicle (saline) and served as a sham group for aminoguanidine (AG) (n=10). The second group was treated with zymosan (500 mg/kg, suspended in saline solution, i.p). The mice in the third and fourth group received AG (15 mg/kg) 1 h and 6 h after zymosan or saline administration, respectively. Eighteen hours after the administration of zymosan, animals were assessed for MODS described subsequently. The signals from the flowmeter were also recorded on mesenteric arterial blood flow values. RESULTS: In zymosan-treated animals, the MABF was significantly lower than that of solvent (saline)-treated controls (ml min(-1), controls: 4.6 +/- 0.6; zymosan: 1.6 +/- 0.9, P <0.05). When animals were treated with AG, there were no significant differences in MABF values between AG group and solvent (saline)-treated control group. However AG prevented zymosan-induced mesenteric MABF decrease. Treatment with aminoguanidine also decreased mortality. CONCLUSION: AG is capable of inhibiting both the induction and the activity of the already iNOS; it remains a potential therapeutic agent in patients with MODS.  相似文献   

18.
OBJECTIVE: We sought to determine whether L -arginine polymer treatment of vein grafts enhances vascular production of nitric oxide and inhibits the development of neointimal hyperplasia. METHODS: External jugular veins of New Zealand White rabbits (n = 42) were harvested; treated intraluminally for 15 minutes with phosphate-buffered saline solution or L -arginine polymer 5, 7, or 9 at either 10 or 100 micromol/L; and then grafted into the contralateral carotid artery. Rabbits were killed after 28 days, and 5-microm sections of vessels were stained with hematoxylin and scored for intima/media ratio by using computerized morphometric analysis. Separate veins were treated in a similar fashion with biotinylated polymers and phosphate-buffered saline solution to assess for translocation efficiencies. Finally, vein segments pretreated with either phosphate-buffered saline solution or L -arginine polymers were cultured in Dulbecco's modified Eagle's medium containing lipopolysaccharide (100 microg/mL) and interferon gamma (200 U/mL) for 48 hours before measuring nitric oxide levels by means of the Griess reaction. RESULTS: Biotinylated L -arginine polymers demonstrated a dose- and length-dependent uptake into intimal and medial cells of treated vessels. Nitric oxide levels were significantly higher in vein segments treated with 100 micromol/L of L -arginine polymer 9 compared with control segments. Finally, the intima/media ratio also reflected both length- and concentration-dependent inhibition of neointimal hyperplasia.intima/media ratio PBS R5 R7 R9 10 micromol/L 0.909 +/- 0.072 0.920 +/- 0.073 0.861 +/- 0.138 0.710 +/- 0.122 100 micromol/L 0.924 +/- 0.061 0.581 +/- 0.089* 0.529 +/- 0.093* PBS, Phosphate-buffered saline solution; R, L -arginine polymer. *P <.001 versus phosphate-buffered saline solution and L -arginine polymer 5 controls (Bonferroni-corrected value). CONCLUSIONS: Arginine polymers of sufficient length and concentration were effective in increasing nitric oxide levels and reducing neointimal hyperplasia in this vein graft model.  相似文献   

19.
OBJECTIVE: We sought to determine whether pretreatment with a sodium/hydrogen-exchange inhibitor (EMD 96 785) improves myocardial performance and reduces myocardial edema after cardioplegic arrest and cardiopulmonary bypass. METHODS: Anesthetized dogs (n = 13) were instrumented with vascular catheters, myocardial ultrasonic crystals, and left ventricular micromanometers to measure preload recruitable stroke work, maximum rate of pressure rise (positive and negative), and left ventricular end-diastolic volume and pressure. Cardiac output was measured by means of thermodilution. Myocardial tissue water content was determined from sequential biopsy. After baseline measurements, hypothermic (28 degrees C) cardiopulmonary bypass was initiated. Cardioplegic arrest (4 degrees C Bretschneider crystalloid cardioplegic solution) was maintained for 2 hours, followed by reperfusion-rewarming and separation from cardiopulmonary bypass. Preload recruitable stroke work and myocardial tissue water content were measured at 30, 60, and 120 minutes after bypass. EMD 96 785 (3 mg/kg) was given 15 minutes before bypass, and 2 micromol was given in the cardioplegic solution. Control animals received the same volume of saline vehicle. Arterial-coronary sinus lactate difference was similar in both animals receiving EMD 96 785 and control animals, suggesting equivalent myocardial ischemia in each group. RESULTS: Myocardial tissue water content increased from baseline in both animals receiving EMD 96 785 and control animals with cardiopulmonary bypass and cardioplegic arrest but was statistically lower in animals receiving EMD 96 785 compared with control animals (range, 1.0%-1.5% lower in animals receiving EMD 96 785). Preload recruitable stroke work decreased from baseline (97 +/- 2 mm Hg) at 30 (59 +/- 6 mm Hg) and 60 (72 +/- 9 mm Hg) minutes after cardiopulmonary bypass and cardioplegic arrest in control animals; preload recruitable stroke work did not decrease from baseline (98 +/- 2 mm Hg) in animals receiving EMD 96 785 and was statistically greater at 30 (88 +/- 5 mm Hg) and 60 (99 +/- 4 mm Hg) minutes after bypass and arrest compared with control animals. CONCLUSIONS: Sodium/hydrogen-exchanger inhibition decreases myocardial edema immediately after cardiopulmonary bypass and cardioplegic arrest and improves preload recruitable stroke work. Sodium/hydrogen-exchange inhibition during cardiac procedures with cardiopulmonary bypass and cardioplegic arrest may be a useful adjunct to improve myocardial performance in the immediate postbypass or arrest period.  相似文献   

20.
OBJECTIVE: The protective effect of adenovirus-mediated ex vivo multigene transfer with superoxide dismutase, a free radical scavenger, and nitric oxide, a vasodilator with anti-inflammatory properties, was examined in the rat heart during experimental ischemia-reperfusion mimicking preservation for cardiac transplantation. METHODS: Donor rat hearts (n = 6 per group) were perfused with solution containing adenoviral vector carrying genes for beta-galactosidase (group A), endothelial nitric oxide synthase (group B), manganese superoxide dismutase (group C), or both endothelial nitric oxide synthase and manganese superoxide dismutase (group D). Hearts were then implanted heterotopically into the abdomens of recipient rats. Four days later, transplanted hearts were collected, connected to a Langendorff perfusion apparatus, and subjected to 6 hours of ischemia followed by 1 hour of reperfusion. Cardiac function was evaluated with an intraventricular balloon at the beginning of Langendorff perfusion and after ischemia-reperfusion. RESULTS: Effective gene transfection was confirmed with X-gal staining in group A hearts. Positive immunoreactivity for endothelial nitric oxide synthase, manganese superoxide dismutase, or both was present predominantly in cardiomyocytes in group B, C, and D hearts. Percentage recovery of preischemic left ventricular developed pressure was 62.1% +/- 7.36% in group A; recoveries were increased to 79.6% +/- 6.4%, 86.8% +/- 9.1%, and 79.4% +/- 6.2% in groups B, C, and D, respectively. CONCLUSION: These results indicate that adenoviral gene transfer of manganese superoxide dismutase and endothelial nitric oxide synthase can attenuate myocardial ischemia-reperfusion injury, with the former providing the most significant protection. Combined overexpression of manganese superoxide dismutase and endothelial nitric oxide synthase did not enhance myocardial recovery any further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号