首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A safe and effective pan-filovirus vaccine is highly desirable since the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) cause highly lethal disease typified by unimpeded viral replication and severe hemorrhagic fever. Previously, we showed that expression of the homologous glycoprotein (GP) and matrix protein VP40 from a single filovirus, either EBOV or MARV, resulted in formation of wild-type virus-like particles (VLPs) in mammalian cells. When used as a vaccine, the wild-type VLPs protected from homologous filovirus challenge. The aim of this work was to generate a multi-agent vaccine that would simultaneously protect against multiple and diverse members of the Filoviridae family. Our initial approach was to construct hybrid VLPs containing heterologous viral proteins, of EBOV and MARV, and test the efficacy of the hybrid VLPs in a guinea pig model. Our data indicate that vaccination with GP was required and sufficient to protect against a homologous filovirus challenge, as heterologous wild-type VLPs or hybrid VLPs that did not contain the homologous GP failed to protect. Alternately, we vaccinated guinea pigs with a mixture of wild-type Ebola and Marburg VLPs. Vaccination with a single dose of the multivalent VLP vaccine elicited strong immune responses to both viruses and protected animals against EBOV and MARV challenge. This work provides a critical foundation towards the development of a pan-filovirus vaccine that is safe and effective for use in primates and humans.  相似文献   

2.
Ongoing outbreaks of filoviruses in Africa and concerns about their use in bioterrorism attacks have led to intense efforts to find safe and effective vaccines to prevent the high mortality associated with these viruses. We previously reported the generation of virus-like particles (VLPs) for the filoviruses, Marburg (MARV) and Ebola (EBOV) virus, and that vaccinating mice with Ebola VLPs (eVLPs) results in complete survival from a lethal EBOV challenge. The objective of this study was to determine the efficacy of Marburg VLPs (mVLPs) as a potential vaccine against lethal MARV infection in a guinea pig model. Guinea pigs vaccinated with mVLPs or inactivated MARV developed MARV-specific antibody titers, as tested by ELISA or plaque-reduction and neutralization assays and were completely protected from a MARV challenge over 2000 LD50. While eVLP vaccination induced high EBOV-specific antibody responses, it did not cross-protect against MARV challenge in guinea pigs. Vaccination with mVLP or eVLP induced proliferative responses in vitro only upon re-exposure to the homologous antigen and this recall proliferative response was dependent on the presence of CD4+ T cells. Taken together with our previous work, these findings suggest that VLPs are a promising vaccine candidate for the deadly filovirus infections.  相似文献   

3.
《Vaccine》2021,39(39):5650-5657
Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV), and Marburg marburgvirus (MARV) are the most prevalent and pathogenic species of filovirus. Previously, we showed that glycoprotein antigens from each virus could be lyophilized to create thermostable monovalent subunit vaccines. However, cross-protection is not expected from the monovalent vaccines and therefore developing a trivalent filovirus vaccine would be desirable. Subunit protein vaccines often require the addition of an adjuvant to sufficiently boost the immunogenicity. Typically, liquid suspensions or emulsions of adjuvants and lyophilized antigens are stored in separate vials to avoid destabilizing interactions and are only mixed immediately before administration. Herein, we describe the development and characterization of monovalent and trivalent filovirus vaccines that are co-lyophilized with a squalane-in-water emulsion adjuvant. We found that the single-vial presentation retained adjuvant particle diameter and zeta potential after lyophilization and reconstitution. Furthermore, the trivalent vaccines elicited high antibody levels against all three antigens in mice and non-human primates. These results advance the prospect of developing a single-vial trivalent filovirus vaccine, which would enable easier distribution and administration of the vaccine to resource-poor areas.  相似文献   

4.
We have previously developed (a) replication-competent, (b) replication-deficient, and (c) chemically inactivated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein (GP) that induce humoral immunity against each virus and confer protection from both lethal RABV and mouse-adapted EBOV challenge in mice. Here, we expand our investigation of the immunogenic properties of these bivalent vaccines in mice. Both live and killed vaccines induced primary EBOV GP-specific T-cells and a robust recall response as measured by interferon-γ ELISPOT assay. In addition to cellular immunity, an effective filovirus vaccine will likely require a multivalent humoral immune response against multiple virus species. As a proof-of-principle experiment, we demonstrated that inactivated RV-GP could be formulated with another inactivated RABV vaccine expressing the nontoxic fragment of botulinum neurotoxin A heavy chain (HC50) without a reduction in immunity to each component. Finally, we demonstrated that humoral immunity to GP could be induced by immunization of mice with inactivated RV-GP in the presence of pre-existing immunity to RABV. The ability of these novel vaccines to induce strong humoral and cellular immunity indicates that they should be further evaluated in additional animal models of infection.  相似文献   

5.
《Vaccine》2018,36(12):1592-1598
H3N8 influenza virus strains have been associated with infectious disease in equine populations throughout the world. Although current vaccines for equine influenza stimulate a protective humoral immune response against the surface glycoproteins, disease in vaccinated horses has been frequently reported, probably due to poor induction of cross-reactive antibodies against non-matching strains. This work describes the performance of a recombinant protein vaccine expressed in prokaryotic cells (ΔHAp) and of a genetic vaccine (ΔHAe), both based on the conserved stem region of influenza hemagglutinin (HA) derived from A/equine/Argentina/1/93 (H3N8) virus.Sera from mice inoculated with these immunogens in different combinations and regimes presented reactivity in vitro against highly divergent influenza virus strains belonging to phylogenetic groups 1 and 2 (H1 and H3 subtypes, respectively), and conferred robust protection against a lethal challenge with both the homologous equine strain (100%) and the homosubtypic human strain A/Victoria/3/75 (H3N2) (70–100%). Animals vaccinated with the same antigens but challenged with the human strain A/PR/8/34 (H1N1), belonging to the phylogenetic group 1, were not protected (0–33%). Combination of protein and DNA immunogens showed higher reactivity to non-homologous strains than protein alone, although all vaccines were permissive for lung infection.  相似文献   

6.
Adams MM  van Leeuwen BH  Kerr PJ 《Vaccine》2004,23(2):198-204
Myxoma virus, a poxvirus of the genus Leporipoxvirus, is the causative agent of the disease myxomatosis which is highly lethal in European rabbits (Oryctolagus cuniculus). Current vaccines to protect against myxomatosis are either attenuated live strains of the virus or the antigenically related rabbit fibroma virus. We examined the immune response of outbred domestic rabbits to the individual myxoma virus antigens M055R, M073R, M115L and M121R, delivered as DNA vaccines co-expressing rabbit interleukin-2 or interleukin-4. M115L and M121R were also delivered simultaneously. None of the vaccine constructs were able to protect the rabbits from disease or reduce mortality after challenge with virulent myxoma virus, despite induction of antigen-specific cell-mediated and humoral immune responses.  相似文献   

7.
8.
Envelope (Env) sequences from human immunodeficiency virus (HIV) strains can vary by 15–20% within a single clade and as much as 35% between clades. Previous AIDS vaccines based upon a single isolate often could not elicit protective immune responses against heterologous viral challenges. In order to address the vast sequence diversity in Env sequences, consensus sequences were constructed for clade B and clade C envelopes and delivered to the mouse lung mucosa on the surface of virus-like particles (VLP). Consensus sequences decrease the genetic difference between the vaccine strain and any given viral isolate. The elicited immune responses were compared to a mixture of VLPs with Envs from primary viral isolates. This polyvalent vaccine approach contains multiple, diverse Envs to increase the breadth of epitopes recognized by the immune response and thereby increase the potential number of primary isolates recognized. Both consensus and polyvalent clade B Env VLP vaccines elicited cell-mediated immune responses that recognized a broader number of clade B Env peptides than a control monovalent Env VLP vaccine in both the systemic and the mucosal immune compartments. All three clade C Env vaccine strategies elicited similar responses to clade C peptides. However, both the consensus B and C Env VLP vaccines were more effective at eliciting cross-reactive cellular immune responses to epitopes in other clades. This is the first study to directly compare the breadth of cell-mediated immune responses elicited by consensus and polyvalent Env vaccines.  相似文献   

9.
Considerable progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against Ebola and Marburg viruses. A vaccine based on recombinant vesicular stomatitis virus (VSV) seems to be particularly robust as it can also confer protection when administered as a postexposure treatment. While filoviruses are not thought to be transmitted by aerosol in nature the inhalation route is among the most likely portals of entry in the setting of a bioterrorist event. At present, all candidate filoviral vaccines have been evaluated against parenteral challenges but none have been tested against an aerosol exposure. Here, we evaluated our recombinant VSV-based Zaire ebolavirus (ZEBOV) and Marburg virus (MARV) vaccines against aerosol challenge in cynomolgus macaques. All monkeys vaccinated with a VSV vector expressing the glycoprotein of ZEBOV were completely protected against an aerosol exposure of ZEBOV. Likewise, all monkeys vaccinated with a VSV vector expressing the glycoprotein of MARV were completely protected against an aerosol exposure of MARV. All control animals challenged by the aerosol route with either ZEBOV or MARV succumbed. Interestingly, disease in control animals appeared to progress slower than previously seen in macaques exposed to comparable doses by intramuscular injection.  相似文献   

10.
《Vaccine》2005,23(2):198-204
Myxoma virus, a poxvirus of the genus Leporipoxvirus, is the causative agent of the disease myxomatosis which is highly lethal in European rabbits (Oryctolagus cuniculus). Current vaccines to protect against myxomatosis are either attenuated live strains of the virus or the antigenically related rabbit fibroma virus. We examined the immune response of outbred domestic rabbits to the individual myxoma virus antigens M055R, M073R, M115L and M121R, delivered as DNA vaccines co-expressing rabbit interleukin-2 or interleukin-4. M115L and M121R were also delivered simultaneously. None of the vaccine constructs were able to protect the rabbits from disease or reduce mortality after challenge with virulent myxoma virus, despite induction of antigen-specific cell-mediated and humoral immune responses.  相似文献   

11.
The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.  相似文献   

12.
As part of an ongoing effort to develop a vaccine against Leishmania mexicana, we tested DNA vaccines encoding L. mexicana GP63, CPb, and LACK, and L. amazonensis GP46, to evaluate this strategy and define the best antigen candidates. Immune responses and vaccine efficacy were evaluated in BALB/c mice immunized with plasmid DNA encoding the different antigens. All four DNA vaccines induced Leishmania-specific humoral and lympho-proliferative immune responses. However, only mice immunized with VR1012-GP46, VR1012-GP63 and VR1012-CPb were partially protected against infection, as evidenced by reduced lesion size and parasite burden. Interestingly, immunization of mice with a mixture of these three plasmids further increased protection. Thus, plasmids encoding CPb, GP63 and GP46 represent good candidates for further development of DNA vaccines against L. mexicana.  相似文献   

13.
《Vaccine》2018,36(16):2193-2198
Vaccination is a key element in the control of foot-and-mouth disease (FMD). The majority of the antigenic sites that induce protective immune responses are localized on the FMD virus (FMDV) capsid that is formed by four virus-encoded structural proteins, VP1 to VP4. In the present study, recombinant canine adenovirus type 2 (CAV2)-based FMD vaccines, Cav-P1/3C R° and Cav-VP1 R°, respectively expressing the structural P1 precursor protein along with the non-structural 3C protein or expressing the structural VP1 protein of the FMDV strain O/FRA/1/2001, were evaluated as novel vaccines against FMD. A strong humoral immune response was elicited in guinea pigs (GP) following immunization with Cav-P1/3C R°, while administration of Cav-VP1 R° did not induce a satisfying antibody response in GP or mice. GP were then used as an experimental model for the determination of the protection afforded by the Cav-P1/3C R° vaccine against challenge with the FMDV strain O1 Manisa/Turkey/1969. The Cav-P1/3C R° vaccine protected GP from generalized FMD to a similar extent as a high potency double-oil emulsion O1 Manisa vaccine. The results of the present study show that CAV2-based vector vaccines can express immunogenic FMDV antigens and offer protection against generalized FMD in GP. This suggest that Cav-P1/3C R° FMDV vaccine may protect natural host species from FMD. In combination with an appropriate diagnostic test, the Cav-P1/3C R° FMDV vaccine may also serve as a marker vaccine to differentiate vaccinated from infected animals.  相似文献   

14.
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry worldwide. Although inactivated and live vaccines are commercially available for the control of PRRS, both types of vaccine have not always proven successful in terms of generating a protective immune response, particularly in the case of inactivated vaccines. In this study, we tested whether an inactivated vaccine could induce a humoral immune response to PRRS during a homologous challenge. Amino acid substitutions were introduced into glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the virulent homologous strain and exhibited more rapid clearing of viremia compared to other groups, including the groups that were administered either the inactivated mutant or wild-type virus only once and the group that was administered the inactivated wild-type virus twice. Histopathological examination of lung tissue sections revealed that the group that was administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa, whereas the thickness of the alveolar septa of the other groups were markedly increased due to lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the immunogenicity of the inactivated mutant PRRSV and that twice administrations of the inactivated mutant virus conferred better protection against the homologous challenge. These findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry.  相似文献   

15.
《Vaccine》2018,36(26):3740-3746
Therapeutic vaccines represent a unique approach to hepatitis B virus (HBV) treatment and have the potential to induce long-term control of infection. This study explored the immune responses of rhesus macaques to novel vaccines comprising the S, PreS1, and Core antigens of the HBV that showed promise as prophylactic and therapeutic approaches in a mouse model. The tested vaccines included two DNA vaccines (pVRC-SS1, pVRC-CS1), an HBV particle subunit (HBSS1) vaccine and the recombinant vaccinia virus- (RVJ-) based vaccines (RVJSS1 and RVJCS1) in which SS1 containing S (1–223 aa) and PreS1 (21–47 aa), CS1 containing Core (1–144 aa) and PreS1 (1–42 aa). The humoral immunity and cell-mediated immunity (CMI) induced by vaccines comprising the S, PreS1, and Core antigens of HBV were investigated in a longitudinal study that continued up to 98 weeks after the first vaccination. In rhesus macaques, anti-PreS1 antibody was induced more rapidly than anti-S or anti-Core antibody after DNA vaccination. The antibody and cell-mediated immune responses against S, PreS1, and C were significantly enhanced in macaques boosted with RVJSS1 and RVJCS1, whereas the cell-mediated response to C was most robust and durable. The immune response to S, PreS1, and C was restored by HBSS1 boosting and detected in macaques until weeks 74 and 98 after the first vaccination. Additionally, robust neutralizing activity was detected at week 52. In conclusion, novel HBV vaccine candidates, especially those used for therapeutic applications should incorporate the PreS1 and Core antigens.  相似文献   

16.
Ideally, a candidate pandemic influenza vaccine should elicit rapid and strong cell-mediated and humoral immune responses, which are long-lasting and exhibit broad cross-reactivity against drifted strains. The present study investigated the detailed humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with inactivated influenza H5N1 (NIBRG-14) virosomal vaccine alone or formulated with Matrix-M adjuvant. The intramuscular Matrix-M-adjuvanted vaccine induced a strong immediate and long-term humoral immune response with high cross-reactivity against drifted H5N1 viruses and showed a dose-sparing potential. Additionally, the vaccine induced a balanced Th1/Th2 cytokine profile and most importantly high frequencies of multifunctional Th1 CD4+ cells. Our results highlight that Matrix-M adjuvant is a promising parenteral adjuvant for formulating pandemic candidate vaccines.  相似文献   

17.
Development of a candidate DNA/MVA HIV-1 subtype C vaccine for India   总被引:1,自引:0,他引:1  
Kumar S  Aggarwal P  Vajpayee M  Pandey RM  Seth P 《Vaccine》2006,24(14):2585-2593
Development of a vaccine against human immunodeficiency virus type-1 (HIV-1) is the mainstay for controlling the AIDS pandemic. An ideal HIV vaccine should induce neutralizing antibodies, CD4+ helper T cells, and CD8+ cytotoxic T cells. While the induction of broadly neutralizing antibodies remains a highly challenging goal, there are a number of technologies capable of inducing potent cell-mediated responses in animal models, which are now starting to be tested in humans. Naked DNA immunization is one of them. The present study focuses on the stimulation cell-mediated and humoral immune responses by recombinant DNA-MVA vaccines, the areas where this technology might assist either alone or as a part of more complex vaccine formulations in the HIV vaccine development. Candidate recombinant DNA-MVA vaccine formulations expressing the human immunodeficiency virus-1 env and gagprotease genes from HIV-1 Indian subtype C were constructed and characterized. A high level of expression of the respective recombinant MVA (rMVA) constructs was demonstrated in BHK-21 cells followed by the robust humoral as well as cell mediated immune (CMI) responses in terms of magnitude and breadth. The response to a single inoculation of the rDNA vaccine was boosted efficiently by rMVA in BALB/c mice. This is the first reported candidate HIV-1 DNA/MVA vaccine employing the Indian subtype C sequences and constitutes a part of a vaccine scheduled to enter a preclinical non-human primate evaluation in India.  相似文献   

18.
Human metapneumovirus (HMPV) is an important cause of acute respiratory tract disease for which the development of vaccine candidates is warranted. We have previously described the generation of an iscom matrix-adjuvanted HMPV fusion protein subunit vaccine (Fsol) and a live-attenuated vaccine (HMPVM11). Here, we evaluate the immunogenicity and efficacy of these vaccines in cynomolgus macaques. Immunization with Fsol induced HMPV F-specific antibody responses, virus neutralizing antibody titers, and cellular immune responses, but the induced humoral immune response waned rapidly over time. HMPVM11 was strongly attenuated and displayed limited immunogenicity, although immunization with this virus primed for a good secondary HMPV-specific lymphoproliferative response after challenge infection. The duration of virus shedding in HMPVM11-immunized animals was reduced compared to sham-immunized animals. Both vaccines induced HMPV-specific immune responses, but the rapid waning of immunity is a challenging obstacle for vaccine development.  相似文献   

19.
Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates.  相似文献   

20.
《Vaccine》2017,35(24):3162-3170
BackgroundCross-clade immunogenic stockpiled H5N1 vaccines may decrease the morbidity and transmission of infection during the initial phase of influenza pandemic. Meta-analysis of cross-reactive antibodies induced by oil-in-water emulsion adjuvanted (OWEA) influenza H5N1 virus monovalent vaccines with circulating heterologous H5N1 virus strains, isolated from human infections was performed.MethodsLiterature search of MEDLINE, EMBASE, Web of Knowledge, The Cochrane Library, ClinicalTrials.gov, and International Standard Randomised Controlled Trial Number registry was conducted up through December 1, 2015. Methodologically qualified studies were included for (1) use of two doses of licensed OWEA (AS03 or MF59) egg-derived, inactivated influenza H5N1 virus monovalent vaccine, (2) participant age between 18 and 64 years, and (3) evaluation of immunogenicity outcome for one or more subclade. Meta-analysis assessed the cross-reactivity of antibodies elicited by clade 1 adjuvanted vaccine strain against clade 2.1 virus strain (A/Vietnam/1194/2004 vs. A/Indonesia/05/2005); and separately against clade 2.2 virus strain (A/Vietnam/1194/2004 vs. A/turkey/Turkey/1/05); and clade 2.1 adjuvanted vaccine strain against clade 1 virus strain (A/Indonesia/05/2005 vs. A/Vietnam/1194/2004). Quantitative publication bias and influence analysis was conducted to evaluate potential impact of unpublished or new studies on the robustness of meta-analysis.ResultsOf 960 articles, 53 qualified for quality assessment and 15 studies met the inclusion criteria. All assessed clade pairs elicited cross-reactive antibodies (clade 1 against clade 2.1 and 2.2; clade 2.1 against clade 1, 2.2, and 2.3). Heterologous strains of same sub-clade are likely to elicit higher cross-reactive antibodies.ConclusionsOWEA influenza H5N1 virus monovalent vaccines exhibit broad cross-clade immunogenicity, a desired feature for vaccine stockpiling not yet demonstrated by unadjuvanted vaccines. In case of an impending H5N1 virus pandemic, stockpiled OWEA influenza H5N1 virus monovalent vaccines may allow population priming that could slow down the course of pandemic and could offer additional time needed for development of an effective strain specific vaccine supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号