首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
IntroductionNovel rearranged in transfection (RET)-specific tyrosine kinase inhibitors (TKIs) such as selpercatinib (LOXO-292) have shown unprecedented efficacy in tumors positive for RET fusions or mutations, notably RET fusion-positive NSCLC and RET-mutated medullary thyroid cancer (MTC). However, the mechanisms of resistance to these agents have not yet been described.MethodsAnalysis was performed of circulating tumor DNA and tissue in patients with RET fusion-positive NSCLC and RET-mutation positive MTC who developed disease progression after an initial response to selpercatinib. Acquired resistance was modeled preclinically using a CCDC6-RET fusion-positive NSCLC patient-derived xenograft. The inhibitory activity of anti-RET multikinase inhibitors and selective RET TKIs was evaluated in enzyme and cell-based assays.ResultsAfter a dramatic initial response to selpercatinib in a patient with KIF5B-RET NSCLC, analysis of circulating tumor DNA revealed emergence of RET G810R, G810S, and G810C mutations in the RET solvent front before the emergence of clinical resistance. Postmortem biopsy studies reported intratumor and intertumor heterogeneity with distinct disease subclones containing G810S, G810R, and G810C mutations in multiple disease sites indicative of convergent evolution on the G810 residue resulting in a common mechanism of resistance. Acquired mutations in RET G810 were identified in tumor tissue from a second patient with CCDC6-RET fusion-positive NSCLC and in plasma from patients with additional RET fusion-positive NSCLC and RET-mutant MTC progressing on an ongoing phase 1 and 2 trial of selpercatinib. Preclinical studies reported the presence of RET G810R mutations in a CCDC6-RET patient-derived xenograft (from a patient with NSCLC) model of acquired resistance to selpercatinib. Structural modeling predicted that these mutations sterically hinder the binding of selpercatinib, and in vitro assays confirmed loss of activity for both anti-RET multikinase inhibitors and selective RET TKIs.ConclusionsRET G810 solvent front mutations represent the first described recurrent mechanism of resistance to selective RET inhibition with selpercatinib. Development of potent inhibitor of these mutations and maintaining activity against RET gatekeeper mutations could be an effective strategy to target resistance to selective RET inhibitors.  相似文献   

2.
Fusion of RET with different partner genes has been detected in papillary thyroid, lung, colorectal, pancreatic, and breast cancer. Approval of selpercatinib for treatment of lung and thyroid cancer with RET gene mutations or fusions calls for studies to explore RET fusion partners and their eligibility for RET‐based targeted therapy. In this study, RET fusion patterns in a large group of Chinese cancer patients covering several cancer types were identified using next‑generation sequencing. A total of 44 fusion patterns were identified in the study cohort with KIF5B, CCDC6, and ERC1 being the most common RET fusion partners. Notably, 17 novel fusions were first reported in this study. Prevalence of functional RET fusions was 1.05% in lung cancer, 6.03% in thyroid cancer, 0.39% in colorectal cancer, and less than 0.1% in gastric cancer and hepatocellular carcinoma. Analysis showed a preference for fusion partners in different tumor types, with KIF5B being the common type in lung cancer, CCDC6 in thyroid cancer, and NCOA4 in colorectal cancer. Co‐occurrence of EGFR mutations and RET fusions with rare partner genes (rather than KIF5B) in lung cancer patients was correlated with epidermal growth factor receptor‐tyrosine kinase inhibitor resistance and could predict response to targeted therapies. Findings from this study provide a guide to clinicians in determining tumors with specific fusion patterns as candidates for RET targeted therapies.  相似文献   

3.
The RET proto-oncogene has been well-studied. RET is involved in many different physiological and developmental functions. When altered, RET mutations influence disease in a variety of organ systems from Hirschsprung’s disease and multiple endocrine neoplasia 2 (MEN2) to papillary thyroid carcinoma (PTC) and non-small cell lung cancer (NSCLC). Changes in RET expression have been discovered in 30–70% of invasive breast cancers and 50–60% of pancreatic ductal adenocarcinomas in addition to colorectal adenocarcinoma, melanoma, small cell lung cancer, neuroblastoma, and small intestine neuroendocrine tumors. RET mutations have been associated with tumor proliferation, invasion, and migration. RET fusions or rearrangements are somatic juxtapositions of 5′ sequences from other genes with 3′ RET sequences encoding tyrosine kinase. RET rearrangements occur in approximately 2.5–73% of sporadic PTC and 1–3% of NSCLC patients. The most common RET fusions are CDCC6-RET and NCOA4-RET in PTC and KIF5B-RET in NSCLC. Tyrosine kinase inhibitors are drugs that target kinases such as RET in RET-driven (RET-mutation or RET-fusion-positive) disease. Multikinase inhibitors (MKI) target various kinases and other receptors. Several MKIs are FDA-approved for cancer therapy (sunitinib, sorafenib, vandetanib, cabozantinib, regorafenib, ponatinib, lenvatinib, alectinib) and non-oncologic disease (nintedanib). Selective RET inhibitor drugs LOXO-292 (selpercatinib) and BLU-667 (pralsetinib) are also undergoing phase I/II and I clinical trials, respectively, with preliminary results demonstrating partial response and low incidence of serious adverse events. RET fusions provide a viable therapeutic target for oncologic treatment, and further study is warranted into the prevalence and pathogenesis of RET fusions as well as development of current and new tyrosine kinase inhibitors.  相似文献   

4.
Development of lung adenocarcinoma (LADC), the most frequent histological type of lung cancer, depends in many cases on the activation of “driver” oncogenes such as KRAS, epidermal growth factor receptor (EGFR), and anaplastic lymphoma kinase (ALK). Inhibitors that target the EGFR and ALK tyrosine kinases show therapeutic effects against LADCs containing EGFR gene mutations and ALK gene fusions, respectively. Recently, we and others identified the RET fusion gene as a new targetable driver gene in LADC. The RET fusions occur in 1–2% of LADCs. Existing US Food and Drug Administration‐approved inhibitors of RET tyrosine kinase show promising therapeutic effects both in vitro and in vivo, as well as in a few patients. Clinical trials are underway to investigate the therapeutic effects of RET tyrosine kinase inhibitors, such as vandetanib (ZD6474) and cabozantinib (XL184), in patients with RET fusion‐positive non‐small‐cell lung cancer.  相似文献   

5.
ObjectivesThe gatekeeper mutation T790M mutation is the responsible for the majority of the resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with EGFR-mutated non-small cell lung cancer (NSCLC). Other previously described resistance mechanisms include HER2 amplification, MET amplification, PIK3CA mutation, epithelial–mesenchymal transition (EMT), small cell transformation have also been identified. However other resistance mechanisms remains to be discovered.Materials and methodsHybrid-capture based comprehensive genomic profiling (CGP) was performed on pre- and post-EGFR TKI progression EGFR-mutated NSCLC tumor samples during routine clinical care. We identify two paired pre- and post-EGFR TKI progression EGFR-mutated NSCLC patient tumor samples where both post EGFR TKI samples harbored in-frame CCDC6-RET rearrangements but not in the pre-EGFR TKI tumor samples. Furthermore analysis of the clinical database revealed one additional NCOA4-RET rearrangement co-existing with activated EGFR mutation in an EGFR-mutated NSCLC patient who had progressed on afatinib. None of the known resistance mechanisms to EGFR TKI including EGFR T790M, EGFR amplification, HER2 amplification, MET amplification, PIK3CA mutation, BRAF mutation, EMT or small cell transformation was identified in the three post progression samples that now harbored RET rearrangements.Results and conclusionsThis is the first report of RET rearrangement co-existing with activated EGFR mutations in EGFR-mutated patients who had progressed on either first- or second generation EGFR TKI. As such, RET rearrangement may serve as a potential resistance mechanism to EGFR TKI in EGFR-mutated NSCLC.  相似文献   

6.
7.
《Annals of oncology》2018,29(8):1869-1876
BackgroundAlterations involving the RET kinase are implicated in the pathogenesis of lung, thyroid and other cancers. However, the clinical activity of multikinase inhibitors (MKIs) with anti-RET activity in RET-altered patients appears limited, calling into question the therapeutic potential of targeting RET. LOXO-292 is a selective RET inhibitor designed to inhibit diverse RET fusions, activating mutations and acquired resistance mutations.Patients and methodsPotent anti-RET activity, high selectivity, and central nervous system coverage were confirmed preclinically using a variety of in vitro and in vivo RET-dependent tumor models. Due to clinical urgency, two patients with RET-altered, MKI-resistant cancers were treated with LOXO-292, utilizing rapid dose-titration guided by real-time pharmacokinetic assessments to achieve meaningful clinical exposures safely and rapidly.ResultsLOXO-292 demonstrated potent and selective anti-RET activity preclinically against human cancer cell lines harboring endogenous RET gene alterations; cells engineered to express a KIF5B-RET fusion protein −/+ the RET V804M gatekeeper resistance mutation or the common RET activating mutation M918T; and RET-altered human cancer cell line and patient-derived xenografts, including a patient-derived RET fusion-positive xenograft injected orthotopically into the brain. A patient with RET M918T-mutant medullary thyroid cancer metastatic to the liver and an acquired RET V804M gatekeeper resistance mutation, previously treated with six MKI regimens, experienced rapid reductions in tumor calcitonin, CEA and cell-free DNA, resolution of painful hepatomegaly and tumor-related diarrhea and a confirmed tumor response. A second patient with KIF5B-RET fusion-positive lung cancer, acquired resistance to alectinib and symptomatic brain metastases experienced a dramatic response in the brain, and her symptoms resolved.ConclusionsThese results provide proof-of-concept of the clinical actionability of RET alterations, and identify selective RET inhibition by LOXO-292 as a promising treatment in heavily pretreated, multikinase inhibitor-experienced patients with diverse RET-altered tumors.  相似文献   

8.
IntroductionNearly 1% to 2% of NSCLCs harbor RET fusions. Characterization of this rare population is still incomplete.MethodsThis retrospective multicenter study included patients with any-stage RET positive (RET+) NSCLC from 31 cancer centers. Molecular profiling included DNA/RNA sequencing or fluorescence in situ hybridization analyses. Clinicobiological features and treatment outcomes (per investigator) with surgery, chemotherapy (CT), immune checkpoint blockers (ICBs), CT-ICB, multityrosine kinase inhibitors, and RET inhibitors (RETis) were evaluated.ResultsFor 218 patients included between February 2012 and April 2022, median age was 63 years, 56% were females, 93% had adenocarcinoma, and 41% were smokers. The most frequent fusion partner was KIF5B (72%). Median tumor mutational burden was 2.5 (range: 1–4) mutations per megabase, and median programmed death-ligand 1 expression was 10% (range: 0%–55%). The most common metastatic sites were the lung (50%), bone (43%), and pleura (40%). Central nervous system metastases were found at diagnosis of advanced NSCLC in 21% of the patients and at last follow-up or death in 31%. Overall response rate and median progression-free survival were 55% and 8.7 months with platinum doublet, 26% and 3.6 months with single-agent CT, 46% and 9.6 months with CT-ICB, 23% and 3.1 months with ICB, 37% and 3 months with multityrosine kinase inhibitor, and 76% and 16.2 months with RETi, respectively. Median overall survival was longer in patients treated with RETi versus no RETi (50.6 mo [37.7–72.1] versus 16.3 mo [12.7–28.8], p < 0.0001).ConclusionsPatients with RET+ NSCLC have mainly thoracic and bone disease and low tumor mutational burden and programmed death-ligand 1 expression. RETi markedly improved survival, whereas ICB may be active in selected patients.  相似文献   

9.
《Journal of thoracic oncology》2020,15(12):1928-1934
IntroductionRET rearrangements are an emerging targetable oncogenic fusion driver in NSCLC. However, the natural history of disease and activity of different classes of systemic therapy remain to be defined. Furthermore, molecular testing for RET is not yet routine, and the optimal method of testing is unclear. We present a comparative analysis of molecular profiling with fluorescence in situ hybridization (FISH) or next-generation sequencing (NGS) and treatment outcomes.MethodsThis study was a retrospective analysis of patients treated at the National Cancer Centre Singapore. Baseline demographics and treatment outcomes were collected.ResultsA total of 64 patients were included, with a median age of 62 years (range: 25–85), 56% were women, 77% were of Chinese ethnicity, 95% had adenocarcinoma, and 69% were never smokers. RET rearrangement was detected by FISH in 30 of 34 patients (88%), NGS in 40 of 43 patients (93%), and with discordant results in seven of 13 patients (54%) tested with both methods. Of 61 patients with stage IIIB/IV or recurrent disease, prevalence of central nervous system metastases was 31% and 92% received palliative systemic therapy. Overall survival was prolonged in patients treated with a selective RET tyrosine kinase inhibitor versus untreated patients (median 49.3 versus 15.3 mo; hazard ratio [HR]: 0.16, 95% confidence interval [CI]: 0.06–0.40, p < 0.001). However, it was not different in patients treated with immunotherapy versus untreated patients (median 37.7 versus 49.3 mo; HR: 1.30, 95% CI: 0.53–3.19, p = 0.53). Overall survival was also prolonged in patients with CCDC6-RET fusion versus those with KIF5B-RET fusion (median 113.5 versus 37.7 mo; HR: 0.12, 95% CI: 0.04–0.38, p = 0.009).ConclusionsIn RET-rearranged NSCLC, selective RET tyrosine kinase inhibitor therapy is associated with improved survival outcomes, especially in patients with CCDC6-RET fusion. However, immunotherapy has poor efficacy. NGS and FISH testing methods may also result in substantial discordance.  相似文献   

10.
《Journal of thoracic oncology》2019,14(11):2003-2008
IntroductionMultiple oncogene fusions beyond ALK receptor tyrosine kinase (ALK), RET, and ROS1 fusion has been described in lung cancer, especially in lung adenocarcinomas without common oncogenic mutations. Molecular inhibitors have been developed and proved effective for patients whose tumors harbor these novel alterations.MethodsA consecutive series of surgically resected lung adenocarcinomas were collected and profiled using an enrichment strategy to detect nine common oncogenic driver mutations and fusions concerning EGFR, KRAS, HER2, BRAF, MET, ALK, RET, ROS1, and FGFR. Driver-negative cases were further analyzed by a comprehensive RNA-based next-generation sequencing (NGS) fusion assay for novel fusions.ResultsIn total, we profiled 1681 lung adenocarcinomas, among which 255 cases were common driver–negative. One hundred seventy-seven cases had sufficient tissue for NGS fusions screening, which identified eight novel fusions. NRG1 fusions occurred in 0.36% of all lung adenocarcinoma cases (6 of 1681 cases), including 4 CD74-NRG1–positive cases, 1 RBPMS-NRG1–positive case, and 1 novel ITGB1-NRG1–positive case. Furthermore, another 2 novel fusions were also detected, including 1 EGFR-SHC1 fusion and 1 CD47-MET fusion, both of which were in-frame and retained the functional domain of the corresponding kinases. No fusion event was detected for NTRK, KRAS, BRAF or HER2 genes in this cohort. Detailed clinicopathologic data showed that invasive mucous adenocarcinoma (three of eight cases) and acinar-predominant adenocarcinoma (three of eight cases) were the most prevalent pathologic subtypes among novel fusions.ConclusionsFusions affecting NRG1, EGFR, and MET were detected in 0.48% of unselected lung adenocarcinomas, and NRG1 fusions ranked the most prevalent fusions in common driver-negative lung adenocarcinomas from Chinese population. RNA-based NGS fusion assay was an optional method for screening actionable fusions in common driver-negative cases.  相似文献   

11.
《Annals of oncology》2018,29(4):872-880
BackgroundEstrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer.Patients and methodsTo identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287–395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots.ResultsWe identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3′ partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations.ConclusionsCollectively, these data indicate that N-terminal ESR1 fusions involving exons 6–7 are a recurrent driver of endocrine therapy resistance and are impervious to ER-targeted therapies.  相似文献   

12.

Introduction

We analyzed a large set of EGFR-mutated (EGFR+) NSCLC to identify and characterize cases with co-occurring kinase fusions as potential resistance mechanisms to EGFR tyrosine kinase inhibitors (TKIs).

Methods

EGFR+ (del 19, L858R, G719X, S768I, L851Q) NSCLC clinical samples (formalin-fixed paraffin-embedded tumor and blood) were analyzed for the presence of receptor tyrosine kinase (RTK) and BRAF fusions. Treatment history and response were obtained from provided pathology reports and treating clinicians.

Results

Clinical samples from 3505 unique EGFR+ NSCLCs were identified from June 2012 to October 2017. A total of 31 EGFR+ cases had concurrent kinase fusions detected: 10 (32%) BRAF, 7 (23%) ALK receptor tyrosine kinase (ALK), 6 (19%) ret proto-oncogene (RET), 6 (19%) fibroblast growth factor receptor 3 (FGFR3), 1 (3.2%) EGFR, and 1 (3.2%) neurotrophic receptor tyrosine kinase 1 (NTRK1), including two novel fusions (SALL2-BRAF and PLEKHA7-ALK). Twenty-seven of 31 patients had either a known history of EGFR+ NSCLC diagnosis or prior treatment with an EGFR TKI before the fusion+ sample was collected. Twelve of the 27 patients had paired pre-treatment samples where the fusion was not present before treatment with an EGFR TKI. Multiple patients treated with combination therapy targeting EGFR and the acquired fusion had clinical benefit, including one patient with osimertinib resistance due to an acquired PLEKHA7-ALK fusion achieving a durable partial response with combination of full-dose osimertinib and alectinib.

Conclusions

RTK and BRAF fusions are rare but potentially druggable resistance mechanisms to EGFR TKIs. Detection of RTK and BRAF fusions should be part of comprehensive profiling panels to determine resistance to EGFR TKIs and direct appropriate combination therapeutic strategies.  相似文献   

13.
14.
IntroductionTyrosine kinase inhibitors and immune checkpoint inhibitors (ICIs), each requiring testing for precision biomarkers, have recently been approved in the adjuvant setting. We assessed the potential value of multigene testing in early lung adenocarcinoma (LUAD).MethodsUsing a real-world clinicogenomic database linking deidentified electronic health record–derived clinical data to genomic data, we selected patients with LUAD who underwent tissue comprehensive genomic profiling (CGP). Using a probabilistic decision tree, we estimated the cost implications of the avoidance of adjuvant ICI in patients with programmed death-ligand 1–positive (PD-L1+) LUAD and an ALK, ROS1 or RET driver.ResultsThe CGP was performed on a specimen collected before advanced disease in 20% (1320 of 6697) of cases and ordered before advanced diagnosis for 12.6% (847 of 6697) of patients. The prevalence of driver alterations in early and advanced-stage specimens was similar, though KRAS mutations were enriched in early disease and drivers including ALK rearrangements in advanced disease. Patients who had CGP results obtained before versus after recurrence had less time between recurrence and the start of any first-line treatment (median 3.6 versus 6 wk, p < 0.001). Through avoidance of ICI in programmed death-ligand 1–positive early LUAD with an ALK, ROS1 or RET driver, we estimated that the universal CGP could reduce expected costs by $1597.23 per patient relative to EGFR single-gene testing.ConclusionsThe CGP can identify driver alterations and accelerate the start of first-line therapy at recurrence. It may also represent a cost-effective approach for avoiding futile adjuvant ICI in patients with drivers that have historically lacked activity with ICI in metastatic disease.  相似文献   

15.
16.
17.
IntroductionRET gene fusions are established oncogenic drivers in 1% of NSCLC. Accurate detection of advanced patients with RET fusions is essential to ensure optimal therapy choice. We investigated the performance of fluorescence in situ hybridization (FISH) as a diagnostic test for detecting functional RET fusions.MethodsBetween January 2016 and November 2019, a total of 4873 patients with NSCLC were routinely screened for RET fusions using either FISH (n = 2858) or targeted RNA next-generation sequencing (NGS) (n = 2015). If sufficient material was available, positive cases were analyzed by both methods (n = 39) and multiple FISH assays (n = 17). In an independent cohort of 520 patients with NSCLC, whole-genome sequencing data were investigated for disruptive structural variations and functional fusions in the RET and compared with ALK and ROS1 loci.ResultsFISH analysis revealed RET rearrangement in 48 of 2858 cases; of 30 rearranged cases double tested with NGS, only nine had a functional RET fusion. RNA NGS yielded RET fusions in 14 of 2015 cases; all nine cases double tested by FISH had RET locus rearrangement. Of these 18 verified RET fusion cases, 16 had a split signal and two a complex rearrangement by FISH. By whole-genome sequencing, the prevalence of functional fusions compared with all disruptive events was lower in the RET (4 of 9, 44%) than the ALK (27 of 34, 79%) and ROS1 (9 of 12, 75%) loci.ConclusionsFISH is a sensitive but unspecific technique for RET screening, always requiring a confirmation using an orthogonal technique, owing to frequently occurring RET rearrangements not resulting in functional fusions in NSCLC.  相似文献   

18.
19.
20.
The discovery of chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) gene in non‐small cell lung cancer (NSCLC) has stimulated renewed interest in oncogenic fusions as potential therapeutic targets. Recently, genetic alterations in ROS1 and RET were identified in patients with NSCLC. Like ALK, genetic alterations in ROS1 and RET involve chromosomal rearrangements that result in the formation of chimeric fusion kinases capable of oncogenic transformation. Notably, ROS1 and RET rearrangements are rarely found with other genetic alterations, such as EGFR, KRAS, or ALK. This finding suggests that both ROS1 and RET are independent oncogenic drivers that may be viable therapeutic targets. In initial screening studies, ROS1 and RET rearrangements were identified at similar frequencies (approximately 1%–2%), using a variety of genotyping techniques. Importantly, patients with either ROS1 or RET rearrangements appear to have unique clinical and pathologic features that may facilitate identification and enrichment strategies. These features may in turn expedite enrollment in clinical trials evaluating genotype‐directed therapies in these rare patient populations. In this review, we summarize the molecular biology, clinical features, detection, and targeting of ROS1 and RET rearrangements in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号