首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Brachytherapy》2022,21(6):853-863
PURPOSECombining external beam radiation therapy (EBRT) and prostate seed implant (PSI) is efficacious in treating intermediate- and high-risk prostate cancer at the cost of increased genitourinary toxicity. Accurate combined dosimetry remains elusive due to lack of registration between treatment plans and different biological effect. The current work proposes a method to convert physical dose to biological effective dose (BED) and spatially register the dose distributions for more accurate combined dosimetry.METHODS AND MATERIALSA PSI phantom was CT scanned with and without seeds under rigid and deformed transformations. The resulting CTs were registered using image-based rigid registration (RI), fiducial-based rigid registration (RF), or b-spline deformable image registration (DIR) to determine which was most accurate. Physical EBRT and PSI dose distributions from a sample of 91 previously-treated combined-modality prostate cancer patients were converted to BED and registered using RI, RF, and DIR. Forty-eight (48) previously-treated patients whose PSI occurred before EBRT were included as a “control” group due to inherent registration. Dose-volume histogram (DVH) parameters were compared for RI, RF, DIR, DICOM, and scalar addition of DVH parameters using ANOVA or independent Student's t tests (α = 0.05).RESULTSIn the phantom study, DIR was the most accurate registration algorithm, especially in the case of deformation. In the patient study, dosimetry from RI was significantly different than the other registration algorithms, including the control group. Dosimetry from RF and DIR were not significantly different from the control group or each other.CONCLUSIONSCombined dosimetry with BED and image registration is feasible. Future work will utilize this method to correlate dosimetry with clinical outcomes.  相似文献   

2.
《Radiography》2018,24(1):72-78
IntroductionThe regular functions of CT-MRI registration include delineation of targets and organs-at-risk (OARs) in radiosurgery planning. The question of whether deformable image registration (DIR) could be applied to stereotactic radiosurgery (SRS) in its place remains a subject of debate.MethodsThis study collected data regarding 16 patients who had undergone single-fraction SRS treatment. All lesions were located close to the brainstem. CT and MRI two image sets were registered by both rigid image registration (RIR) and DIR algorithms. The contours of the OARs were drawn individually on the rigid and deformable CT-MRI image sets by qualified radiation oncologists and dosimetrists. The evaluation metrics included volume overlapping (VO), Dice similarity coefficient (DSC), and dose. The modified demons deformable algorithm (VARIAN SmartAdapt) was used for evaluation in this study.ResultsThe mean range of VO for OARs was 0.84 ± 0.08, and DSC was 0.82 ± 0.07. The maximum average volume difference was at normal brain (17.18 ± 14.48 cm3) and the second highest was at brainstem (2.26 cm3 ± 1.18). Pearson correlation testing showed that all DIRs' OAR volumes were linearly and significantly correlated with RIRs' volume (0.679–0.992, two tailed, P << 0.001). The 100% dose was prescribed at gross tumor volume (GTV). The average maximum percent dose difference was observed in brainstem (26.54% ± 27.027), and the average mean dose difference has found at same organ (1.6% ± 1.66).ConclusionThe change in image-registration method definitely produces dose variance, and is significantly more what depending on the target location. The volume size of OARs, however, was not statistical significantly correlated with dose variance.  相似文献   

3.
《Brachytherapy》2020,19(5):599-606
PurposeIdentifying dominant intraprostatic lesions (DILs) on transrectal ultrasound (TRUS) images during prostate high-dose-rate brachytherapy treatment planning remains a significant challenge. Multiparametric MRI (mpMRI) is the tool of choice for DIL identification; however, the geometry of the prostate on mpMRI and on the TRUS may differ significantly, requiring image registration. This study assesses the dosimetric impact attributed to differences in DIL contours generated using commonly available MRI to TRUS automated registration: rigid, semi-rigid, and deformable image registration, respectively.Methods and MaterialsTen patients, each with mpMRI and TRUS data sets, were included in this study. Five radiation oncologists with expertise in TRUS-based high-dose-rate brachytherapy were asked cognitively to transfer the DIL from the mpMRI images of each patient to the TRUS image. The contours were analyzed for concordance using simultaneous truth and performance level estimation (STAPLE) algorithm. The impact of DIL contour differences due to registration variability was evaluated by comparing the STAPLE-DIL dosimetry from the reference (STAPLE) plan with that from the evaluation plans (manual and automated registration) for each patient. The dosimetric impact of the automatic registration approach was also validated using a margin expansion that normalizes the volume of the autoregistered DILs to the volumes of the STAPLE-DILs. Dose metrics including D90, Dmean, V150, and V200 to the prostate and DIL were reported. For urethra and rectum, D10 and V80 were reported.ResultsSignificant differences in DIL coverage between reference and evaluation plans were found regardless of the algorithm methodology. No statistical difference was reported in STAPLE-DIL dosimetry when manual registration was used. A margin of 1.5 ± 0.8 mm, 1.1 ± 0.8 mm, and 2.5 ± 1.6 mm was required to be added for rigid, semi-rigid, and deformable registration, respectively, to mitigate the difference in STAPLE-DIL coverage between the evaluation and reference plans.ConclusionThe dosimetric impact of integrating an MRI-delineated DIL into a TRUS-based brachytherapy workflow has been validated in this study. The results show that rigid, semi-rigid, and deformable registration algorithms lead to a significant undercoverage of the DIL D90 and Dmean. A margin of at least 1.5 ± 0.8 mm, 1.1 ± 0.8 mm, and 2.5 ± 1.6 mm is required to be added to the rigid, semi-rigid, and deformable DIL registration to be suitable for DIL-boosting during prostate brachytherapy.  相似文献   

4.
《Brachytherapy》2018,17(2):283-290
PurposeThe objective of this study was to develop and validate an open-source module for MRI to transrectal ultrasound (TRUS) registration to support tumor-targeted prostate brachytherapy.Methods and MaterialsIn this study, 15 patients with prostate cancer lesions visible on multiparametric MRI were selected for the validation. T2-weighted images with 1-mm isotropic voxel size and diffusion weighted images were acquired on a 1.5T Siemens imager. Three-dimensional (3D) TRUS images with 0.5-mm slice thickness were acquired. The investigated registration module was incorporated in the open-source 3D Slicer platform, which can compute rigid and deformable transformations. An extension of 3D Slicer, SlicerRT, allows import of and export to DICOM-RT formats. For validation, similarity indices, prostate volumes, and centroid positions were determined in addition to registration errors for common 3D points identified by an experienced radiation oncologist.ResultsThe average time to compute the registration was 35 ± 3 s. For the rigid and deformable registration, respectively, Dice similarity coefficients were 0.87 ± 0.05 and 0.93 ± 0.01 while the 95% Hausdorff distances were 4.2 ± 1.0 and 2.2 ± 0.3 mm. MRI volumes obtained after the rigid and deformable registration were not statistically different (p > 0.05) from reference TRUS volumes. For the rigid and deformable registration, respectively, 3D distance errors between reference and registered centroid positions were 2.1 ± 1.0 and 0.4 ± 0.1 mm while registration errors between common points were 3.5 ± 3.2 and 2.3 ± 1.1 mm. Deformable registration was found significantly better (p < 0.05) than rigid registration for all parameters.ConclusionsAn open-source MRI to TRUS registration platform was validated for integration in the brachytherapy workflow.  相似文献   

5.

Purpose

Identifying dominant intraprostatic lesions (DILs) on transrectal ultrasound (TRUS) images during prostate high-dose-rate brachytherapy (HDR-BT) treatment planning is challenging. Multiparametric MRI (mpMRI) is the tool of choice for DIL identification; however, the geometry of the prostate on mpMRI and on the TRUS may differ significantly, requiring image registration. This study evaluates the efficacy of an in-house software for MRI-to-TRUS DIL registration (MR2US) and compares its results to rigid and B-Spline deformable registration.

Methods and Materials

Ten patients with intermediate-risk prostate cancer, each with mpMRI and TRUS data sets, were included in this study. Five radiation oncologists (ROs) with expertise in TRUS-based HDR-BT were asked to cognitively contour the DIL onto the TRUS image using mpMRI as reference. The contours were analyzed for concordance using simultaneous truth and performance level estimation algorithm. Similarity indices, DIL volumes, and distance between centroid positions were measured to compare the consensus contours against the contours from ROs and the automated algorithms; registration time between all contouring methods was recorded.

Results

MR2US registration had the highest dice coefficients among all patients with a mean of 0.80 ± 0.13 in comparison to rigid (0.65 ± 0.20) and B-Spline (0.51 ± 0.30). The distance between centroid positions between simultaneous truth and performance level estimation contour and MR2US, rigid, and B-Spline contours were 5 ± 2, 7 ± 5, and 18 ± 11 mm, respectively. The average registration time was significantly shorter for MR2US (11 ± 2 s) and rigid algorithm (7 ± 1 s) compared to ROs (227 ± 27 s) and B-Spline (199 ± 38 s).

Conclusions

The efficacy of integrating an MRI-delineated DIL into a TRUS-based BT workflow has been validated in this study. The MR2US software is fast and accurate enough to be used for DIL identification in prostate HDR-BT.  相似文献   

6.
《Brachytherapy》2023,22(2):174-180
ObjectiveTo evaluate the feasibility and value of deformable image registration (DIR) in calculating the cumulative doses of organs at risk (OARs) in the combined radiotherapy of cervical cancer.Patients and methodsThirty cervical cancer patients treated with external beam radiotherapy (EBRT) combined with intracavitary brachytherapy (ICBT) were reviewed. The simulation CT images of EBRT and ICBT were imported into Varian Velocity 4.1 for the DIR-based dose accumulation. Cumulative dose-volume parameters of D2cc for rectum and bladder were compared between the direct addition (DA) and DIR methods. The quantitative parameters were measured to evaluate the accuracy of DIR.ResultsThe three-dimensional cumulative dose distribution of the tumor and OARs were graphically well illustrated by composite isodose lines. In combined EBRT and ICBT, the mean cumulative bladder D2cc calculated by DIR and DA was 86.13 Gy and 86.27 Gy, respectively. The mean cumulative rectal D2cc calculated by DIR and DA was 72.97 Gy and 73.90 Gy, respectively. No significant differences were noted between these two methods (p > 0.05). As to the parameters used to evaluate the DIR accuracy, the mean DSC, Jacobian, MDA (mm) and Hausdorff distance (mm) were 0.79, 1.0, 3.84, and 22.01 respectively for the bladder and 0.53, 1.2, 7.31, and 29.58 respectively for the rectum. In this study, the DSC seemed to be slightly lower compared with previous studies.ConclusionDose accumulation based on DIR might be an alternative method to illustrate and evaluate the cumulative doses of the OARs in combined radiotherapy for cervical cancer. However, DIR should be used with caution before overcoming the relevant limitations.  相似文献   

7.
In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7±2.8 ° and 4.0±2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6±2.6 ° and 1.3±1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213±197 s; automatic registration took 82±15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9±2.9 ° and 1.1±0.2 mm. Here, a registration took 91±6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.  相似文献   

8.

Purpose:

To apply an intensity‐based nonrigid registration algorithm to MRI‐guided prostate brachytherapy clinical data and to assess its accuracy.

Materials and Methods:

A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis‐Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method.

Results:

All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was ?0.19 ± 0.07 and FRE presented a value of 2.3 ± 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one‐sided t‐tests.

Conclusion:

The intensity‐based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre‐ and intraoperative images for brachytherapy. J. Magn. Reson. Imaging 2009;30:1052–1058. © 2009 Wiley‐Liss, Inc.
  相似文献   

9.
《Brachytherapy》2021,20(6):1139-1145
PURPOSEWhile brachytherapy is an effective treatment for localized prostate cancer, there has been a noticeable decline in its use. Training opportunity for prostate brachytherapy has been in steady decline, with some residents receiving little to no hands-on training. This work was developed to design a training environment that uses a phantom-based simulator to teach the process of TRUS-based prostate brachytherapyMETHODS AND MATERIALSA prostate phantom was fabricated from a representative prostate patient TRUS scan. Three materials were used: gelatin powder, graphite powder, and water. The prostate was developed using 9% gelatin and 0.3% graphite per 100 ml water. Five radiation oncologists were asked to qualitatively score the phantom according to image quality, haptic feedback, needle insertion quality, and its compatibility with operative tools. The contrast-to-noise ratio (CNR) was estimated using different concentrations of graphite. The elasticity of the phantom was evaluated based on ultrasound elastography measurementsRESULTSThe prostate phantom had an average CNR of 3.94 ± 1.09 compared to real prostate images with a CNR of 2 ± 1.8. The average Young's modulus was computed to be 58.03 ± 6.24 kPa compared to real prostate tissue (58.8 ± 8.2 kPa). Oncologists ranked the phantom as “very good” for overall quality of the phantom. They reported that needle insertion quality was “very good” during a simulated brachytherapy procedure.CONCLUSIONWe have developed a 3D printing prostate phantom to be used for training purposes during prostate brachytherapy. The phantom has been evaluated for image quality and elasticity. The reconstructed phantom could be used as an anthropomorphic surrogate to train residents on prostate brachytherapy procedures.  相似文献   

10.
《Brachytherapy》2019,18(3):378-386
PurposeTo identify factors associated with MRI-to-CT image deformation accuracy and modes of failure for MRI-optimized intracavitary high-dose-rate treatment of locally advanced cervical cancer.Methods and MaterialsTwenty-six patients with locally advanced cervical cancer had preimplantation MRI registered and deformed to postimplantation CT images using anatomically constrained and biomechanical model–based deformable image registration (DIR) algorithms. Cervix (primary) and cervix plus 10-mm margin (secondary) were used as controlling regions of interest for deformation. High-risk clinical target volume defined on pre-MRI was propagated to CT and evaluated for clinical utility in optimizing target volumes using scores 0 (low performing) to 4 (high performing). Quantitative evaluation of deformation performance included Dice index, distance to agreement, center of mass (COM) differences, cervical/uterus volume, and geometric change in organ position for MR-projected structures. Statistical analysis was performed to identify predictors of clinical utility and modes of failure.ResultsAnatomically constrained and biomechanical model–based deformable image registration algorithms achieved clinical utility >3 in 65% and 81% of patients, respectively. This improved to 81% and 85%, respectively, if cervix plus margin was used to drive deformations. Total COM displacement (cervix plus uterus) had the highest sensitivity in predicting low from high clinical utility in optimizing target volumes. Deformation failure (low clinical utility) resulted from high COM displacement, high cervical volume change, and retroverted uterine anatomy.ConclusionsMRI-to-CT deformable image registration using a cervix-controlling region of interest can aid clinical target delineation in cervical brachytherapy and potentially improve brachytherapy implant quality and clinical workflow. Deformation failures warrant further study and prospective deformation validation.  相似文献   

11.
《Medical Dosimetry》2020,45(3):206-212
User-guided deformable image registration (DIR) has allowed users to actively participate in the DIR process and is expected to improve DIR accuracy. The purpose of this study was to evaluate the time required for and effect of user-guided DIR on registration accuracy for thoracic images among users. In this study, 4-dimensional computed tomographic images of 10 thoracic cancer patients were used. The dataset for these patients was provided by DIR-Lab (www.dir-lab.com) and included a coordinate list of anatomical landmarks (300 bronchial bifurcations). Four medical physicists from different institutions performed DIR between peak-inhale and peak-exhale images with/without the user-guided DIR tool, Reg Refine, implemented in MIM Maestro (MIM software, Cleveland, OH). DIR accuracy was quantified by using target registration errors (TREs) for 300 anatomical landmarks in each patient. The average TREs with user-guided DIR in the 10 images by the 4 medical physicists were 1.48, 1.80, 3.46, and 3.55 mm, respectively, whereas the TREs without user-guided DIR were 3.28, 3.45, 3.56, and 3.28 mm, respectively. The average times taken by the 4 physicists to use the user-guided DIR were 10.0, 6.7, 7.1, and 8.0 min, respectively. This study demonstrated that user-guided DIR can improve DIR accuracy and requires only a moderate amount of time (<10 min). However, 2 of the 4 users did not show much improvement in DIR accuracy, which indicated the necessity of training prior to use of user-guided DIR.  相似文献   

12.
目的 基于机器学习提出可应用于低图像质量、多叶准直器(MLC)遮挡和非刚性变形兆伏级(MV)图像的无标记射束方向观(BEV)肿瘤放疗跟踪算法。方法 采用窗口模板匹配法和Voxelmorph端到端无监督网络,处理MV图像中的配准问题。使用动态胸部模体,验证肿瘤跟踪算法的准确性。将模体质量保证(QA)计划在加速器上手动设置治疗偏移后执行,收集治疗过程中的682幅电子射野影像系统(EPID)图像作为固定图像;同时采集计划系统中对应射野角度的数字影像重建(DRR)图作为浮动图像,进行靶区跟踪研究。收集21例肺部肿瘤放疗的533对EPID和DRR图像进行肿瘤跟踪研究,提供治疗过程中肿瘤位置变化定量结果。图像相似度用于算法的第三方验证。结果 算法可应对不同程度(10%~80%)的图像缺失,且对数据缺失图像的非刚性配准表现较好。模体验证中86.8%的跟踪误差<3 mm,<2 mm的比例约80%作用。配准后标准化互信息(NMI)由1.18±0.02提高到1.20±0.02(t=-6.78,P=0.001)。临床病例肿瘤运动以平移为主,平均位移3.78 mm,最大位移可达7.46 mm。配准结果显示存在非刚性形变,配准后NMI由1.21±0.03增至到1.22±0.03(t=-2.91,P=0.001)。结论 肿瘤跟踪算法跟踪精度可靠且鲁棒性好,可用于无创、实时、无额外设备和辐射剂量的肿瘤跟踪。  相似文献   

13.
《Medical Dosimetry》2019,44(2):136-143
This study aimed to validate a novel commercially available software for correcting spatial distortion in cranial magnetic resonance (MR) images. This software has been used to assess the dosimetric impact of MR distortion in stereotactic radiosurgery (SRS) treatments of vestibular schwannomas (VSs). Five MR datasets were intentionally distorted. Each distorted MR dataset was corrected using the Cranial Distortion software, obtaining a new corrected MR dataset (MRcorr). The accuracy of the correction was quantified by calculating the target registration error (TRE) for 6 anatomical landmarks identified in the co-registered MRcorr and planning computed tomography (pCT) images. Nine VS cases were included to investigate the impact of the MR distortion in SRS plans. Each SRS plan was calculated on the pCT (1 × 1 × 1 mm3 voxel) with the target and organs at risk (OARs) delineated using the planning MR dataset. This MR dataset was then corrected (MRcorr) using the Cranial Distortion software. Geometrical agreement between the original target and the corresponding corrected target was assessed using several metrics: MacDonald criteria, mean distance to agreement (MDA), and Dice similarity coefficient (DSC). Target coverage (D99%) and maximum doses (D2%) to ipsilateral cochlea and brainstem resulting on the MRcorr dataset were compared with the original values. TRE values (0.6 mm ± 0.3 mm) and differences found in Macdonald criteria (0.3 mm ± 0.4 mm and 0.3 mm ± 0.3 mm) and MDA (0.8 mm ± 0.2 mm) were mostly within the voxel size dimension of the pCT scan (1 × 1 × 1 mm3). High similarity (DSC > 0.7) between the original and corrected targets was found. Small dose differences for the original and corrected structures were found: 0.1 Gy ± 0.1 Gy for target D99%, 0.2 Gy ± 0.3 Gy for cochlea D2%, and 0.1 Gy ± 0.1 Gy for brainstem D2%. Our study shows that Distortion Correction software can be a helpful tool to detect and adequately correct brain MR distortions. However, a negligible dosimetric impact of MR distortion has been detected in our clinical practice.  相似文献   

14.
Objective:The aim of this study was to evaluate the current status of the clinical use of deformable image registration (DIR) in radiotherapy and to gain an understanding of the challenges faced by centres in clinical implementation of DIR, including commissioning and quality assurance (QA), and to determine the barriers faced. The goal was to inform whether additional guidance and QA tools were needed.Methods:A survey focussed on clinical use, metrics used, how centres would like to use DIR in the future and challenges faced, was designed and sent to 71 radiotherapy centres in the UK. Data were gathered specifically on which centres we using DIR clinically, which applications were being used, what commissioning and QA tests were performed, and what barriers were preventing the integration of DIR into the clinical workflow. Centres that did not use DIR clinically were encouraged to fill in the survey and were asked if they have any future plans and in what timescale.Results:51 out of 71 (70%) radiotherapy centres responded. 47 centres reported access to a commercial software that could perform DIR. 20 centres already used DIR clinically, and 22 centres had plans to implement an application of DIR within 3 years of the survey. The most common clinical application of DIR was to propagate contours from one scan to another (19 centres). In each of the applications, the types of commissioning and QA tests performed varied depending on the type of application and between centres. Some of the key barriers were determining when a DIR was satisfactory including which metrics to use, and lack of resources.Conclusion:The survey results highlighted that there is a need for additional guidelines, training, better tools for commissioning DIR software and for the QA of registration results, which should include developing or recommending which quantitative metrics to use.Advances in knowledge:This survey has given a useful picture of the clinical use and lack of use of DIR in UK radiotherapy centres. The survey provided useful insight into how centres commission and QA DIR applications, especially the variability among centres. It was also possible to highlight key barriers to implementation and determine factors that may help overcome this which include the need for additional guidance specific to different applications, better tools and metrics.  相似文献   

15.
The fusion of functional positron emission tomography (PET) data with anatomical magnetic resonance (MR) or computed tomography images, using a variety of interactive and automated techniques, is becoming commonplace, with the technique of choice dependent on the specific application. The case of PET-MR image fusion in soft tissue is complicated by a lack of conspicuous anatomical features and deviation from the rigid-body model. Here we compare a point-based external marker technique with an automated mutual information algorithm and discuss the practicality, reliability and accuracy of each when applied to the study of soft tissue sarcoma. Ten subjects with suspected sarcoma in the knee, thigh, groin, flank or back underwent MR and PET scanning after the attachment of nine external fiducial markers. In the assessment of the point-based technique, three error measures were considered: fiducial localisation error (FLE), fiducial registration error (FRE) and target registration error (TRE). FLE, which represents the accuracy with which the fiducial points can be located, is related to the FRE minimised by the registration algorithm. The registration accuracy is best characterised by the TRE, which is the distance between corresponding points in each image space after registration. In the absence of salient features within the target volume, the TRE can be measured at fiducials excluded from the registration process. To assess the mutual information technique, PET data, acquired after physically removing the markers, were reconstructed in a variety of ways and registered with MR. Having applied the transform suggested by the algorithm to the PET scan acquired before the markers were removed, the residual distance between PET and MR marker-pairs could be measured. The manual point-based technique yielded the best results (RMS TRE =8.3 mm, max =22.4 mm, min =1.7 mm), performing better than the automated algorithm (RMS TRE =20.0 mm, max =30.5 mm, min =7.7 mm) when registering filtered back-projection PET images to MR. Image reconstruction with an iterative algorithm or registration of a composite emission-transmission image did not improve the overall accuracy of the registration process. We have demonstrated that, in this application, point-based PET-MR registration using external markers is practical, reliable and accurate to within approximately 5 mm towards the fiducial centroid. The automated algorithm did not perform as reliably or as accurately.  相似文献   

16.
《Brachytherapy》2018,17(2):506-513
PurposeTo develop an anthropomorphic breast phantom for use in credentialing of permanent breast seed implant brachytherapy.Methods and MaterialsA representative external contour and target volume was used as the basis of mold manufacturing for anthropomorphic breast phantom development. Both target and normal tissue were composed of gel-like materials that provide suitable computed tomography and ultrasound contrast for brachytherapy delivery. The phantoms were evaluated for consistency in construction (target location) and Hounsfield unit (computed tomography contrast). For both target and normal tissue, the speed of sound was measured and compared to the image reconstruction algorithm's expectation value. Five phantoms were imaged preimplant and postimplant to assess interphantom similarity as well as to evaluate the uncertainty in quantifying seed position.ResultsThe average Hounsfield units of the target and normal tissue gels is −146 ± 5 and 23 ± 1, respectively. The average speed of sound of the target and normal tissue gels is 1485 ± 7 m/s and 1558 ± 9 m/s, respectively, resulting in an estimated 0.4 mm uncertainty in image guidance. The registration/deformation uncertainty was determined to be 0.8 mm. The standard combined uncertainty in assessing seed position spatial accuracy, also including a 0.9 mm estimate based on literature for seed localization, is estimated to be 1.3 mm.ConclusionsThe development of the anthropomorphic breast phantom and evaluation of both the consistency as well as overall seed position uncertainty illustrates the suitability of this phantom for use in brachytherapy end-to-end delivery and implant accuracy evaluation. When evaluating a user's implant accuracy, we estimate a standard combined uncertainty of 1.3 mm.  相似文献   

17.
目的 评估基于图谱库的自动轮廓勾画软件(ABAS)在宫颈癌自适应放疗中的应用.方法 选取2014年1月至3月收治的21例已行第1程调强放疗的宫颈癌患者,将其已勾画器官的CT图像及第2程未勾画器官的定位CT图像传输至ABAS软件系统,以第1程图像为模板图像,第2程定位图像作为目标图像.在第2程定位图像上手工勾画出靶区和危及器官,将ABAS软件自动勾画图像和医师手工勾画的靶区、危及器官图像传输至飞利浦Pinnacle计划系统,对两组结果进行评估.比较相似性指数(DSC)和勾画体积.结果 ABAS自动勾画与医师手工勾画的DSC平均值均大于0.7,其中靶区的DSC最大为肿瘤临床靶区(CTV, 0.89±0.08),最低为肿瘤区(GTV, 0.72±0.16).对于危及器官,DSC最高的为右股骨头(0.88±0.05),最低为直肠(0.73±0.07).左右髂骨自动勾画体积较手工勾画小,且差异具有统计学意义(t=3.37、2.74, P<0.05),其他轮廓体积差异无统计学意义.结论 宫颈癌放疗过程中,基于图谱库的ABAS勾画软件,节省了临床器官勾画工作时间,加强自动勾画后的轮廓修改,并建立患者模板数据库,得到满意度更高的重合结果,也为开展自适应放疗提供了强有力的支持.  相似文献   

18.
目的:比较近距离放疗分次间靶区和正常组织在形变配准(DIR)和简单累加剂量体积直方图(DVH)情况下,累积剂量的剂量学差异,分析在宫颈癌三维近距离放疗计划中,形变配准技术应用于靶区和正常组织剂量评估的可行性。方法:回顾性选取13例宫颈癌近距离放疗病例,每个病例均进行了4次CT定位的近距离放疗。对每个病例的4次CT进行形...  相似文献   

19.

Purpose

Images from computed tomography (CT), combined with navigation systems, improve the outcomes of local thermal therapies that are dependent on accurate probe placement. Although the usage of CT is desired, its availability for time-consuming radiological interventions is limited. Alternatively, three-dimensional images from C-arm cone-beam CT (CBCT) can be used. The goal of this study was to evaluate the accuracy of navigated CBCT-guided needle punctures, controlled with CT scans.

Methods

Five series of five navigated punctures were performed on a nonrigid phantom using a liver specific navigation system and CBCT volumetric dataset for planning and navigation. To mimic targets, five titanium screws were fixed to the phantom. Target positioning accuracy (TPECBCT) was computed from control CT scans and divided into lateral and longitudinal components. Additionally, CBCT-CT guidance accuracy was deducted by performing CBCT-to-CT image coregistration and measuring TPECBCT-CT from fused datasets. Image coregistration was evaluated using fiducial registration error (FRECBCT-CT) and target registration error (TRECBCT-CT).

Results

Positioning accuracies in lateral directions pertaining to CBCT (TPECBCT = 2.1 ± 1.0 mm) were found to be better to those achieved from previous study using CT (TPECT = 2.3 ± 1.3 mm). Image coregistration error was 0.3 ± 0.1 mm, resulting in an average TRE of 2.1 ± 0.7 mm (N = 5 targets) and average Euclidean TPECBCT-CT of 3.1 ± 1.3 mm.

Conclusions

Stereotactic needle punctures might be planned and performed on volumetric CBCT images and controlled with multidetector CT with positioning accuracy higher or similar to those performed using CT scanners.  相似文献   

20.

Background

Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment.

Methods

In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing.

Results

CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R2?=?0.99, P?<?0.01).

Conclusion

Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号