首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation examined the anabolic-hormone response to carbohydrate (CHO) supplementation at rest and after resistance exercise. Nine recreationally trained men randomly underwent 4 testing conditions: rest with placebo (RPL), rest with CHO (RCHO), resistance exercise with placebo (EPL), and resistance exercise with CHO (ECHO). The resistance-exercise protocol was four sets of Smith machine squats with a 10-repetition-maximum load, with 90-s rests between sets. Participants then consumed either a placebo or CHO (24% CHO, 1.5 g/kg) drink. Blood was taken before exercise (Pre), immediately after testing (Post), and then 15 (15P), 30 (30P), and 60 (60P) min after drink ingestion. Blood was analyzed for cortisol, glucose, insulin, and total testosterone (TTST). Cortisol did not change significantly in any condition. Glucose concentrations increased significantly from Pre to 15P and 30P during RCHO and Pre to 15P, 30P, and 60P in ECHO (p 相似文献   

2.
The purpose of the study was to determine the effects of carbohydrate (CHO) intake, with and without protein (PRO), immediately after prolonged strenuous exercise on circulating bacterially stimulated neutrophil degranulation. Twelve male runners completed 3 feeding interventions, 1 week apart, in randomized order after 2 hr of running at 75% VO2max. The feeding interventions included a placebo solution, a CHO solution equal to 1.2 g CHO/kg body mass (BM), and a CHO-PRO solution equal to 1.2 g CHO/kg BM and 0.4 g PRO/kg BM (CHO+PRO) immediately postexercise. All solutions were flavor and water-volume equivalent (12 ml/kg BM). Circulating leukocyte counts, bacterially stimulated neutrophil degranulation, plasma insulin, and cortisol were determined from blood samples collected preexercise, immediately postexercise, and every 30 min until 180 min postexercise. The immediate postexercise circulating leukocytosis, neutrophilia, and lymphocytosis (p < .01 vs. preexercise) and the delayed lymphopenia (90 min postexercise, p < .05 vs. preexercise) were similar on all trials. Bacterially stimulated neutrophil degranulation decreased during recovery in control (23% at 180 min, p < .01 vs. preexercise) but remained above preexercise levels with CHO and CHO+PRO. In conclusion, CHO ingestion, with or without PRO, immediately after prolonged strenuous exercise prevented the decrease in bacterially stimulated neutrophil degranulation during recovery.  相似文献   

3.
Effect of acute prior exercise on glycemic and insulinemic indices   总被引:1,自引:0,他引:1  
BACKGROUND: Acute exercise is associated with increased insulin sensitivity characterized by increased insulin-induced glucose transport for periods of up to 48 h after the bout of exercise. This suggests that the glycemic response to a meal may be altered by prior exercise. OBJECTIVE: We tested the hypothesis that the glycemic and insulinemic responses to a test food consumed following exercise would be lower than when consumed without prior exercise. DESIGN: Four lean males (age: 27 +/- 4 y) and 4 females (age: 23 +/- 3 y) completed 3 experimental conditions in random order: ExCHO-Subjects exercised on a cycle ergometer at 70% VO2peak with a net energy cost of 400 kcal, which was followed by consumption of a high carbohydrate (CHO) energy bar; NoExCHO-Same as ExCHO except subjects sat quietly rather than exercised; and NoExGlc-Same as NoExCHO except subjects consumed a 50 g glucose (glc) drink as the reference CHO for GI and insulinemic index (II) determination. For each condition, following exercise or rest, baseline venous blood samples were obtained. Postprandial blood samples were obtained at 15 min intervals for 2 h. RESULTS: Neither the 2-h glucose area under the curve (AUC) or the GI were different between ExCHO and NoExCHO. The insulin AUC for ExCHO was 28% lower than the insulin AUC for NoExCHO (p = 0.03). The calculated II for the ExCHO condition was 30% lower than that of NoExCHO (p = 0.05). CONCLUSIONS: An acute bout of prior exercise had no effect on the GI of an energy bar compared to that of the same food determined under the standard no-exercise conditions. However, prior exercise resulted in a lower 2-h insulin response to the CHO-rich energy bar.  相似文献   

4.
The purpose of the present study was to examine the effect of pre-exercise carbohydrate (CHO) ingestion on circulating leukocyte numbers, plasma interleukin (IL)-6, plasma cortisol, and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses in moderately trained male cyclists who completed approximately 1-h of high-intensity cycling. The influence of the timing of pre-exercise CHO ingestion was investigated in 8 subjects who consumed 75 g CHO as a glucose solution at either 15 (-15 trial), or 75 (-75 trial) min before the onset of exercise. The influence of the amount of pre-exercise CHO ingestion was investigated in a further 10 subjects who consumed either 25 g or 200 g CHO as a glucose solution or a placebo 45 min before the onset of exercise. At the onset of exercise in the timing experiment, the plasma glucose concentration was significantly (p < .05) lower on the -75 trial compared with pre-drink values, and the plasma cortisol concentration and neutrophil to lymphocyte (N/L) ratio were significantly (p < .05) elevated in the post-exercise period. In the -15 trial, plasma glucose level was well maintained, and the plasma cortisol concentration and N/L ratio were not significantly elevated above resting levels. However, LPS-stimulated neutrophil degranulation was similar in the -15 and -75 trials. The amount of CHO ingested had no effect on the magnitude of the rise in the N/L ratio compared with placebo when consumed 45 min pre-exercise. Finally, although an exercise-induced increase in the plasma IL-6 concentration was observed, this effect was independent of pre-exercise CHO ingestion.  相似文献   

5.
This investigation sought to study changes in leukocyte subsets after an acute bout of resistance exercise (ARE) and to determine whether ingestion of carbohydrate (CHO) could attenuate those immune responses. Nine male track-and-field athletes (21.1 +/- 1.4 yr, 177.2 +/- 5.5 cm, 80.9 +/- 9.7 kg, 8.7% +/- 3.8% fat) and 10 male ice hockey athletes (21.0 +/- 2.2 yr, 174.3 +/- 6.2 cm, 79.6 +/-11.1 kg, 13.9% +/- 3.73% fat) participated in 2 different ARE protocols. Both experiments employed a counterbalanced double-blind research design, wherein participants consumed either a CHO (1 g/kg body weight) or placebo beverage before, during, and after a weight-lifting session. Serum cortisol decreased (p < .05) at 90 min into recovery compared with immediately postexercise. Plasma lactate, total leukocyte, neutrophil, and monocyte concentrations increased (p < .05) from baseline to immediately postexercise. Lymphocytes decreased significantly (p < .05) from baseline to 90 min postexercise. Lymphocytes were lower (p < .05) for the CHO condition than for placebo. The findings of this study indicate the following: ARE appears to evoke changes in immune cells similar to those previously reported during endurance exercise, and CHO ingestion attenuates lymphocytosis after ARE.  相似文献   

6.
There are currently no guidelines regarding the carbohydrate (CHO) dosage required to prevent exercise-induced hypoglycemia in children with insulin-dependent diabetes mellitus (IDDM). To prevent hypoglycemia by matching glucose ingestion with total-CHO utilization, 20 adolescents with IDDM attended 2 trials: control (CT; drinking water) and glucose (GT; drinking 6-8% glucose). Participants performed 60 min of moderate-intensity cycling 100 min after insulin injection and breakfast. CT's total-CHO utilization during exercise was determined using indirect calorimetry. In GT, participants ingested glucose in the amount equal to total CHO utilization in the CT. A total of 9 participants had BG < 4.0 mmol/L in CT compared to 3 in GT (p < .05). In conclusion, glucose ingestion equal to total-CHO utilization attenuates the drop in blood glucose and reduces the likelihood of hypoglycemia during exercise in adolescents with IDDM.  相似文献   

7.
ObjectivesModerate-intensity exercise improves insulin sensitivity, which may depend on the intensity, duration, and frequency of exercise. We examined the effects of a single bout of short-duration high-intensity exercise (HIE) and long-duration lowintensity exercise (LIE) on insulin sensitivity and the adiponectin/leptin ratio in individuals with different body mass indices (BMIs) who do not exercise regularly.MethodsWe enrolled 42 healthy volunteers aged 20–64 years and divided them into two groups based on BMI: BMI <24 kg/m2 and BMI ≥27 kg/m2. They were randomly assigned to either the short-duration (20 min) HIE (70%–80% heart rate reserve, HRR) or long-duration (60 min) LIE training groups (30%–40% HRR). Glucose, insulin, adiponectin, and leptin levels were assessed before training and at 0, 30, 60, and 120 min after training.ResultsWe finally analyzed 27 normal weight and 9 obese individuals. No significant differences were observed in the baseline information of both BMI groups. Homeostatic model assessment for insulin resistance significantly improved for both exercise patterns in the normal weight group and for the HIE pattern in the obese group (P < 0.01), whereas the adiponectin/leptin ratio increased significantly only among normal weight participants with the LIE intervention.ConclusionBoth exercise patterns in BMI <24 kg/m2 and BMI ≥27 kg/m2 benefit on insulin resistance. Therefore, people can choose the way they can fit to improve insulin resistance both short-duration high-intensity exercise and long-duration low-intensity exercise.  相似文献   

8.
The effects of ingesting a low dose of CHO on plasma glucose, glucoregulatory hormone responses, and performance during prolonged cycling were investigated. Nine male subjects cycled for 165 min at approximately 67% peak VO2 followed by a two-stage performance ride to exhaustion on two occasions in the laboratory. Every 20 min during exercise, subjects consumed either a flavored water placebo (P) or a dilute carbohydrate beverage (C). Blood samples were collected immediately before, every 20 min throughout, and immediately after exercise. Plasma was analyzed for glucose, lactate, free fatty acids (FFA), and various glucoregulatory hormones. VO2, RER, heart rate, perceived exertion, and exercise performance were also measured. Lactate, FFA, epinephrine, norepinephrine, ACTH, cortisol, and glucagon increased with exercise whereas glucose and insulin decreased (p < or = .05). Except for a small difference in glucose at 158 min of exercise and at exhaustion, no significant differences were found between drinks for any of the variables studied (P > or = .05). Ingestion of 13 g carbohydrate per hour is not sufficient to maintain plasma glucose, attenuate the glucoregulatory hormone response, and improve performance during prolonged moderate intensity cycling.  相似文献   

9.
The purpose of this study was to investigate the effect of Opuntia ficus-indica (OFI) cladode and fruit-skin extract on blood glucose and plasma insulin increments due to high-dose carbohydrate ingestion, before and after exercise. Healthy, physically active men (n = 6; 21.0 ± 1.6 years, 78.1 ± 6.0 kg) participated in a double-blind placebo-controlled crossover study involving 2 experimental sessions. In each session, the subjects successively underwent an oral glucose tolerance test at rest (OGTTR), a 30-min cycling bout at ~75% VO2max, and another OGTT after exercise (OGTTEX). They received capsules containing either 1,000 mg OFI or placebo (PL) 30 min before and immediately after the OGTTR. Blood samples were collected before (t0) and at 30-min intervals after ingestion of 75 g glucose for determination of blood glucose and serum insulin. In OGTTEX an additional 75-g oral glucose bolus was administered at t60. In OGTTR, OFI administration reduced the area under the glucose curve (AUCGLUC) by 26%, mainly due to lower blood glucose levels at t30 and t60 (p < .05). Furthermore, a higher serum insulin concentration was noted after OFI intake at baseline and at t30 (p < .05). In OGTTEX, blood glucose at t60 was ~10% lower in OFI than in PL, which resulted in a decreased AUCGLUC (-37%, p < .05). However, insulin values and AUCINS were not different between OFI and PL. In conclusion, the current study shows that OFI extract can increase plasma insulin and thereby facilitate the clearance of an oral glucose load from the circulation at rest and after endurance exercise in healthy men.  相似文献   

10.
We determined the effect of a high-fat diet and carbohydrate (CHO) restoration on substrate oxidation and glucose tolerance in 7 competitive ultra-endurance athletes (peak oxygen uptake [VO(2peak)] 68 +/- 1 ml x kg(-1) x min(-1); mean +/- SEM). For 6 days, subjects consumed a random order of a high-fat (69% fat; FAT-adapt) or a high-CHO (70% CHO; HCHO) diet, each followed by 1 day of a high-CHO diet. Treatments were separated by an 18-day wash out. Substrate oxidation was determined during submaximal cycling (20 min at 65% VO(2peak)) prior to and following the 6 day dietary interventions. Fat oxidation at baseline was not different between treatments (17.4 +/- 2.1 vs. 16.1 +/- 1.3 g x 20 min(-1) for FAT-adapt and HCHO, respectively) but increased 34% after 6 days of FAT-adapt (to 23.3 +/- 0.9 g x 20 min(-1), p < .05) and decreased 30% after HCHO (to 11.3 +/- 1.4 g x 20 min(-1), p < .05). Glucose tolerance, determined by the area under the plasma [glucose] versus time curve during an oral glucose tolerance (OGTT) test, was similar at baseline (545 +/- 21 vs. 520 +/- 28 mmol x L(-1) x 90 min(-1)), after 5-d of dietary intervention (563 +/- 26 vs. 520 +/-18 mmol x L(-1) x 90 min(-1)) and after 1 d of high-CHO (491 +/- 28 vs. 489 +/- 22 mmol x L(-1) x 90 min(-1) for FAT- adapt and HCHO, respectively). An index of whole-body insulin sensitivity ( S(I), 10000/divided by fasting [glucose] x fasting [insulin] x mean [glucose] during OGTT x mean [insulin] during OGTT) was similar at baseline (15 +/- 2 vs. 17 +/- 5 arbitrary units), after 5-d of dietary intervention (15 +/- 2 vs. 15 +/- 2) and after 24 h of CHO loading (17 +/- 3 vs. 18 +/- 2 for FAT- adapt and HCHO, respectively). We conclude that despite marked changes in the pattern of substrate oxidation during submaximal exercise, short-term adaptation to a high-fat diet does not alter whole-body glucose tolerance or an index of insulin sensitivity in highly-trained individuals.  相似文献   

11.
BACKGROUND: Endothelial function deteriorates after glucose ingestion. This may be attributed to hyperglycemia-induced oxidative stress. Acute endurance exercise might improve postprandial endothelial function by enhancing glucoregulation and reducing postprandial hyperglycemia. OBJECTIVE: The objective was to determine whether endurance exercise performed 17 h before high-sugar-food ingestion attenuates postprandial impairment in endothelial function. DESIGN: Healthy men and women (n = 13; age: 48 +/- 17 y) were studied on 2 occasions: after > or = 48 h with no exercise and 17 h after a 60-min bout of endurance exercise. During each trial, brachial artery flow mediated dilation (FMD) was used to assess endothelial function before and after the ingestion of a candy bar and soft drink. Glucose, insulin, and thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, were measured in blood obtained during each FMD measurement. The insulin sensitivity index was calculated from the glucose and insulin data. RESULTS: FMD decreased significantly after food ingestion in both trials. However, prior exercise shifted the entire FMD curve upward (main treatment effect: P = 0.0002), which resulted in a greater area under the curve for FMD (774 +/- 122%.min) than did no exercise (607 +/- 122%.min) (P = 0.01). Prior exercise shifted the glucose and insulin curves downward (main treatment effects: P = 0.05 and P = 0.0007, respectively) and resulted in a significantly greater insulin sensitivity index (10.8 +/- 0.7) than did no exercise (9.2 +/- 0.7) (P = 0.01). TBARS did not differ significantly between trials. CONCLUSION: Postprandial endothelial function was improved by endurance exercise performed approximately 17 h earlier. This effect was accompanied by exercise-induced improvements in insulin action and reductions in glycemia, but did not correspond with reductions in oxidative stress, as assessed by TBARS.  相似文献   

12.
Previous investigations have reported that soluble fiber reduces the plasma glucose and insulin changes after an oral glucose load. To improve the palatability of a soluble-fiber feeding, this study addressed how a combined, soluble fiber (delivered in capsule form) and a preexercise CHO feeding would affect metabolic responses during exercise. On 3 different days, participants ingested a placebo (CON), 75 g liquid CHO (GLU), or 75 g liquid CHO with 14.5 g encapsulated guar gum (FIB) 45 min before cycling for 60 min at 70% VO2 peak. Peak concentrations of plasma glucose and insulin were similar and significantly greater than CON preexercise (p < 05). Similarities in carbohydrate reliance were observed in GLU and FIB. Muscle glycogen use did not differ significantly among trials. These results demonstrate that encapsulated soluble fiber delivered with liquid CHO feeding does not affect plasma glucose, insulin, or muscle glycogen utilization during exercise.  相似文献   

13.
Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examine the effect of CHO ingestion on plasma interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo (PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p < .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31% below baseline values on the PLA trial (p = .06) compared with 17% on the CHO trial (p = .30). Plasma TNF-alpha concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.  相似文献   

14.
This study compared effects of carbohydrate (CHO) and rest on oxidative stress during exercise. Cyclists (N = 12) completed 4 randomized trials at 64% Wattsmax under 2 conditions (continuous cycling for 2 h [C] and cycling with 3-min rest every 10 min for 2.6 h [R]). Subjects cycled under each condition while receiving 6% CHO and placebo (PLA). CHO and PLA were given preexercise (12 mL/kg) and during exercise (4 mL x kg(-1) x 15 min(-1)). Blood was collected preexercise, postexercise, and 1 h postexercise and assayed for F2-isoprostanes, hydroperoxides (LH), nitrite, antioxidant capacity, glucose, insulin, cortisol, and epinephrine. F2-isoprostanes and LH were lower in CHO. Glucose, cortisol, and epinephrine exhibited significant effects, with postexercise levels of glucose higher and cortisol and epinephrine lower in CHO during the R condition. This pattern was identical in the C condition (21). Oxidative stress during cycling was unaffected by use of short rest intervals but was diminished by CHO.  相似文献   

15.
The effects of a single bout of resistance exercise (RE) in conjunction with periexercise branched-chain amino acid (BCAA) and carbohydrate (CHO) ingestion on skeletal muscle signaling markers indicative of muscle protein synthesis were determined. It was hypothesized that CHO + BCAA would elicit a more profound effect on these signaling markers compared with CHO. Twenty-seven males were randomly assigned to CHO, CHO + BCAA, or placebo (PLC) groups. Four sets of leg presses and leg extensions were performed at 80% 1 repetition maximum. Supplements were ingested 30 minutes and immediately before and after RE. Venous blood and muscle biopsy samples were obtained immediately before supplement ingestion and 0.5, 2, and 6 hours after RE. Serum insulin and glucose and phosphorylated levels of muscle insulin receptor substrate 1 (IRS-1), protein kinase B, mammalian target of rapamycin, phosphorylated 70S6 kinase, and 4E binding protein 1 were assessed. Data were analyzed by 2-way repeated-measures analysis of variance. Significant group × time interactions were observed for glucose and insulin (P < .05) showing that CHO and CHO + BCAA were significantly greater than PLC. Significant time main effects were observed for IRS-1 (P = .001), protein kinase B (P = .031), mammalian target of rapamycin (P = .003), and phosphorylated 70S6 kinase (P = .001). Carbohydrate and CHO + BCAA supplementation significantly increased IRS-1 compared with PLC (P = .002). However, periexercise coingestion of CHO and BCAA did not augment RE-induced increases in skeletal muscle signaling markers indicative of muscle protein synthesis when compared with CHO.  相似文献   

16.
Bruce CR  Lee JS  Kiens B  Hawley JA 《Obesity research》2004,12(7):1158-1165
OBJECTIVE: To determine the impact of insulin resistance and obesity on muscle triacylglycerol (IMTG) and glycogen metabolism during and after prolonged exercise. RESEARCH METHODS AND PROCEDURES: Female lean (fa/?; N = 40, ZL) and obese insulin-resistant (fa/fa; N = 40, ZO) Zucker rats performed an acute bout of swimming exercise (8 times for 30 minutes) followed by 6 hours of carbohydrate supplementation (CHO) or fasting (FAST). IMTG and glycogen were measured in the extensor digitorum longus (EDL) and red vastus lateralis (RVL) muscles. RESULTS: Despite resting IMTG content being 4-fold higher in ZO compared with ZL rats, IMTG levels were unchanged in either EDL or RVL muscles immediately after exercise. Resting glycogen concentration in EDL and RVL muscles was similar between genotypes, with exercise resulting in glycogen use in both muscles from ZL rats (approximately 85%, p < 0.05). However, in ZO rats, there was a much smaller decrease in postexercise glycogen content in both EDL and RVL muscles (approximately 30%). During postexercise recovery, there was a decrease in EDL muscle levels of IMTG in ZL rats supplemented with CHO after 30 and 360 minutes (p < 0.05). In contrast, IMTG content was increased above resting levels in RVL muscles of ZO rats fasted for 360 minutes. Six hours of CHO refeeding restored glycogen content to resting levels in both muscles in ZL rats. However, after 6 hours of FAST in ZO animals, RVL muscle glycogen content was still lower than resting levels (p < 0.05). At this time, IMTG levels were elevated above basal (p < 0.05). DISCUSSION: In both healthy and insulin-resistant skeletal muscle, there was negligible net IMTG degradation after a single bout of prolonged exercise. However, during postexercise recovery, there was differential metabolism of IMTG between phenotypes.  相似文献   

17.
The aim of this study was to investigate the effects of a carbohydrate (CHO) gel on performance after prolonged intermittent high-intensity shuttle running. Seven male soccer players performed 2 exercise trials, 7 d apart. On each occasion, participants completed five 15-min periods of intermittent variable-speed running, interspersed with periods of walking (Part A), followed by an intermittent run to exhaustion (Part B). Participants consumed either a CHO gel or placebo (PLA) immediately before exercise (0.89 mL/kg body mass [BM]) and every 15 min thereafter (0.35 mL/kg BM). In addition, water was consumed at a rate of 5 mL/kg BM before and 2 mL/kg BM every 15 min during exercise. Blood glucose levels were higher (P < 0.05) at 15, 30, and 60 min of exercise and at exhaustion in CHO than in PLA. During Part B, run time to exhaustion was longer (P < 0.05) in the CHO trial (CHO 6.1 +/- 1.3 min vs. PLA 4.2 +/- 1.2 min). These results indicate that ingesting a CHO gel, along with water, improves performance after prolonged intermittent running in healthy male subjects, possibly by maintaining blood glucose levels during exercise.  相似文献   

18.
Isomaltulose (ISO) is a disaccharide that is slowly digested, resulting in a slow availability for absorption. The aim of this study was to compare the blood substrate responses and exogenous carbohydrate (CHO) oxidation rates from orally ingested sucrose (SUC) and ISO during moderate intensity exercise. We hypothesized that the oxidation of ISO is lower compared with SUC, resulting in lower plasma glucose and insulin concentrations and subsequent lower CHO and higher fat oxidation rates. Ten trained men [maximal oxygen uptake (VO(2)max), 64 +/- 1 mL/(kg body mass.min)] cycled on 3 occasions for 150 min at 59 +/- 2% VO(2)max and consumed either water (WAT) or 1 of 2 CHO solutions providing 1.1 g/min of CHO in the form of either SUC or ISO. Peak exogenous CHO oxidation rates were higher (P < 0.05) during the SUC trial (0.92 +/- 0.03 g/min) than during the ISO trial (0.54 +/- 0.05 g/min). Total endogenous CHO oxidation over the final 90 min of exercise was lower (P < 0.05) in the SUC trial (107 +/- 10 g) than in the WAT (137 +/- 7 g) and ISO (127 +/- 9 g) trials. Fat oxidation was higher during the WAT trial than during the SUC and ISO trials. ISO resulted in a lower plasma insulin response at 30 min compared with SUC, whereas the glucose response did not differ between the 2 CHO. Oxidation of ingested ISO was significantly less than that of SUC, most likely due to the lower rate of digestion of ISO. A lower CHO delivery and a small difference in plasma insulin may have resulted in higher endogenous CHO use and higher fat oxidation during the ISO trial than during the SUC trial.  相似文献   

19.
The present study investigated the effect of an aerobic exercise bout associated with a high-carbohydrate (CHO) meal on plasma levels of acylated ghrelin and hunger sensation. Eight healthy males performed an exercise (ET) and a control (CT) trial. In ET, participants performed a 60-min cycling exercise (~70% of maximal oxygen uptake) after consuming a high-CHO meal. In the CT, participants remained at rest throughout the whole period after consuming the high-CHO meal. Hunger sensation was assessed and blood samples were taken to determine the levels of acylated ghrelin, glucose, insulin, total cholesterol (TC), and triglycerides (TG). There was suppression of hunger after consuming the meal in ET and CT (p = 0.028 and p = 0.011, respectively). Hunger increased in CT in the period correspondent to the exercise session (p?= 0.017) and remained suppressed in the ET. The area under the curve for acylated ghrelin showed that its levels were lower in the ET compared with CT in the period of the exercise plus the immediate period (1?h) postexercise (60.7 vs. 96.75 pg·mL(-1)·2?h(-1), respectively; p = 0.04). Inverse correlations between acylated ghrelin levels and insulin, TC, and TG levels at different time points were observed. In conclusion, these findings suggest that 1 bout of aerobic exercise maintains the meal-induced suppression of hunger. The mechanism underlying this effect may involve the exercise-induced suppression of acylated ghrelin. These results implicate that the combination of a high-CHO meal and aerobic exercise may effectively improve appetite control and body weight management.  相似文献   

20.
Low carbohydrate, high fat (LCHF) diets are followed by athletes, but questions remain regarding effects of LCHF on metabolic adaptation, exercise-induced stress, immune function and their time-course. In this cross-over study, 14 recreational male athletes (32.9 ± 8.2 years, VO2max 57.3 ± 5.8 mL/kg/min) followed a two week LCHF diet (<10 En% carbohydrates (CHO), ~75En% Fat) and a two week HC diet (>50 En% CHO), in random order, with a wash-out period of >2 weeks in between. After 2 days and 2 weeks on either diet, participants performed cycle ergometry for 90 min at 60%Wmax. Blood samples for analysis of cortisol, free fatty acids (FFA), glucose and ketones, and saliva samples for immunoglobin A (s-IgA) were collected at different time points before and after exercise. The LCHF diet resulted in higher FFA, higher ketones and lower glucose levels compared to the HC diet (p < 0.05). Exercise-induced cortisol response was higher after 2 days on the LCHF diet (822 ± 215 nmol/L) compared to 2 weeks on the LCHF diet (669 ± 243 nmol/L, p = 0.004) and compared to both test days following the HC diet (609 ± 208 and 555 ± 173 nmol/L, both p < 0.001). Workload was lower, and perceived exertion higher, on the LCHF diet compared to the HC diet on both occasions. A drop in s-IgA following exercise was not seen after 2 days on the LCHF diet, in contrast to the HC diet. In conclusion, the LCHF diet resulted in reduced workload with metabolic effects and a pronounced exercise-induced cortisol response after 2 days. Although indications of adaptation were seen after 2 weeks on the LCHF diet, work output was still lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号