首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo electroporation was utilised to enhance plasmid DNA expression in sheep muscle to improve the immune response to DNA vaccination. DNA encoding enhanced green fluorescence protein expressed at higher levels in sheep muscle following in vivo electroporation which caused minimal muscle damage. Groups of seven sheep were then given three intramuscular injections of plasmids encoding two Haemonchus contortus Ag, with and without electroporation at 0, 3 and 7 weeks. Humoral responses were enhanced in electroporated sheep. Four weeks after vaccination, all groups were injected subcutaneously with recombinant Ag formulated in Quil A. Induction of vaccine-specific immune memory was demonstrated in DNA-vaccinated sheep.  相似文献   

2.
Rout N  Kumar S  Jaganmohan S  Murugan V 《Vaccine》2007,25(15):2778-2786
White Spot Syndrome Virus (WSSV) is a major cause of mortality in shrimp and poses a huge threat to aquaculture industry. Till now no comprehensive or individual strategy has been established to combat white spot disease. Previous efforts by other investigators have given insight of protein vaccination and its efficacy to protect shrimp against WSSV infection. In this study, we have explored the protective efficacy of DNA vaccination and tissue distribution of the immunised recombinant plasmid in black tiger shrimp (Penaeus monodon). Four recombinant constructs were generated by inserting four genes encoding the WSSV structural proteins VP15, VP28, VP35 and VP281 individually into DNA vaccine vector pVAX1. Expression of these proteins from the recombinant plasmids was confirmed in vitro in CHO cell lines. For vaccination experiments, shrimp were immunised with these DNA constructs and later challenged with WSSV. A significant level of protection was offered by the plasmids encoding VP28 or VP281 till 7 weeks whereas protein vaccination failed to protect vaccinated shrimp after 3 weeks of first immunisation. In addition, our tissue distribution study revealed the persistence of immunised DNA at least upto 2 months in the injected shrimp muscle. Thus, our results suggest that DNA vaccination strategy will have potential utility against WSSV infection in shrimp cultivation.  相似文献   

3.
M Dupuis  D M McDonald  G Ott 《Vaccine》1999,18(5-6):434-439
MF59, which is an adjuvant approved for human use, typically elicits higher antibody titers than alum when used in combination with a variety of recombinant and natural subunit antigens. The mechanisms responsible for the adjuvant action of MF59 are not fully understood. In particular, little is known about the in vivo distribution of MF59 and of antigen after intramuscular (i.m.) injection. The goal of the present study was to determine the distribution of MF59 injected with soluble antigen gD2 from type 2 herpes simplex virus (HSV) and to compare the distribution of gD2 injected with or without MF59. At 4 h, 36% of the injected dose of labeled MF59 was in the quadriceps muscle and about 50% was in the inguinal fat surrounding the muscle. Half of the initial amount of labeled MF59 in muscle was detected 42 h after injection. The amount of labeled MF59 in the draining lymph nodes was maximal 2 d after injection, which represented 0.1-0.3% of the injected dose. At 4 h, 12% of the injected dose of labeled gD2 was found in the muscle. The presence of MF59 did not significantly modify the distribution of gD2. The results indicate that MF59 and gD2 distribute and are cleared independently after i.m. injection. Importantly, MF59 is unlikely to have a repository effect, whereby it slowly releases the antigen.  相似文献   

4.
We studied the general safety, biodistribution and persistence of a naked DNA plasmid in a rat model using intramuscular, intradermal and intravenous routes of administration. Clinical signs were followed up throughout the study and at the necropsy. Tissue samples were collected at the necropsy at 2, 14 and 28 days after injection of 200 microg of plasmid DNA and analysed with validated quantitative polymerase chain reaction (QPCR). The plasmid (GTU-MultiHIV) was shown to be well tolerated and no clinical observations related to the vaccine were found. Within 2 days after the intramuscular and intradermal injections, the plasmid could be detected in the lymph nodes and also at 14 days in a few test animals. The quantitative PCR analysis indicated that in positive lymph nodes one of 15-213 dendritic cells could be carrying the plasmid. No plasmid was detected in gonads or brain samples in any of the study groups. In intramuscular and intradermal administration, low amounts of the plasmid DNA persisted at the injection site 28 days after the injection, whereas a complete clearance with intravenous route was observed already at 14 days. The results show that the GTU-MultiHIV plasmid is safe and suitable for human clinical trials.  相似文献   

5.
Toxicity, biodistribution and persistence of candidate HIV vaccines pTHr.HIVA, a recombinant DNA, and MVA.HIVA, a recombinant modified vaccinia virus Ankara, were determined in the Balb/c mouse. The mice were injected with either two doses of intramuscular pTHr.HIVA DNA (50 microg each, separated by an interval of 14 days), two doses of intradermal MVA.HIVA (10(6) plaque-forming units each, separated by an interval of 14 days), or a combination of the two vaccines, each given in two doses, in a prime-boost regimen. The study showed no significant toxic effects, either local or systemic, under any of these employed dosing regimens. With the exception of the sites of delivery, the vaccine-derived HIVA DNA sequences were undetectable 5 weeks after the last dosing. Thus, both the vaccines alone and in a combination were considered safe and suitable for the use in phase I trials in humans.  相似文献   

6.
Electroporation (EP) of either muscle or skin has proven to be an efficient method for increasing DNA-based vaccine delivery and immunogenicity in small and large animals. Previous comparative studies in large animals suggest that intramuscular (i.m.) DNA EP delivery appears to favor cellular immunity, while intradermal (i.d.) EP delivery may favor humoral immunity. While current EP devices are primarily designed either for i.m. or i.d. delivery, we developed a novel prototype Dual-Depth Device (DDD) for EP-mediated simultaneous i.d. and i.m. delivery of DNA-based vaccines with an attempt to elicit superior antibody and cellular immune responses. We performed comparisons of DDD EP delivery with standard i.d. EP, standard i.m. EP, and combined delivery of i.d. and i.m. EP at separate sites, for the ability to induce antigen-specific immune responses. In a guinea pig model using a SynCon™ DNA vaccine encoding the influenza virus H5 hemaglutinin (H5HA), vaccination via DDD or combined delivery induced higher antibody titers than via either i.d. or i.m. delivery alone. In a mouse model using a DNA vaccine encoding the nucleoprotein (NP) of influenza H1N1, the resulting trend of antibody responses was similar to that detected in guinea pig study. Importantly, cellular immune responses in the DDD or combined delivery groups were significantly stronger than that in either i.d. or i.m. delivery groups. We conclude that EP-mediated DNA-based vaccine delivery to both skin and muscle is superior to delivery to either tissue alone for induction of antigen-specific antibody and cellular immunity.  相似文献   

7.
Seo JY  Kim KH  Kim SG  Oh MJ  Nam SW  Kim YT  Choi TJ 《Vaccine》2006,24(7):1009-1015
Hirame rhabdovirus (HIRRV) is an important virus of cultured flounder (Paralichthys olivaceus). We tested the protective immunogenicity of DNA-based vaccines against this virus. Genes encoding the nucleocapsid protein (N) and the C-terminal half of the glycoprotein (G) were amplified by RT-PCR and separately cloned into the eukaryotic expression vector pcDNA 3.1. The G protein expressed by transfected cells was detected by western blot analysis. PCR analyses demonstrated the presence of injected plasmids in fish muscle tissue at 14 days post injection. Immunocytochemistry of muscle tissue injected with the plasmid DNA showed expression of the target protein in myofibrils and sarcoplasm. Flounder fry with an average weight of 3 g were injected with 5 microg of plasmid DNA and challenged at 21 days after immunization. Fish injected with vector DNA or PBS showed >95% cumulative mortality by 16 days after inoculation with the virus. In contrast, fish injected with plasmids containing the N gene, G gene, or N + G gene mixture showed 70, 5, and 2.5% cumulative mortality, respectively. These results show that the G gene is effective for the induction of protective immunity against HIRRV infection in injected fish.  相似文献   

8.
《Vaccine》2022,40(2):192-195
Biodistribution studies of adenovirus-based vaccines support their clinical development by evaluating their spread and persistence following in vivo administration. AZD1222 (ChAdox1 nCov-19) is a replication-deficient non-human adenovirus-vectored vaccine for coronavirus disease 2019. In this nonclinical study, the biodistribution of AZD1222 was assessed in mice for 29 days following intramuscular injection. Results show that AZD1222 was safe and well tolerated, with a spread that was largely confined to administration sites and the proximal sciatic nerve, with low levels observed in sites that are involved in rapid clearance of particulates by the reticuloendothelial system. Accordingly, levels of AZD1222 decreased from Day 2 to Day 29, indicating clearance. There were no quantifiable levels of AZD1222 in the blood, brain, spinal cord, and reproductive tissue, suggesting a lack of widespread or long-term distribution of AZD1222 vector DNA throughout the body following its administration.  相似文献   

9.
In this work we have tested the in vivo antiviral activity of type I interferons (IFNs) in Atlantic salmon by injecting presmolts intramuscularly (i.m.) with plasmids encoding IFNa1, IFNb or IFNc under the control of a CMV promoter, and measured expression of antiviral genes in organs and protection against infection with infectious salmon anemia virus (ISAV) infection. All three IFN plasmids induced expression of antiviral genes (Mx, Viperin, ISG15 and IFIT5) at the muscle injection site while the control plasmid had little effect. Only IFNb and IFNc plasmids induced expression of antiviral genes in head kidney, liver and heart. This suggests that IFNb and IFNc are distributed systemically while IFNa1 is active only at the injection site. Injection of IFNc plasmid was found to induce expression of antiviral genes and receptors for virus RNA (RIG-I, TLR3 and TLR7) in head kidney from 1 to at least 8 weeks. Immunoblotting showed increased expression of ISG15 and Mx protein in liver with time during this time period. Challenge of presmolts with ISAV 8 weeks after injection of IFN plasmids, showed strong protection of the IFNc plasmid injected fish, low protection of the IFNb plasmid injected fish and no protection of the IFNa1 plasmid injected fish. Clues to the difference in protection obtained with IFNb and IFNc plasmids were found by immunohistochemical and immunoblot studies of Mx protein, which indicated that IFNc plasmid stimulated stronger Mx protein expression in heart tissues and liver endothelial cells than IFNb plasmid. Taken together, these data suggest that i.m. injection of the IFNc expression plasmid may be a new method for protecting Atlantic salmon against virus infection.  相似文献   

10.
11.
This study has examined the persistence, distribution and pathological changes following intramuscular administration of Semliki Forest virus (SFV) vaccine vectors in mice and chickens. Administration of recombinant SFV RNA particles showed persistence at the injection site of mice up to 7 days, transient detection in secondary lymphoid organs and no dissemination to distal sites. In contrast, administration of a layered SFV DNA/RNA vector and a conventional standard naked DNA vector resulted in long-term persistence at the injection site, plasmid DNA being detected at 8 months post-inoculation in mice. Plasmid DNA was found distributed throughout the body, and tissues distal from the site of injection were positive up to 3 months. A similar pattern was observed in chickens. Mild pathological changes were observed at the injection site only, and plasmid DNA or recombinant RNA was not detected in mouse foetuses. These findings indicate that SFV-based vectors have the potential to be developed as safe vaccines.  相似文献   

12.
[目的]用人巨细胞病毒(HCMV)IE1核酸疫苗pcDNA3.1(-)-IE1免疫BALB/c小鼠,初步研究其产生的体液免疫和细胞免疫应答水平。[方法]将pcDNA3.1(-)-IE1通过肌肉注射免疫BALB/c小鼠,通过PCR测定和免疫组化检测其在肌细胞中的表达,细胞因子测定、淋巴细胞转化实验检测免疫效果。[结果]PCR检测到与IE1大小一致的片段,免疫组化结果显示IE1基因在小鼠肌细胞中表达IE1目的蛋白。小鼠脾淋巴细胞经PHA刺激后,实验组IL-4、IL-2、IFN-γ含量以及淋巴细胞转化率显著增高,与对照组比较差异有统计学意义(P﹤0.05)。[结论]pcDNA3.1(-)-IE1核酸疫苗能在BALB/c小鼠肌细胞中稳定存在并能表达HCMV IE1蛋白,pcDNA3.1(-)-IE1核酸疫苗可诱导BALB/c小鼠脾细胞分泌IL-4、IL-2、IFN-r并刺激BALB/c小鼠脾细胞增殖。  相似文献   

13.
Forns X  Emerson SU  Tobin GJ  Mushahwar IK  Purcell RH  Bukh J 《Vaccine》1999,17(15-16):1992-2002
We analyzed the humoral immune response elicited by hepatitis C virus (HCV) E2 protein expressed in vivo after injection of plasmid DNA into mice and rhesus macaques. Three plasmids were used for immunization: a plasmid containing the entire sequence of the E2 and p7 genes (pE2); a plasmid encoding a truncated form of the E2 protein targeted to the cell surface (pE2surf); a control plasmid (pDisplay) lacking an HCV insert. Each plasmid was injected intramuscularly into 5 mice and intraepidermally (via gene gun) into 5 mice. Immunization was repeated three times at three week intervals. Five macaques were injected intramuscularly (two with pE2, two with pE2surf and one with pDisplay) and immunization was repeated after 8 weeks. All mice immunized via gene gun with pE2 or pE2surf developed anti-E2. The animals immunized with pE2surf developed an earlier and stronger humoral immune response than those immunized with pE2. Only 2 of the mice injected by the intramuscular route, both immunized with pE2surf, developed detectable anti-E2. One of the two macaques immunized with pE2 and both macaques immunized with pE2surf developed anti-E2; the humoral immune response was much stronger in the animals immunized with pE2surf. Our results suggest that presentation of HCV E2 on the cell surface may increase its immunogenicity while preserving its ability to react with antibodies generated during a natural infection.  相似文献   

14.
Hsieh MK  Wu CC  Lin TL 《Vaccine》2006,24(47-48):6955-6965
The purpose of the present study was to determine whether DNA vaccination by co-administration of DNA coding for chicken interferon-gamma (IFN-gamma) gene and DNA encoding for the VP243 gene of IBDV could enhance immune response and protection efficacy of chickens against challenge by IBDV. Plasmids carrying VP243 gene of IBDV strain variant E (VE) (P/VP243/E) and chicken IFN-gamma gene (P/cIFN-gamma) were constructed, respectively. One-day-old chickens were intramuscularly injected with P/VP243/E, or P/cIFN-gamma, or both once, twice, or three times into the thigh muscle of one leg or the thigh muscles of two separate legs at weekly intervals. Chickens were orally challenged with IBDV strain VE at 3 weeks of age and observed for 10 days. Chickens receiving two plasmids in the same site two times had significantly higher (P<0.05) bursal lesion scores and significantly lower (P<0.05) bursa weight/body weight ratios than those that only received P/VP243/E two or three times. Chickens inoculated with two plasmids separately in the thigh muscles of different legs or P/VP243/E two times had 33-50% protection and those receiving two plasmids in the same sites did not have any protection against IBD. The enzyme-linked immunosorbent assay (ELISA) and virus neutralization (VN) titers to IBDV of chickens in the groups with three doses of P/VP243/E were significantly higher (P<0.05) than those in groups receiving two doses of P/VP243/E or P/VP243/E and P/cIFN-gamma. Chickens protected by DNA vaccination did not have detectable IBDV antigen in the bursae as determined by immunofluorescent antibody assay (IFA). The results indicated that co-administration of plasmid encoding chicken IFN-gamma gene with plasmid encoding a large segment gene of the IBDV did not enhance immune response and protection against challenge by IBDV.  相似文献   

15.
Lodmell DL  Ray NB  Ulrich JT  Ewalt LC 《Vaccine》2000,18(11-12):1059-1066
Adjuvants are known to strongly enhance immune responses generated by traditional vaccines, but less is known about the effects of adjuvants on vaccination with DNA. In this study, we investigated the use of the immunostimulant monophosphoryl lipid A (MPL(R)) as an adjuvant, and analyzed three routes of DNA vaccination to determine if this adjuvant could enhance anti-rabies virus neutralizing antibody responses. Compared with antibody titers elicited with DNA only, antibody titers were enhanced after initial intradermal (i.d.) and gene gun immunizations with the combination of DNA and MPL(R). Antibody was not detected after primary intramuscular (i.m.) immunization unless MPL(R) was included with the DNA. Surprisingly, antibody titers of MPL(R)-treated mice decreased after i.d. or i.m. booster vaccinations, but increased after gene gun booster vaccinations. In contrast to these varied responses, booster immunizations without MPL(R) via the three different routes consistently increased antibody titers. All mice with detectable levels of neutralizing antibody at the time of challenge survived virus infection. There was no difference in the survival rate between groups of mice that received similar vaccinations with MPL(R)/DNA or DNA only. The data suggest that MPL(R) can enhance the neutralizing antibody response when used with the initial injection of DNA. Suppression of neutralizing antibody responses after i.d. or i.m. booster vaccinations that included MPL(R) suggests that the number of vaccinations, and the route of vaccination, should be carefully considered when MPL(R) is used with DNA vaccines.  相似文献   

16.
Immunization with naked DNA has been analyzed in two critical variables: the site of injection and the cellular compartment to which the coded protein is directed. The gene for the full length of the glycoprotein D (gD) of HSV-2 under the control of the citomegalovirus (CMV) promoter was injected via the intradermal (i.d.) or the intramuscular (i.m.) routes in mice. Immunization in the quadricep muscle was superior to the intradermal immunization in the footpads. A stronger activation of IFN-γ-secreting cells in the spleen and draining lymph nodes (DLN) was induced, resulting in a more efficient protection against an intravaginal challenge. In order to analyze the effect of the cellular localizations of the coded protein, the DNA for the truncated form of the gD (ΔgD) was injected via the i.m. route. Immunization with a vector encoding for ΔgD resulted in higher antibody levels in serum and vaginal washes than immunization with the gene for the full length gD. However, immunization with the ΔgD DNA elicited a much weaker cell-mediated immune response and was inferior to gD DNA in providing protection against a lethal intravaginal challenge with HSV. Co-injection of an expression cassette for the granulocyte-macrophage colony-stimulating factor (GM-CSF) increased both the humoral and cell-mediated immune response with both gD and ΔgD. A strong activation of IL-4-secreting cells was observed in the spleen and DLN together with an increase in the number of IFN-γ-secreting cells. In addition, a reduction in the vaginal virus titers after an intravaginal challenge was observed in mice co-injected with the GM-CSF gene as compared to those immunized with pCDNAgD only.  相似文献   

17.
Dose—response relationships were investigated between dose of influenza virus haemagglutinin (HA) or nucleoprotein (NP) DNA vaccines, and immunogenicity and protective efficacy based on humoral and cellular immunity. In mice, intramuscular (i.m.) injection of HA or NP DNA, at doses of 100 ng to 1 μg, was found to generate haemagglutination inhibiting (HI) antibodies and cytotoxic T-lymphocytes, respectively, and provide protection in influenza virus challenge models. A direct correlation between the amount of DNA injected and the level of HI antibody was observed. In non-human primates, high-titre neutralizing antibodies were induced in animals vaccinated with as little as 10 μg of HA DNA. These results indicate that low doses of DNA administered by i.m. injection provide protective efficacy against influenza.  相似文献   

18.
19.
Calves were inoculated with the bovine herpes virus 1 (BHV-1) vaccine strain (RLB 106), which is a temperature sensitive mutant. The route of inoculation was intranasal instillation or intramuscular (i.m.) injection (flank or neck). As a control, five calves were given placebo by i.m. injection of the neck. Regardless of the infection route, clinical symptoms did not occur. However, BHV-1 neutralizing antibodies were detected after inoculation demonstrating that sero-conversion occurred. At 60 days post-inoculation, dexamethasone was given by i.m. injection to attempt reactivation of RLB 106. Only those calves inoculated by the intranasal route shed virus leading to an increase in BHV-1 specific antibodies. As expected, viral DNA and the latency related-RNA were detected in trigeminal ganglia (TG) of calves inoculated by the intranasal route. In contrast, viral nucleic acid was not detected in TG of calves inoculated by the i.m. route or in calves inoculated with placebo. In cervical ganglia or sacral dorsal root ganglia, viral nucleic acid was not consistently detected. This study provides evidence that efficient latency and reactivation does not occur following i.m. inoculation. Since serum-neutralizing antibodies were detected in all inoculated calves, i.m. inoculation led to sero-conversion.  相似文献   

20.
Novel biocompatible core-shell cationic nanoparticles, composed of an inner hard core of poly(methylmethacrylate) (PMMA) and a hydrophilic tentacular shell bearing positively charged groups and poly(ethyleneglycol) chains covalently bound to the core, were prepared by emulsion polymerization and characterized in vitro and in vivo for DNA vaccine applications. The nanoparticles reversibly adsorbed large amounts of DNA, mainly through electrostatic interactions, preserved its functional structure, efficiently delivered it intracellularly, and were not toxic in vitro or in mice. Furthermore, two intramuscular (i.m.) immunizations (4 weeks apart) with a very low dose (1 microg) of the plasmid pCV-tat delivered by these nanoparticles followed by one or two protein boosts induced significant antigen-specific humoral and cellular responses and greatly increased Th1-type T cell responses and CTLs against HIV-1 Tat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号