首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Reactive oxygen species (ROS) contribute to myocardial protection during ischemic preconditioning, but the role of the ROS in protection against ischemic injury produced by volatile anesthetics has only recently been explored. We tested the hypothesis that ROS mediate isoflurane-induced preconditioning in vivo. METHODS: Pentobarbital-anesthetized rabbits were instrumented for measurement of hemodynamics and were subjected to a 30 min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive vehicle (0.9% saline), or the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptopropionyl glycine (2-MPG; 1 mg. kg(-1).min(-1)), in the presence or absence of 1.0 minimum alveolar concentration (MAC) isoflurane. Isoflurane was administered for 30 min and then discontinued 15 min before coronary artery occlusion. A fluorescent probe for superoxide anion production (dihydroethidium, 2 mg) was administered in the absence of the volatile anesthetic or 5 min before exposure to isoflurane in 2 additional groups (n = 8). Myocardial infarct size and superoxide anion production were assessed using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. RESULTS: Isoflurane (P < 0.05) decreased infarct size to 24 +/- 4% (mean +/- SEM; n = 10) of the left ventricular area at risk compared with control experiments (43 +/- 3%; n = 8). NAC (43 +/- 3%; n = 7) and 2-MPG (42 +/- 5%; n = 8) abolished this beneficial effect, but had no effect on myocardial infarct size (47 +/- 3%; n = 8 and 46 +/- 3; n = 7, respectively) when administered alone. Isoflurane increased superoxide anion production as compared with control experiments (28 +/- 12 -6 +/- 9 fluorescence units; P < 0.05). CONCLUSIONS: The results indicate that ROS produced following administration of isoflurane contribute to protection against myocardial infarction in vivo.  相似文献   

2.
Background: Whether the opening of mitochondrial adenosine triphosphate-regulated potassium (KATP) channels is a trigger or an end effector of anesthetic-induced preconditioning is unknown. We tested the hypothesis that the opening of mitochondrial KATP channels triggers isoflurane-induced preconditioning by generating reactive oxygen species (ROS) in vivo.

Methods: Pentobarbital-anesthetized rabbits were subjected to a 30-min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive a vehicle (0.9% saline) or the selective mitochondrial KATP channel blocker 5-hydroxydecanoate (5-HD) alone 10 min before or immediately after a 30-min exposure to 1.0 minimum alveolar concentration (MAC) isoflurane. In another series of experiments, the fluorescent probe dihydroethidium was used to assess superoxide anion production during administration of 5-HD or the ROS scavengers N-acetylcysteine or N-2-mercaptopropionyl glycine (2-MPG) in the presence or absence of 1.0 MAC isoflurane. Myocardial infarct size and superoxide anion production were measured using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively.

Results: Isoflurane (P < 0.05) decreased infarct size to 19 +/- 3% (mean +/- SEM) of the left ventricular area at risk as compared to the control (38 +/- 4%). 5-HD administered before but not after isoflurane abolished this beneficial effect (37 +/- 4% as compared to 24 +/- 3%). 5-HD alone had no effect on infarct size (42 +/- 3%). Isoflurane increased fluorescence intensity. Pretreatment with N-acetylcysteine, 2-MPG, or 5-HD before isoflurane abolished increases in fluorescence, but administration of 5-HD after isoflurane only partially attenuated increases in fluorescence produced by the volatile anesthetic agent.  相似文献   


3.
BACKGROUND: Whether the opening of mitochondrial adenosine triphosphate-regulated potassium (K(ATP)) channels is a trigger or an end effector of anesthetic-induced preconditioning is unknown. We tested the hypothesis that the opening of mitochondrial K(ATP) channels triggers isoflurane-induced preconditioning by generating reactive oxygen species (ROS) in vivo. METHODS: Pentobarbital-anesthetized rabbits were subjected to a 30-min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive a vehicle (0.9% saline) or the selective mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD) alone 10 min before or immediately after a 30-min exposure to 1.0 minimum alveolar concentration (MAC) isoflurane. In another series of experiments, the fluorescent probe dihydroethidium was used to assess superoxide anion production during administration of 5-HD or the ROS scavengers N-acetylcysteine or N-2-mercaptopropionyl glycine (2-MPG) in the presence or absence of 1.0 MAC isoflurane. Myocardial infarct size and superoxide anion production were measured using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. RESULTS: Isoflurane (P < 0.05) decreased infarct size to 19 +/- 3% (mean +/- SEM) of the left ventricular area at risk as compared to the control (38 +/- 4%). 5-HD administered before but not after isoflurane abolished this beneficial effect (37 +/- 4% as compared to 24 +/- 3%). 5-HD alone had no effect on infarct size (42 +/- 3%). Isoflurane increased fluorescence intensity. Pretreatment with N-acetylcysteine, 2-MPG, or 5-HD before isoflurane abolished increases in fluorescence, but administration of 5-HD after isoflurane only partially attenuated increases in fluorescence produced by the volatile anesthetic agent. CONCLUSIONS: The results indicate that mitochondrial K(ATP) channel opening acts as a trigger for isoflurane-induced preconditioning by generating ROS in vivo.  相似文献   

4.
Mechanisms of isoflurane-induced myocardial preconditioning in rabbits   总被引:29,自引:0,他引:29  
BACKGROUND: Isoflurane has cardioprotective effects that mimic the ischemic preconditioning phenomenon. Because adenosine triphosphate-sensitive potassium channels and adenosine receptors are implicated in ischemic preconditioning, the authors wanted to determine whether the preconditioning effect of isoflurane is mediated through these pathways. METHODS: Myocardial infarct size was measured in seven groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and controls received no pretreatment. An ischemia-preconditioned group was pretreated with 5 min of coronary occlusion and 15 min of reperfusion. An isoflurane-preconditioned group was pretreated with 15 min end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-glyburide group was administered 0.33 mg/kg glyburide intravenously before isoflurane pretreatment. An isoflurane plus 8-(p-sulfophenyl)-theophylline (SPT) group received 7.5 mg/kg SPT intravenously before isoflurane. Additional groups were administered identical doses of glyburide or SPT, but they were not pretreated with isoflurane. Infarct size and area at risk were defined by staining. Data were analyzed by analysis of variance or covariance. RESULTS: Infarct size, expressed as a percentage of the area at risk (IS:AR) was 30.2+/-11% (SD) in controls. Ischemic preconditioning and isoflurane preexposure reduced myocardial infarct size significantly, to 8.3+/-5% and 13.4+/-8.2% (P<0.05), respectively. Both glyburide and SPT pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 30.0+/-9.1% and 29.2+/-12.6%, respectively; P = not significant). Neither glyburide nor SPF alone increased infarct size (IS:AR = 33.9+/-7.6% and 31.8+/-12.7%, respectively; P = not significant). CONCLUSIONS: Glyburide and SPT abolished the preconditioning-like effects of isoflurane but did not increase infarct size when administered in the absence of isoflurane. Isoflurane-induced preconditioning and ischemia-induced preconditioning share similar mechanisms, which include activation of adenosine triphosphate-sensitive potassium channels and adenosine receptors.  相似文献   

5.
Background: Isoflurane exerts cardioprotective effects that mimic the ischemic preconditioning phenomenon. Generation of free radicals is implicated in ischemic preconditioning. The authors investigated whether isoflurane-induced preconditioning may involve release of free radicals.

Methods: Sixty-one [alpha]-chloralose-anesthetized rabbits were instrumented for measurement of left ventricular (LV) pressure (tip-manometer), cardiac output (ultrasonic flowprobe), and myocardial infarct size (triphenyltetrazolium staining). All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. Rabbits of all six groups underwent a treatment period consisting of either no intervention for 35 min (control group, n = 11) or 15 min of isoflurane inhalation (1 minimum alveolar concentration end-tidal concentration) followed by a 10-min washout period (isoflurane group, n = 12). Four additional groups received the radical scavenger N-(2-mercaptoproprionyl)glycine (MPG; 1 mg [middle dot] kg-1 [middle dot] min-1) or Mn(III)tetrakis(4-benzoic acid)porphyrine chloride (MnTBAP; 100 [mu]g [middle dot] kg-1 [middle dot] min-1) during the treatment period with (isoflurane + MPG; n = 11; isoflurane + MnTBAP, n = 9) or without isoflurane inhalation (MPG, n = 11; MnTBAP, n = 7).

Results: Hemodynamic baseline values were not significantly different between groups (LV pressure, 97 +/- 17 mmHg [mean +/- SD]; cardiac output, 228 +/- 61 ml/min). During coronary artery occlusion, LV pressure was reduced to 91 +/- 17% of baseline and cardiac output to 94 +/- 21%. After 2 h of reperfusion, recovery of LV pressure and cardiac output was not significantly different between groups (LV pressure, 83 +/- 20%; cardiac output, 86 +/- 23% of baseline). Infarct size was reduced from 49 +/- 17% of the area at risk in controls to 29 +/- 19% in the isoflurane group (P = 0.04). MPG and MnTBAP themselves had no effect on infarct size (MPG, 50 +/- 14%; MnTBAP, 56 +/- 15%), but both abolished the preconditioning effect of isoflurane (isoflurane + MPG, 50 +/- 24%, P = 0.02; isoflurane + MnTBAP, 55 +/- 10%, P = 0.001).  相似文献   


6.
Mechanisms of Isoflurane-induced Myocardial Preconditioning in Rabbits   总被引:11,自引:0,他引:11  
Background: Isoflurane has cardioprotective effects that mimic the ischemic preconditioning phenomenon. Because adenosine triphosphate-sensitive potassium channels and adenosine receptors are implicated in ischemic preconditioning, the authors wanted to determine whether the preconditioning effect of isoflurane is mediated through these pathways.

Methods: Myocardial infarct size was measured in seven groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and controls received no pretreatment. An ischemia-preconditioned group was pretreated with 5 min of coronary occlusion and 15 min of reperfusion. An isoflurane-preconditioned group was pretreated with 15 min end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-glyburide group was administered 0.33 mg/kg glyburide intravenously before isoflurane pretreatment. An isoflurane plus 8-(p-sulfophenyl)-theophylline (SPT) group received 7.5 mg/kg SPT intravenously before isoflurane. Additional groups were administered identical doses of glyburide or SPT, but they were not pretreated with isoflurane. Infarct size and area at risk were defined by staining. Data were analyzed by analysis of variance or covariance.

Results: Infarct size, expressed as a percentage of the area at risk (IS:AR) was 30.2 +/- 11% (SD) in controls. Ischemic preconditioning and isoflurane preexposure reduced myocardial infarct size significantly, to 8.3 +/- 5% and 13.4 +/- 8.2% (P < 0.05), respectively. Both glyburide and SPT pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 30.0 +/- 9.1% and 29.2 +/- 12.6%, respectively; P = not significant). Neither glyburide nor SPT alone increased infarct size (IS:AR = 33.9 +/- 7.6% and 31.8 +/- 12.7%, respectively; P = not significant).  相似文献   


7.
BACKGROUND: Hyperglycemia generates reactive oxygen species and prevents isoflurane-induced preconditioning. The authors tested the hypothesis that scavenging reactive oxygen species with N-acetylcysteine will restore protection against myocardial infarction produced by isoflurane in vivo. METHODS: Barbiturate-anesthetized dogs (n = 45) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size and coronary collateral blood flow were measured with triphenyltetrazolium staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of 0.9% saline or 15% dextrose in water to increase blood glucose concentrations to 600 mg/dl (hyperglycemia) in the absence or presence of isoflurane (1.0 minimum alveolar concentration) with or without pretreatment with N-acetylcysteine (150 mg/kg i.v.) in six experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion. RESULTS: Myocardial infarct size was 27 +/- 2% (n = 8) of the left ventricular area at risk in control experiments. Isoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%; n = 7). Hyperglycemia alone did not alter infarct size (29 +/- 3%; n = 7) but abolished the protective effect of isoflurane (25 +/- 2%; n = 8). N-Acetylcysteine alone did not affect infarct size (28 +/- 2%; n = 8) but restored isoflurane-induced cardioprotection during hyperglycemia (10 +/- 1%; n = 7). CONCLUSIONS: Acute hyperglycemia abolishes reductions in myocardial infarct size produced by isoflurane, but N-acetylcysteine restores these beneficial effects. The results suggest that excessive quantities of reactive oxygen species generated during hyperglycemia impair isoflurane-induced preconditioning in dogs.  相似文献   

8.
Background: Adenosine triphosphate-regulated potassium channels mediate protection against myocardial infarction produced by volatile anesthetics and opioids. We tested the hypothesis that morphine enhances the protective effect of isoflurane by activating mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors.

Methods: Barbiturate-anesthetized rats (n = 131) were instrumented for measurement of hemodynamics and subjected to a 30 min coronary artery occlusion followed by 2 h of reperfusion. Myocardial infarct size was determined using triphenyltetrazolium staining. Rats were randomly assigned to receive 0.9% saline, isoflurane (0.5 and 1.0 minimum alveolar concentration [MAC]), morphine (0.1 and 0.3 mg/kg), or morphine (0.3 mg/kg) plus isoflurane (1.0 MAC). Isoflurane was administered for 30 min and discontinued 15 min before coronary occlusion. In eight additional groups of experiments, rats received 5-hydroxydecanoic acid (5-HD; 10 mg/kg) or naloxone (6 mg/kg) in the presence or absence of isoflurane, morphine, and morphine plus isoflurane.

Results: Isoflurane (1.0 MAC) and morphine (0.3 mg/kg) reduced infarct size (41 +/- 3%; n = 13 and 38 +/- 2% of the area at risk; n = 10, respectively) as compared to control experiments (59 +/- 2%; n = 10). Morphine plus isoflurane further decreased infarct size to 26 +/- 3% (n = 11). 5-HD and naloxone alone did not affect infarct size, but abolished cardioprotection produced by isoflurane, morphine, and morphine plus isoflurane.  相似文献   


9.
BACKGROUND: Whether volatile anesthetics produce a second window of preconditioning is unclear. The authors tested the hypothesis that isoflurane causes delayed preconditioning against infarction and, further, that cyclooxygenase (COX)-2 mediates this beneficial effect. METHODS: Rabbits (n = 43) were randomly assigned to receive 0.9% intravenous saline, the selective COX-2 inhibitor celecoxib (3 mg/kg intraperitoneal) five times over 2 days before coronary artery occlusion and reperfusion, or isoflurane (1.0 minimum alveolar concentration) 24 h before acute experimentation in the absence or presence of celecoxib pretreatment. Two additional groups of rabbits received a single dose of celecoxib either 30 min before or 21.5 h after administration of isoflurane. Rabbits were then instrumented for measurement of hemodynamics and underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Myocardial infarct size was measured using triphenyltetrazolium staining. Western immunoblotting to examine COX-1 and COX-2 protein expression was performed in rabbit hearts that had or had not been exposed to isoflurane. RESULTS: Isoflurane significantly (P < 0.05) reduced infarct size (22 +/- 3% of the left ventricular area at risk) as compared with control (39 +/- 2%). Celecoxib alone had no effect on infarct size (36 +/- 4%) but abolished isoflurane-induced cardioprotection (36 +/- 4%). A single dose of celecoxib administered 2.5 h before coronary occlusion and reperfusion also abolished the delayed protective effects of isoflurane (36 +/- 4%), but celecoxib given 30 min before exposure to isoflurane had no effect (22 +/- 4%). Isoflurane did not alter COX-1 and COX-2 protein expression. CONCLUSIONS: The results indicate that the volatile anesthetic isoflurane produces a second window of preconditioning against myocardial ischemia and reperfusion injury. Furthermore, COX-2 is an important mediator of isoflurane-induced delayed preconditioning.  相似文献   

10.
Background: Hyperglycemia generates reactive oxygen species and prevents isoflurane-induced preconditioning. The authors tested the hypothesis that scavenging reactive oxygen species with N-acetylcysteine will restore protection against myocardial infarction produced by isoflurane in vivo.

Methods: Barbiturate-anesthetized dogs (n = 45) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size and coronary collateral blood flow were measured with triphenyltetrazolium staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of 0.9% saline or 15% dextrose in water to increase blood glucose concentrations to 600 mg/dl (hyperglycemia) in the absence or presence of isoflurane (1.0 minimum alveolar concentration) with or without pretreatment with N-acetylcysteine (150 mg/kg IV) in six experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion.

Results: Myocardial infarct size was 27 +/- 2% (n = 8) of the left ventricular area at risk in control experiments. Isoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%; n = 7). Hyperglycemia alone did not alter infarct size (29 +/- 3%; n = 7) but abolished the protective effect of isoflurane (25 +/- 2%; n = 8). N-Acetylcysteine alone did not affect infarct size (28 +/- 2%; n = 8) but restored isoflurane-induced cardioprotection during hyperglycemia (10 +/- 1%; n = 7).  相似文献   


11.
PURPOSE: To investigate the role of the adenosine A1 receptor in the rapid tolerance to cerebral ischemia induced by isoflurane preconditioning. METHODS: Seventy-five rats were randomly assigned into five groups (n = 15 each): Control, 8-cyclopentyl-1,3-dipropulxanthine (DPCPX), Isoflurane, DPCPX+Isoflurane and Vehicle+Isoflurane groups. All animals underwent right middle cerebral artery occlusion (MCAO) for two hours. Isoflurane preconditioning was conducted one hour before MCAO in Isoflurane, DPCPX+Isoflurane and Vehicle+Isoflurane groups by exposing the animals to 1.5% isoflurane in 98% oxygen for one hour. In the Control and DPCPX groups, animals were exposed to 98% oxygen one hour before MCAO for one hour. A selective adenosine A1 receptor antagonist, DPCPX, was administered (0.1 mg x kg(-1)) 15 min before isoflurane/oxygen exposure in the DPCPX and DPCPX+Isoflurane groups to evaluate the effect of adenosine A1 receptor antagonist on isoflurane preconditioning. Dimethyl sulfoxide, the solvent of DPCPX, was administered (1 mL x kg(-1)) 15 min before isoflurane exposure in the Vehicle+Isoflurane group. Neurological deficit scores and brain infarct volumes were evaluated 24 hr after reperfusion. RESULTS: Animals in the Isoflurane and Vehicle+Isoflurane groups developed lower neurological deficit scores and smaller brain infarct volumes than the Control group (P < 0.01). Animals in the DPCPX+Isoflurane group developed higher neurological deficit scores and larger brain infarct volumes than the Isoflurane and Vehicle+Isoflurane groups (P < 0.01). CONCLUSION: The present study demonstrates that preconditioning with isoflurane reduces focal cerebral ischemic injury in rats, and the adenosine A1 receptor antagonist (DPCPX) attenuates the neuroprotection induced by isoflurane preconditioning.  相似文献   

12.
Background: Whether volatile anesthetics produce a second window of preconditioning is unclear. The authors tested the hypothesis that isoflurane causes delayed preconditioning against infarction and, further, that cyclooxygenase (COX)-2 mediates this beneficial effect.

Methods: Rabbits (n = 43) were randomly assigned to receive 0.9% intravenous saline, the selective COX-2 inhibitor celecoxib (3 mg/kg intraperitoneal) five times over 2 days before coronary artery occlusion and reperfusion, or isoflurane (1.0 minimum alveolar concentration) 24 h before acute experimentation in the absence or presence of celecoxib pretreatment. Two additional groups of rabbits received a single dose of celecoxib either 30 min before or 21.5 h after administration of isoflurane. Rabbits were then instrumented for measurement of hemodynamics and underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Myocardial infarct size was measured using triphenyltetrazolium staining. Western immunoblotting to examine COX-1 and COX-2 protein expression was performed in rabbit hearts that had or had not been exposed to isoflurane.

Results: Isoflurane significantly (P < 0.05) reduced infarct size (22 +/- 3% of the left ventricular area at risk) as compared with control (39 +/- 2%). Celecoxib alone had no effect on infarct size (36 +/- 4%) but abolished isoflurane-induced cardioprotection (36 +/- 4%). A single dose of celecoxib administered 2.5 h before coronary occlusion and reperfusion also abolished the delayed protective effects of isoflurane (36 +/- 4%), but celecoxib given 30 min before exposure to isoflurane had no effect (22 +/- 4%). Isoflurane did not alter COX-1 and COX-2 protein expression.  相似文献   


13.
BACKGROUND: Adenosine triphosphate-regulated potassium channels mediate protection against myocardial infarction produced by volatile anesthetics and opioids. We tested the hypothesis that morphine enhances the protective effect of isoflurane by activating mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors. METHODS: Barbiturate-anesthetized rats (n = 131) were instrumented for measurement of hemodynamics and subjected to a 30 min coronary artery occlusion followed by 2 h of reperfusion. Myocardial infarct size was determined using triphenyltetrazolium staining. Rats were randomly assigned to receive 0.9% saline, isoflurane (0.5 and 1.0 minimum alveolar concentration [MAC]), morphine (0.1 and 0.3 mg/kg), or morphine (0.3 mg/kg) plus isoflurane (1.0 MAC). Isoflurane was administered for 30 min and discontinued 15 min before coronary occlusion. In eight additional groups of experiments, rats received 5-hydroxydecanoic acid (5-HD; 10 mg/kg) or naloxone (6 mg/kg) in the presence or absence of isoflurane, morphine, and morphine plus isoflurane. RESULTS: Isoflurane (1.0 MAC) and morphine (0.3 mg/kg) reduced infarct size (41 +/- 3%; n = 13 and 38 +/- 2% of the area at risk; n = 10, respectively) as compared to control experiments (59 +/- 2%; n = 10). Morphine plus isoflurane further decreased infarct size to 26 +/- 3% (n = 11). 5-HD and naloxone alone did not affect infarct size, but abolished cardioprotection produced by isoflurane, morphine, and morphine plus isoflurane. CONCLUSIONS: Combined administration of isoflurane and morphine enhances the protection against myocardial infarction to a greater extent than either drug alone. This beneficial effect is mediated by mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors in vivo.  相似文献   

14.
15.
Colchicine Inhibits Isoflurane-induced Preconditioning   总被引:1,自引:0,他引:1  
Background: When administered before prolonged myocardial ischemia and reperfusion, isoflurane exerts potent cardioprotective effects similar to those inferred by ischemic preconditioning. To determine whether an intact cytoskeleton is critically important in isoflurane-induced preconditioning, the authors used a rabbit model in which isoflurane-induced myocardial preconditioning decreases myocardial infarct size (IS) substantially. In this model, the authors tested whether the microtubule depolymerizing agent, colchicine, would inhibit isoflurane-induced myocardial preconditioning.

Methods: Myocardial IS was measured in four groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and only the control group received no pretreatment. An isoflurane-preconditioned group was pretreated with 15 min of end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-colchicine group was administered 2 mg/kg colchicine intravenously before isoflurane pretreatment. A colchicine-control group was administered 2 mg/kg colchicine but no isoflurane pretreatment. Myocardial IS and area at risk (AR) were defined by staining. Data were analyzed by analysis of variance or covariance.

Results: Infarct size, expressed as a percentage of AR (IS:AR) was 33.6% +/- 8.8% (SD) in the control group. Isoflurane preexposure reduced myocardial IS:AR significantly, to 11.8% +/- 9.1%. Colchicine pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 32.6% +/- 8.7%). Colchicine alone did not alter IS (IS:AR = 27.6% +/- 7.1%;P= not significant).  相似文献   


16.
BACKGROUND: The authors tested the hypotheses that protein kinase C (PKC)-specific isoform translocation and Src protein tyrosine kinase (PTK) activation play important roles in isoflurane-induced preconditioning in vivo. METHODS: Rats (n = 125) instrumented for measurement of hemodynamics underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion and received 0.9% saline (control); PKC inhibitors chelerythrine (5 mg/kg), rottlerin (0.3 mg/kg), or PKC-epsilonV1-2 peptide (1 mg/kg); PTK inhibitors lavendustin A (1 mg/kg) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; 1 mg/kg); mitochondrial adenosine triphosphate-sensitive potassium channel antagonist 5-hydroxydecanote (10 mg/kg); or reactive oxygen species scavenger N-acetylcysteine (150 mg/kg) in the absence and presence of a 30-min exposure to isoflurane (1.0 minimum alveolar concentration) in separate groups. Isoflurane was discontinued 15 min before coronary occlusion (memory period). Infarct size was determined using triphenyltetrazolium staining. Immunohistochemistry and confocal microscopic imaging were performed to examine PKC translocation in separate groups of rats. RESULTS: Isoflurane significantly (P < 0.05) reduced infarct size (40 +/- 3% [n = 13]) as compared with control experiments (58 +/- 2% [n = 12]). Chelerythrine, rottlerin, PKC-epsilonV1-2 peptide, lavendustin A, PP1, 5-hydroxydecanote, and N-acetylcysteine abolished the anti-ischemic actions of isoflurane (58 +/- 2% [n = 8], 50 +/- 3% [n = 9], 53 +/- 2% [n = 9], 59 +/- 3% [n = 6], 57 +/- 3% [n = 7], 60 +/- 3% [n = 7], and 53 +/- 3% [n = 6], respectively). Isoflurane stimulated translocation of the delta and epsilon isoforms of PKC to sarcolemmal and mitochondrial membranes, respectively. CONCLUSIONS: Protein kinase C-delta, PKC-epsilon, and Src PTK mediate isoflurane-induced preconditioning in the intact rat heart. Opening of mitochondrial adenosine triphosphate-sensitive potassium channels and generation of reactive oxygen species are upstream events of PKC activation in this signal transduction process.  相似文献   

17.
Colchicine inhibits isoflurane-induced preconditioning   总被引:9,自引:0,他引:9  
BACKGROUND: When administered before prolonged myocardial ischemia and reperfusion, isoflurane exerts potent cardioprotective effects similar to those inferred by ischemic preconditioning. To determine whether an intact cytoskeleton is critically important in isoflurane-induced preconditioning, the authors used a rabbit model in which isoflurane-induced myocardial preconditioning decreases myocardial infarct size (IS) substantially. In this model, the authors tested whether the microtubule depolymerizing agent, colchicine, would inhibit isoflurane-induced myocardial preconditioning. METHODS: Myocardial IS was measured in four groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and only the control group received no pretreatment. An isoflurane-preconditioned group was pretreated with 15 min of end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-colchicine group was administered 2 mg/kg colchicine intravenously before isoflurane pretreatment. A colchicine-control group was administered 2 mg/kg colchicine but no isoflurane pretreatment. Myocardial IS and area at risk (AR) were defined by staining. Data were analyzed by analysis of variance or covariance. RESULTS: Infarct size, expressed as a percentage of AR (IS:AR) was 33.6%+/-8.8% (SD) in the control group. Isoflurane preexposure reduced myocardial IS:AR significantly, to 11.8%+/-9.1%. Colchicine pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 32.6%+/-8.7%). Colchicine alone did not alter IS (IS:AR = 27.6%+/-7.1%; P = not significant). CONCLUSIONS: Colchicine abolished the preconditioning effect of isoflurane but did not increase IS when administered alone. An intact microtubular cytoskeleton is critically important in the process of volatile anesthetic-induced preconditioning.  相似文献   

18.
Background: The authors tested the hypotheses that protein kinase C (PKC)-specific isoform translocation and Src protein tyrosine kinase (PTK) activation play important roles in isoflurane-induced preconditioning in vivo.

Methods: Rats (n = 125) instrumented for measurement of hemodynamics underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion and received 0.9% saline (control); PKC inhibitors chelerythrine (5 mg/kg), rottlerin (0.3 mg/kg), or PKC-[epsilon]V1-2 peptide (1 mg/kg); PTK inhibitors lavendustin A (1 mg/kg) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; 1 mg/kg); mitochondrial adenosine triphosphate-sensitive potassium channel antagonist 5-hydroxydecanote (10 mg/kg); or reactive oxygen species scavenger N-acetylcysteine (150 mg/kg) in the absence and presence of a 30-min exposure to isoflurane (1.0 minimum alveolar concentration) in separate groups. Isoflurane was discontinued 15 min before coronary occlusion (memory period). Infarct size was determined using triphenyltetrazolium staining. Immunohistochemistry and confocal microscopic imaging were performed to examine PKC translocation in separate groups of rats.

Results: Isoflurane significantly (P < 0.05) reduced infarct size (40 +/- 3% [n = 13]) as compared with control experiments (58 +/- 2% [n = 12]). Chelerythrine, rottlerin, PKC-[epsilon]V1-2 peptide, lavendustin A, PP1, 5-hydroxydecanote, and N-acetylcysteine abolished the anti-ischemic actions of isoflurane (58 +/- 2% [n = 8], 50 +/- 3% [n = 9], 53 +/- 2% [n = 9], 59 +/- 3% [n = 6], 57 +/- 3% [n = 7], 60 +/- 3% [n = 7], and 53 +/- 3% [n = 6], respectively). Isoflurane stimulated translocation of the [delta] and [epsilon] isoforms of PKC to sarcolemmal and mitochondrial membranes, respectively.  相似文献   


19.
Brief exposure to isoflurane or repetitive, transient ischemia during early reperfusion after prolonged coronary artery occlusion protects against myocardial infarction by inhibiting the mitochondrial permeability transition pore (mPTP). Inhibition of mPTP during delayed ischemic preconditioning occurred concomitant with enhanced expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). We tested the hypothesis that Bcl-2 mediates myocardial protection by isoflurane or brief ischemic episodes during reperfusion in rabbits (n = 91) subjected to a 30-min left anterior descending coronary artery occlusion followed by 3 h reperfusion. Rabbits received 0.9% saline, isoflurane (0.5 or 1.0 minimum alveolar concentration, MAC) administered for 3 min before and 2 min after reperfusion, 3 cycles of postconditioning ischemia (10 or 20 s each) during early reperfusion, 0.5 MAC isoflurane plus 3 cycles of postconditioning ischemia (10 s), or the direct mPTP inhibitor cyclosporin A (CsA, 10 mg/kg) in the presence or absence of the selective Bcl-2 inhibitor HA14-1 (2 mg/kg, i.p.). Isoflurane (1.0, but not 0.5, MAC) and postconditioning ischemia (20 s but not 10 s) significantly (P < 0.05) reduced infarct size (mean +/- sd, 21% +/- 4%, 43% +/- 7%, 19% +/- 7%, and 39% +/- 11%, respectively, of left ventricular area at risk) as compared with control (44% +/- 4%). Isoflurane (0.5 MAC) plus 10 s postconditioning ischemia and CsA alone also exerted protection. HA14-1 alone did not affect infarct size nor block protection produced by CsA but abolished reductions in infarct size caused by 1.0 MAC isoflurane, 20 s postconditioning ischemia, and 0.5 MAC isoflurane plus 10 s postconditioning ischemia. The results suggest that Bcl-2 mediates isoflurane-induced and ischemic postconditioning by indirectly modulating mPTP activity in vivo.  相似文献   

20.
BACKGROUND: Both mitochondrial adenosine triphosphate-sensitive potassium (MKATP) channels (selectively blocked by 5-hydroxydecanoate) and stretch-activated channels (blocked by gadolinium) have been involved in the mechanism of ischemic preconditioning. Isoflurane can reproduce the protection afforded by ischemic preconditioning. We sought to determine whether isoflurane-induced preconditioning may involve MKATP and stretch-activated channels. METHODS: Anesthetized open-chest rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Before this, rabbits were randomized into one of six groups and underwent a treatment period consisting of either no intervention for 40 min (control group; n = 9) or 15 min of isoflurane inhalation (1.1% end tidal) followed by a 15-min washout period (isoflurane group; n = 9). The two groups received an intravenous bolus dose of either 5-hydroxydecanoate (5 mg/kg) or gadolinium (40 micromol/kg) before coronary occlusion and reperfusion (5-hydroxydecanoate, n = 9; gadolinium, n = 7). Two additional groups received 5-hydroxydecanoate or gadolinium before isoflurane exposure (isoflurane-5-hydroxydecanoate, n = 10; isoflurane-gadolinium, n = 8). Area at risk and infarct size were assessed by blue dye injection and tetrazolium chloride staining. RESULTS: Area at risk was comparable among the six groups (29 +/- 7, 30 +/- 5, 27 +/- 6, 35 +/- 7, 31 +/- 7, and 27 +/- 4% of the left ventricle in the control, isoflurane, isoflurane-5-hydroxydecanoate, 5-hydroxydecanoate, isoflurane-gadolinium, and gadolinium groups, respectively). Infarct size averaged 60 +/- 20% (SD) in untreated controls versus 54 +/- 27 and 65 +/- 15% of the risk zone in 5-hydroxydecanoate- and gadolinium-treated controls (P = nonsignificant). In contrast, infarct size in the isoflurane group was significantly reduced to 26 +/- 11% of the risk zone (P < 0.05 vs.control). Both 5-hydroxydecanoate and gadolinium prevented this attenuation: infarct size averaged 68 +/- 23 and 56 +/- 21% of risk zone in the isoflurane-5-hydroxydecanoate and isoflurane-gadolinium groups, respectively (P = nonsignificant vs.control). CONCLUSION: 5-Hydroxydecanoate and gadolinium inhibited pharmacologic preconditioning by isoflurane. This result suggests that MKATP channels and mechanogated channels are probably involved in this protective mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号