首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A computer-assisted neurosurgical navigational system has been developed which displays intraoperative manipulation on the preoperative computerized tomography (CT) scans or magnetic resonance (MR) images. The system consists of a three-dimensional digitizer, a personal computer, and an image-processing unit. Utilizing recently developed magnetic field modulation technology, the three-dimensional digitizer determines the spatial position and orientation angles of the resin probe, triangle-shaped pointer, or suction tube with a small attached magnetic field sensor. Four fiducial markers on the scalp were used to translate the spatial data of the probe onto the preoperative CT scans or MR images of the patient. With this frameless, armless navigational system, CT or MR-imaging stereotaxy can be applied to conventional open neurosurgery without limiting the operative field or interfering with the surgical procedures.  相似文献   

2.
We examined the effects of bilateral ibotenic acid lesions ofcat lateral suprasylvian (LS) cortex on motion perception. Catswere tested on tasks requiring integration of local directionalsignals, precise judgements of direction and extraction of structure-from-motion.All animals showed permanent deficits in integrating local motionsignals. These deficits were most pronounced in the presenceof directional noise and at larger spatial displacements. Inaddition, LS lesions produced a 2-fold loss in the accuracyof direction discrimination and large deficits in the perceptionof structure-from-motion. All of these losses were most severeduring the first few weeks of testing following the lesion.These findings demonstrate that LS cortex plays an importantrole in the processing of stimuli requiring integration of motioninformation and limits the spatial scale over which such integrationcan proceed. Partial improvements in performance with time and/ortraining may be indicative of post-operative plastic changesin neurons outside of LS cortex.  相似文献   

3.
Speed selectivity for optic flow in area 7a of the behaving macaque   总被引:3,自引:3,他引:0  
Area 7a, in the inferior parietal lobe, has been implicated in optic flow processing to obtain spatial information about the environment. Optic flow, angle-of-gaze and center-of-motion dependencies are already documented, but the selectivity of area 7a to speed is unknown. Such information is crucial as area 7a provides the final step in visual motion analysis that begins at the lateral geniculate nucleus and passes through MT, MST and LIP/VIP. Macaque area 7a neurons were tested with optic flows with speeds of 0.5-128 degrees /s. Of 161 neurons tested in four hemispheres of two adult male macaques, 53% (86/161) were speed selective at either the time of stimulus onset, at the end of the trial, or at both times. Speed selec- tivities resembling the basic filter types (band-pass, band-reject, high-pass, low-pass, broadband) were found. Area 7a neurons exhibited two novel properties not previously reported elsewhere. Speed selectivity was found to be dynamic in that many cells gained, lost or changed speed tuning over the course of a trial. In addition, speed dependence and optic flow selectivity interacted. For example, a cell could preferentially respond to one type of naviga- tional optic flow at a slow speed and a different navigational optic flow at a fast speed. The presence of speed selectivity combined with other properties of area 7a neurons indicates that these neurons may have a role in the concurrent representation of heading as well as multiple object speeds and directions.  相似文献   

4.
Implementation of a Vicom-VME image processing workstation for the frameless stereotactic operating microscope system has allowed an improved interpolation algorithm for more accurate reconstruction of three-dimensional data, the integration graphically of multimodality imaging information, an additional stereotactic graphics display outside of the microscope optics and optional three-dimensional displays through communication with a Convex mini-supercomputer. A precision-milled coupling for reproducible attachment of the spark gap bracket to the microscope has eliminated the need for that transformation calculation during each case. Clinical utility has been greatest in providing navigational guidance to small subcortical or deep lesions and in defining the extent of preoperatively planned resection of larger, infiltrating tumors. Mean accuracy in the past 17 cases has been 3.5-6.5 mm. The frameless methodology has also enabled extracranial stereotactic surgical procedures in 7 patients.  相似文献   

5.
The three-dimensional tracking pattern of the human patella   总被引:10,自引:0,他引:10  
A study was undertaken to provide data on the three-dimensional tracking pattern of the patella, relative to the femur, in human knee-joint specimens. For this purpose, a highly accurate roentgen stereophotogrammetric analysis (RSA) method was applied. The three-dimensional motion patterns of the tibia and the patella were measured and represented in terms of three translations and three rotations each, during knee flexion in neutral (unloaded), endorotated, and exorotated pathways. We found that the patella displays complex but consistent three-dimensional motion patterns during flexion, which include flexion rotation, medial rotation, wavering tilt, and a lateral shift relative to the femur. The motion patterns are very much affected by tibial rotations accompanying flexion.  相似文献   

6.
The primate posterior parietal cortex (PPC) plays an important role in representing and recalling spatial relationships and in the ability to orient visual attention. This is evidenced by the parietal activation observed in brain imaging experiments performed during visuo- spatial tasks, and by the contralateral neglect syndrome that often accompanies parietal lesions. Individual neurons in monkey parietal cortex respond vigorously to the appearance of single, behaviorally relevant stimuli, but little is known about how they respond to more complex visual displays. The current experiments addressed this issue by recording activity from single neurons in area 7a of the PPC in monkeys performing a spatial version of a match-to-sample task. The task required them to locate salient stimuli in multiple-stimulus displays and release a lever after a subsequent stimulus appeared at the same location. Neurons responded preferentially to the appearance of salient stimuli inside their receptive fields. The presence of multiple stimuli did not affect appreciably the spatial tuning of responses in the majority of neurons or the population code for the location of the salient stimulus. Responses to salient stimuli could be distinguished from background stimuli approximately 100 ms after the onset of the cue. These results suggest that area 7a neurons represent the location of the stimulus attracting the animal's attention and can provide the spatial information required for directing attention to a salient stimulus in a complex scene.  相似文献   

7.
Effects of surface cues on macaque inferior temporal cortical responses   总被引:1,自引:1,他引:0  
Humans are able to recognize objects when surface details, such as colour, texture and luminance gradients, are not available. By systematically eliminating colour, texture, shading, contrast and inner contours from given objects, we tested whether certain shape-selective inferior temporal cortex (IT) neurons of awake rhesus monkeys remain selective for these objects as the surface information is reduced. In psychophysical experiments, we established that the rhesus monkey can identify the shape of a coloured object largely independently of its surface characteristics and, to a lesser degree, of its inner contours. Shape selectivity of the neurons does not change when texture and shading are concealed. The responsiveness of the neurons is also affected by the removal of these surface attributes. The IT neurons were found to respond highly similarly to objects brighter or darker than their background. Selectivity for shape is preserved when the contrast is reversed. Deletion of the inner contours, outlining the main parts of the objects, did not affect the responses and selectivity of the IT neurons. These findings indicate that the IT can contribute to the invariant perception of objects having different surface details.  相似文献   

8.
Objects in the visual scene are defined by different cues such as colour and motion. Through the integration of these cues the visual system is able to utilize different sources of information, thus enhancing its ability to discriminate objects from their backgrounds. In the following experiments, we investigate the neural mechanisms of cue integration in the human. We show, using functional magnetic resonance imaging (fMRI), that both colour and motion defined shapes activate the lateral occipital complex (LOC) and that shapes defined by both colour and motion simultaneously activate the anterior-ventral margins of this area more strongly than shapes defined by either cue alone. This suggests that colour and motion cues are integrated in the LOC and possibly a neighbouring, more anterior, region. We support this result using an fMR adaptation technique, demonstrating that a region of the LOC adapts on repeated presentations of a shape regardless of the cue that is used to define it and even if the cue is varied. This result raises the possibility that the LOC contains cue-invariant neurons that respond to shapes regardless of the cue that is used to define them. We propose that such neurons could integrate signals from different cues, making them more responsive to objects defined by more than one cue, thus increasing the ability of the observer to recognize them.  相似文献   

9.
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.  相似文献   

10.
The neural substrates of biological motion perception: an fMRI study   总被引:4,自引:4,他引:0  
We used fMRI to identify the brain areas related to the perception of biological motion (4 T EPI; whole brain). In experiment 1, 10 subjects viewed biological motion (a human figure jumping up and down, composed of 21 dots), alternating with a control stimulus created by applying autoregressive models to the biological motion stimulus (such that the dots' speeds and amplitudes were preserved whereas their linking structure was not). The lengths of the stimulus bouts varied, and therefore the transitions between biological motion and control stimuli were unpredictable. Subjects had to indicate with a button press when each transition occurred. In a related biological motion task, subjects detected short (1 s) disturbances within these displays. We also examined the neural substrates of motion and shape perception, as well as motor imagery, to determine whether or not the cortical regions involved in these processes are also recruited during biological motion perception. Subjects viewed linear motion displays alternating with static dots and a series of common objects alternating with band-limited white noise patterns. Subjects also generated imagery of their own arm movements alternating with visual imagery of common objects. Biological motion specific BOLD signal was found within regions of the lingual gyrus at the cuneus border, showing little overlap with object recognition, linear motion or motion imagery areas. The lingual gyrus activation was replicated in a second experiment that also mapped retinotopic visual areas in three subjects. The results suggest that a region of the lingual gyrus within VP is involved in higher-order processing of motion information.  相似文献   

11.
To clarify the motion of the scaphoid, which exhibits unique movement among the carpal bones, three-dimensional motion analysis of the wrist was conducted. Three fresh-frozen cadavers were thawed, and three-dimensional measurement was carried out using two-directional radiography. Conventional two-dimensional measurement with unidirectional radiography was also carried out for comparison with the three-dimensional measurement. After measurement, the cadavers were dissected and the anatomical findings were correlated with results of measurement. During flexion-extension movement of the wrist, the scaphoid showed flexion-extension movement accompanied by rotation around the longitudinal axis. In radio-ulnar flexion of the wrist, the scaphoid did not exhibit flexion-extension movement in such a way as reported previously, but showed rotation around the longitudinal axis. These results and the anatomical findings suggest that the rotation around the longitudinal axis in both flexion-extension movement and radio-ulnar flexion is the movement along the articular surface of the capitate.  相似文献   

12.
Recently, we examined the neuronal substrate of predictive pursuit during memory-based smooth pursuit and found that supplementary eye fields (SEFs) contain signals coding assessment and memory of visual motion direction, decision not-to-pursue ("no-go"), and preparation for pursuit. To determine whether these signals were unique to the SEF, we examined the discharge of 185 task-related neurons in the caudal frontal eye fields (FEFs) in 2 macaques. Visual motion memory and no-go signals were also present in the caudal FEF but compared with those in the SEF, the percentage of neurons coding these signals was significantly lower. In particular, unlike SEF neurons, directional visual motion responses of caudal FEF neurons decayed exponentially. In contrast, the percentage of neurons coding directional pursuit eye movements was significantly higher in the caudal FEF than in the SEF. Unlike SEF inactivation, muscimol injection into the caudal FEF did not induce direction errors or no-go errors but decreased eye velocity during pursuit causing an inability to compensate for the response delays during sinusoidal pursuit. These results indicate significant differences between the 2 regions in the signals represented and in the effects of chemical inactivation suggesting that the caudal FEF is primarily involved in generating motor commands for smooth-pursuit eye movements.  相似文献   

13.
OBJECTIVE: To validate the use of fluoroscopic roentgenographic stereophotogrammetric analysis (FRSA) for its feasibility and accuracy for measuring the three-dimensional dynamic motion of stent grafts. METHODS: A digital biplane fluoroscopy setup was calibrated (Siemens Axiom Artis dBc). Stereo images were acquired of a static aortic model with a stent graft in different axial positions, imposed by a micromanipulator. The three-dimensional measurement error of FRSA was determined by comparing FRSA measurements with the micromanipulator. An aortic model with a stent graft was constructed and connected to an artificial circulation with a physiological flow and pressure profile. Markers were added to the spine (tantalum spherical markers; diameter 1 mm) and stent (welding tin; diameter 1 mm). The three-dimensional measurement precision was determined by measuring the position of a single (stable) spine marker during two pulsatile cycles. Finally, three-dimensional stent marker motion was analyzed with a frame rate of 30 images per second, including three-dimensional marker position (change), diameter change, and center of circle position change. RESULTS: The mean error of FRSA measurement of displacement was 0.003 mm (SD, 0.019 mm; maximum error, 0.058 mm). A very high precision of position measurement was found (SD, 0.009-0.015 mm). During pulsatile motion, the position (changes) of the markers could be assessed in the x, y, and z directions, as well as the stent diameter change and center of circle position change. CONCLUSIONS: FRSA has proven to be a method with very high accuracy and temporal resolution to measure three-dimensional stent-graft motion in a pulsatile environment. This technique has the potential to contribute significantly to the knowledge of stent-graft behavior after endovascular aneurysm repair and improvements in stent-graft design. The technique is ready for clinical testing.  相似文献   

14.
We presented naturalistic combinations of virtual self-movement stimuli while recording neuronal activity in monkey cerebral cortex. Monkeys used a joystick to drive to a straight ahead heading direction guided by either object motion or optic flow. The selected cue dominates neuronal responses, often mimicking responses evoked when that stimulus is presented alone. In some neurons, driving strategy creates selective response additivities. In others, it creates vulnerabilities to the disruptive effects of independently moving objects. Such cue interactions may be related to the disruptive effects of independently moving objects in Alzheimer's disease patients with navigational deficits.  相似文献   

15.
Large sectors of polymodal cortex project to the hippocampal formation via convergent input to the entorhinal cortex. The present study reports an additional access route, whereby several cortical areas project directly to CA1. These are parietal areas 7a and 7b, area TF medial to the occipitotemporal sulcus (OTS), and a restricted area in the lateral bank of the OTS that may be part of ventromedial area TE. These particular cortical areas are implicated in visuospatial processes; and their projection to and convergence within CA1 may be significant for the elaboration of 'view fields', for the postulated role of the hippocampal formation in topographic learning and memory, or for the snapshot identification of objects in the setting of complex visuospatial relationships. Convergence of vestibular and visual inputs (from areas 7b and 7a respectively) would support previous physiological findings that hippocampal neurons respond to combinations of whole-body motion and a view of the environment. The direct corticohippocampal connections are widely divergent, especially those from the temporal areas, which extend over much of the anteroposterior axis of the hippocampal main body. Divergent connections potentially influence large populations of CA1 pyramidal neurons, consistent with the suggestion that these neurons are involved in conjunctive coding. The same region of ventromedial TE, besides the direct connections to CA1, also gives rise to direct projections to area V1, and may correspond to a functionally specialized subdivision, perhaps part of VTF.  相似文献   

16.
Samii A  Brinker T  Kaminsky J  Lanksch WR  Samii M 《Neurosurgery》2000,47(2):382-7; discussion 388
OBJECTIVE: We investigated the usefulness of a microscope-based navigational system (Multi Koordinaten Manipulator; Zeiss, Oberkochen, Germany) for removal of the posterior wall of the internal auditory canal (IAC) via the retrosigmoid route. METHODS: A cadaveric study was performed to assess the navigational localization error for the retrosigmoid approach to the IAC. Computed tomographic findings for 47 acoustic neuroma cases were divided into three groups, on the basis of the relationship between the labyrinth and the sigmoid-fundus line (medial, on the line, or lateral). Furthermore, the shortest distances between the most medial labyrinthine extension and the resection line were measured. In 20 acoustic neuroma operations, the different features and the practicality of the microscope-based navigational system for opening of the IAC were evaluated. RESULTS: The mean anatomic localization errors were 0.67 +/- 0.2 mm (95th percentile, 1.32 mm) for navigation to the IAC and 0.71 +/- 0.37 mm (95th percentile, 1.68 mm) for navigation to the posterior semicircular canal. The average distances between the most medial labyrinthine extension and the resection line were 3.65, 3.36, and 2.0 mm for the lateral, on-the-line, and medial groups, respectively. Direct contouring of structures at risk does not take into account the localization error, nor does it provide reliable navigational information. A novel indirect contouring concept that takes into account the localization error (the safety corridor method) was therefore introduced. CONCLUSION: The value of navigational assistance for opening of the IAC is promising but still limited. Further development is required before the clinical effects of this navigational approach can be evaluated.  相似文献   

17.
Motion of an object is thought to be perceived independently of the object's surface properties. However, theoretical, neuropsychological and psychophysical observations have suggested that motion of textures, called 'second-order motion', may be processed by a separate system from luminance-based, or 'first-order', motion. Functional magnetic resonance imaging (fMRI) responses during passive viewing, attentional modulation and post-adaptation motion after-effects (MAE) of these stimuli were measured in seven retinotopic visual areas (labeled V1, V2, V3, VP, V4v, V3A and LO) and the motion-sensitive area MT/MST (V5). In all visual areas, responses were strikingly similar to motion of first- and second-order stimuli. These results differ from a prior investigation, because here the motion-specific responses were isolated. Directing attention towards and away from the motion elicited equivalent response modulation for the two types. Dramatic post-adaptation (MAE) differences in perception of the two stimuli were observed and fMRI activation mimicked perceptual changes, but did not reveal the processing differences. In fact, no visual area was found to respond selectively to the motion of second-order stimuli, suggesting that motion perception arises from a unified motion detection system.  相似文献   

18.
Medial prefrontal cortex (mPFC) neurons respond to Pavlovian conditioned stimuli, and these responses depend on input from the basolateral amygdala (BLA). In this study, we examined the mPFC efferent circuits mediating conditioned responding by testing whether specific subsets of mPFC projection neurons receive BLA input and respond to conditioned stimuli. In urethane-anesthetized rats, we identified mPFC neurons that projected to the nucleus accumbens (NAcc) or to the contralateral mPFC (cmPFC) using antidromic activation. Stimulation of the BLA and Pavlovian conditioned odors selectively activated a subpopulation of ventral mPFC neurons that projected to NAcc, but elicited virtually no activation in mPFC neurons that projected to cmPFC. BLA stimulation typically evoked inhibitory responses among nonactivated neurons projecting to either site. These results suggest that the ventral mPFC-to-NAcc pathway may support behavioral responses to conditioned cues. Furthermore, because projections from the BLA (which also encode affective information) and the mPFC converge within the NAcc, the BLA may recruit the mPFC to drive specific sets of NAcc neurons, and thereby exert control over prefrontal cortical-striato-thalamocortical information flow.  相似文献   

19.
We studied the responses of neurons in area V1 of marmosets to visual stimuli that moved against dynamic textured backgrounds. The stimuli were defined either by a first-order cue ('solid' bars, which were either darker or lighter than the background) or by a second-order cue ('camouflaged' bars, defined only by coherent motion). Forty-two per cent of the neurons demonstrated a similar selectivity for the direction of motion of the solid and camouflaged bars, thereby characterizing a population of cue-invariant (CI) cells. The other cells either showed different selectivity to the movement of solid and camouflaged bars (non-cue-invariant, or NCI cells), or responded equally well to movement in all directions. CI neurons, which were rare in layer 4, tended to have larger receptive fields and to be more strongly direction selective than NCI cells. Although V1 neurons tended to show maximal responses to camouflaged bars that were longer than the 'optimal' solid bars, many CI neurons preferred first- and second-order stimuli of similar lengths. Finally, the activity evoked by the camouflaged bars was delayed in relation to that evoked by solid bars. These results demonstrate that motion CI responses are relatively common in primate V1, especially among a population of strongly direction-selective neurons. They also indicate that this response property may depend on feedback from extrastriate areas, or on complex intrinsic interactions within V1.  相似文献   

20.
The ventral premotor cortex (PMv) has been implicated in the visual guidance of movement. To examine whether neuronal activity in the PMv is involved in controlling the direction of motion of a visual image of the hand or the actual movement of the hand, we trained a monkey to capture a target that was presented on a video display using the same side of its hand as was displayed on the video display. We found that PMv neurons predominantly exhibited premovement activity that reflected the image motion to be controlled, rather than the physical motion of the hand. We also found that the activity of half of such direction-selective PMv neurons depended on which side (left versus right) of the video image of the hand was used to capture the target. Furthermore, this selectivity for a portion of the hand was not affected by changing the starting position of the hand movement. These findings suggest that PMv neurons play a crucial role in determining which part of the body moves in which direction, at least under conditions in which a visual image of a limb is used to guide limb movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号