首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
目的研究茯苓多糖脂质体的制备方法,并对其质量进行评价。方法采用薄膜超声技术及均匀设计制备茯苓多糖脂质体,优选最佳工艺。结果通过均匀设计优化处方得到的茯苓多糖脂质体包封率(54.82±1.59)%,平均载药量为(5.38±0.13)%,平均粒径(350.97±1.31)nm,Zeta电位(-23.78±1.25)mV。结论优化处方制得茯苓多糖脂质体具有较高包封率和载药量。  相似文献   

2.
韩德恩  申延利  田萍  位恒超  祝侠丽  贾永艳 《中草药》2021,52(11):3209-3215
目的采用Box-Behnken响应面法优化白藜芦醇(resveratrol)-辛酸癸酸聚乙二醇甘油酯(Labrasol)/泊洛沙姆407(P407)混合胶束(Res-Labrasol/P407-MM)的处方工艺,并考察其体外特征。方法 HPLC法测定白藜芦醇含量。薄膜分散-探头超声法制备Res-Labrasol/P407-MM。在单因素实验结果的基础上,以投药量、水化体积和水化温度为考察因素,胶束样品的质量浓度和药物沉降率为评价指标,采用Box-Behnken响应面法优化处方,并对最优处方制备的胶束进行外观形态、粒径和体外释放行为评价。结果最佳处方工艺为白藜芦醇投药量28 mg,水化体积9 m L,水化温度40℃,在此条件下测得白藜芦醇平均载药量为(11.62±0.20)%、平均包封率为(93.96±1.83)%、胶束平均粒径为(69.00±1.58)nm,平均Zeta电位为(-21.25±0.18)m V。样品质量浓度和沉降率的实测值与预测值偏差较小,RSD5.5%。结论 Box-Behnken响应面法预测性良好,可以用于优化Res-Labrasol/P407-MM的处方工艺。制备的混合胶束包封率高,粒径小,分布均匀,缓释效果明显。  相似文献   

3.
《中药材》2019,(8)
目的:使用甲氧基聚乙二醇-聚乳酸(mPEG-PLLA)共聚物作为载体材料制备人参皂苷Rg_3载药胶束并评价其抑瘤效果。方法:采用溶剂蒸发-薄膜分散法制备人参皂苷Rg_3-mPEG-PLLA载药胶束,以聚合物/药物用量比(X_1)、成膜温度(X_2)和水化温度(X_3)作为自变量,以药物包封率(Y)作为评价指标,通过Box-Behnken试验设计优化人参皂苷Rg_3-mPEG-PLLA载药胶束处方及制备工艺;分别考察了人参皂苷Rg_3-mPEG-PLLA载药胶束的微观形态、粒径分布、Zeta电位等理化性质以及在不同pH条件下体外释药特性;比较了人参皂苷Rg_3-mPEG-PLLA载药胶束与人参皂苷Rg_3对小鼠接种人肝癌HepG_2细胞的抑制效果。结果:经优化得到制备人参皂苷Rg_3-mPEG-PLLA载药胶束最优处方工艺为:聚合物/药物用量比为9∶1,成膜温度为60℃,水化温度为40℃;3批人参皂苷Rg_3-mPEG-PLLA载药胶束的包封率为(91.2±0.8)%,透射电镜照片显示胶束呈圆整球状分布,平均粒径为(142.1±8.9)nm,Zeta电位为(-8.5±0.4)mV,PDI为(0.145±0.017);在不同pH值介质中释药均较为缓慢;人参皂苷Rg_3-mPEG-PLLA载药胶束能够显著抑制人肝癌HepG_2细胞在裸鼠体内生长。结论:该研究将人参皂苷Rg_3制备成mPEG-PLLA载药胶束,可以显著抑制肿瘤细胞生长,有望应用于肝癌治疗。  相似文献   

4.
王玉蓉  冯斌  巨佳  成黎霏  王济  顾宜  王晓娟 《中草药》2020,51(4):978-985
目的制备羧甲基化白及多糖-壳聚糖载姜黄素聚电解质复合膜,进行处方、制备工艺优化,并进行质量评价。方法对白及多糖进行羧甲基化修饰,羧甲基化白及多糖与壳聚糖通过静电结合形成水不溶性复合物。以姜黄素为模型药物,采用溶剂挥发法制备载药聚电解质复合膜;通过单因素和正交设计法进行处方优化,用扫描电子显微镜和显微红外光谱对复合膜的形态和结构进行表征。结果最优处方为羧甲基白及多糖117 mg,壳聚糖233 mg,甘油含量为25%,姜黄素为20 mg。平均厚度为(74.0±2.0)μm,载药量为95.41%,体外累积释放率可达93.78%。结论优化条件下制备的载药复合膜外观光滑平整,分布均匀,载药量和累积释放度良好。  相似文献   

5.
大黄素soluplus聚合物胶束的制备及质量评价   总被引:1,自引:0,他引:1  
目的:制备大黄素的soluplus聚合物胶束并对其进行质量评价。方法:采用薄膜分散法制备大黄素聚合物胶束(Emo-PMs)。利用粒径测定仪、透射电镜、X-射线衍射对其进行表征;采用HPLC测定Emo-PMs的包封率和载药量,流动相甲醇-0.1%磷酸(75∶25),检测波长437 nm;采用动态膜透析法考察载药胶束的体外释药特性。结果:Emo-PMs呈球形或类球形,平均粒径(65±3.8)nm,多分散系数0.099±0.022,Zeta电位-(12.7±0.19)mV,平均包封率(88.25±3.51)%,平均载药量(4.51±0.72)%;大黄素以无定形状态或分子状态包载在聚合物胶束中;Emo-PMs具有缓释作用,释放机制符合Higuchi方程。结论:制备的Emo-PMs粒径、包封率、载药量可控,具有缓释作用。  相似文献   

6.
目的:制备负电荷的姜黄素炎症靶向自微乳给药系统(NC-CUR-SMEDDS),并对其进行质量评价。方法:在前期姜黄素自微乳(CUR-SMEDDS)的研究基础上,以乳剂的粒径、Zeta电位、包封率和载药量为评价指标,通过单因素试验筛选电荷调节剂的最佳用量,制备NC-CUR-SMEDDS。通过观察微乳外观和微观形态并测定其粒径、Zeta电位、包封率及载药量对其进行质量评价。结果:当加入处方量4%的丁二酸二辛酯磺酸钠时,所形成的微乳Zeta电位可以达到-43.43±0.29mV,外观澄清、透明,粒径分布均匀,平均粒径为14.08±0.082nm,姜黄素载药量为26.48mg·g-1,包封率为94.12%。结论:NC-CUR-SMEDDS包封率高,带负电,粒径分布均匀,符合结肠炎症靶向要求。  相似文献   

7.
目的制备载阿霉素(DOX)的混合胶束,并优化其冻干制剂工艺。方法以TPGS-甘草次酸偶联物(TG偶联物)和TPGS修饰的羧甲基壳聚糖-大黄酸偶联物(TCR偶联物)为混合胶束载体材料(TCR-TG),利用透析法制备载DOX的混合胶束(DOX/TCR-TG胶束),以载药量、包封率、粒径为评价指标,考察TG偶联物和TCR偶联物的投料比、DOX与TCR-TG的投料比,确定DOX/TCR-TG胶束最佳制备工艺。考察冻干保护剂的种类及用量,确定DOX/TCR-TG胶束的最佳冻干工艺。结果 DOX/TCR-TG胶束平均粒径为(121.3±8.49)nm,PDI为(0.21±0.02),Zeta电位为(-21.9±0.2)mV,载药量为(31.22±3.19)%,包封率为(62.59±6.39)%,其中TG偶联物和TCR偶联物最佳投料比为1∶2,DOX和TCR-TG的最佳投料比为1∶1.7,DOX/TCR-TG混合胶束冻干制剂的最佳保护剂为0.1%甘露醇。结论 TG偶联物与TCR偶联物形成的混合载体材料包载DOX,可制备成载药量和包封率较好,粒径分布均匀,形态圆整的聚合物胶束制剂。  相似文献   

8.
目的 制备高良姜素纳米胶束,并考察其体内药动学。方法 薄膜水化法制备纳米胶束,测定其粒径、Zeta电位、稳定性、体外释药。以水化体积、水化温度、聚乙二醇聚己内酯用量为影响因素,包封率、载药量、沉降率为评价指标,单因素试验优化处方工艺。18只大鼠随机分为3组,分别灌胃给予高良姜素、高良姜素自微乳、高良姜素纳米胶束的0.5%CMC-Na混悬液(40 mg/kg),于不同时间点采血,HPLC法测定高良姜素血药浓度,计算主要药动学参数。结果 最佳处方为水化体积20 mL,水化温度45℃,聚乙二醇聚己内酯用量220 mg,包封率为(95.42±1.14)%,载药量为(7.92±0.15)%,沉降率为(0.85±0.18)%,粒径为(78.76±5.94)nm, Zeta电位为-(33.40±1.28)mV。纳米胶束冻干粉在60 d内粒径、包封率无明显变化,模拟胃液、模拟肠液中其48 h内累积释放度高于原料药。与原料药、自微乳比较,纳米胶束tmax、t1/2延长(P<0.05,P<0.01),Cmax、AUC0...  相似文献   

9.
制备大黄素纳米结构脂质载体(emodin nanostructured lipid carriers,ED-NLC),并对其进行质量评价。依据单因素试验结果,以大黄素投药量、肉豆蔻酸异丙酯用量和乳化剂泊洛沙姆188用量为考察因素,纳米粒粒径、包封率和载药量为考察指标,采用Box-Behnken响应面法优化处方,并对最优处方制备的纳米粒进行外观形态、粒径和体外释放的考察。最终确定ED-NLC的最优处方大黄素为3.27 mg,肉豆蔻酸异丙酯为148.68 mg,泊洛沙姆188为173.48 mg。乳化-超声分散法制备ED-NLC,透射电镜观察ED-NLC呈类球形,粒度分布均匀,粒径(97.02±1.55)nm,聚合物分散系数0.21±0.01,Zeta电位(-38.96±0.65)mV,包封率90.41%±0.56%,载药量1.55%±0.01%。差示扫描量热仪(differential scanning calorimeter,DSC)结果表明大黄素可能以分子或无定形状态被包裹进纳米结构脂质载体中。体外释药具有明显的缓释特征,体外释药模型符合一级释药方程。Box-Behnken响应面法拟合模型精准可靠,最优处方制备的ED-NLC粒径分布集中,包封率高,为后续ED-NLC体内研究奠定基础。  相似文献   

10.
 目的研究不同脱乙酰度及不同相对分子质量的壳聚糖(CS)对壳聚糖纳米粒体外性质的影响,为载药壳聚糖纳米粒的处方优化提供实验依据。方法以去甲斑蝥素(NCD)为模型药物,以不同脱乙酰度、不同相对分子质量壳聚糖为主要膜材,采用离子交联法制备壳聚糖纳米粒(CS-NP),考察纳米粒的形态、粒径、Zeta电位、药物包封率、载药量及体外释放特征。结果该方法制备的CS-NP外观呈圆形,粒径均匀。随着CS的脱乙酰度的降低,纳米粒粒径增大,Zeta电位降低,药物包封率及载药量均下降,且体外释药速度加快;随着CS的相对分子质量降低,纳米粒粒径变小,Zeta电位、药物包封率及载药量无明显变化, 但体外释药速度增加。结论CS的脱乙酰度、相对分子质量对纳米粒的体外性质有较大的影响,可通过选用不同脱乙酰度或相对分子质量的CS,制备得到不同粒径的壳聚糖纳米粒,并达到调节药物释放速度的目的。  相似文献   

11.
目的制备乳糖酸(lactobionic acid,LA)修饰的O-羧甲基壳聚糖(O-carboxymethyl chitosan,OCMC)偶联黄芩苷(baicalein,BC)的自组装胶束,并考察其作为载体共同递送阿霉素(doxorubicin,DOX)和黄芩苷的可行性。方法以OCMC为水溶性骨架,通过酰胺化反应依次将黄芩苷、乳糖酸偶联到骨架上,分别获得O-羧甲基壳聚糖-黄芩苷偶联物(CMBC)和靶向的乳糖酸-O-羧甲基壳聚糖-黄芩苷偶联物(LA-CMBC)。利用核磁、红外确证偶联物的结构;透析-超声法制备自组装胶束并表征;芘荧光探针法测定临界聚集浓度(critical micelle concentration,CMC);制备载药胶束DOX/LACMBC,紫外测定阿霉素的包封率和载药量;透析法考察载药胶束在不同pH值条件下的释放行为;MTT法考察体外抗肿瘤活性。结果为考察取代度对粒径的影响,制备了3种取代度的CMBC胶束,粒径在164~215 nm,LA-CMBC和DOX/LACMBC胶束的粒径分别约为156 nm和180 nm。LA-CMBC胶束的CMC值为(0.081±0.019)mg/mL。载药胶束中阿霉素的包封率为(69.67±3.87)%,载药量为(16.08±0.25)%。体外释放表明DOX/LA-CMBC具有缓释性和pH敏感性。细胞毒性实验表明,DOX/LA-CMBC胶束对HepG2肝癌细胞生长具有显著的抑制作用。结论制备的载药胶束DOX/LA-CMBC粒径均匀、载药量较好,提高了黄芩苷的水溶性,且具有良好的pH敏感性和抗癌活性。  相似文献   

12.
朱文静  张良珂 《中草药》2018,49(9):2057-2062
目的制备载和厚朴酚(HK)介孔二氧化硅(MSN)包覆聚吡咯纳米粒(PPy@MSN-HK),考察其体外释放特性。方法首先制备聚吡咯纳米粒,然后在其表面包裹MSN壳层,再吸附HK,即得PPy@MSN-HK。依次从透射电镜图、粒径、Zeta电位、载药量、包封率、红外光谱分析、体外光热研究及体外释放度等方面进行评价,采用相似因子(f2)法分析释放曲线,并运用多种常用数学模型拟合溶出曲线。结果透射电镜图显示,制备的MSN包覆聚吡咯纳米粒(PPy@MSN)粒径大小均一,分布均匀,平均粒径为(220.4±4.2)nm,多分散系数为0.042±0.010,Zeta电位为(-21.1±0.8)m V,载药量为(2.58±0.53)%,包封率为(75.04±0.95)%。体外光热实验结果表明,在照射激光功率密度不变的情况下,随着纳米粒质量浓度逐渐增大,纳米粒混悬液温度变化值明显增大,说明PPy@MSN具有良好的光热效应。体外释放实验表明,PPy@MSN-HK与HK原料药的释放曲线不相似,分别以Ritger-Peppas、Logistic方程拟合最佳。原料药释放曲线最接近Ritger-Peppas方程(R2=0.997 32);PPy@MSN-HK释放曲线用Logistic方程拟合最好(R~2=0.997 88)。结论采用水溶液法成功制备了PPy@MSN-HK,为肿瘤治疗提供新的给药策略。  相似文献   

13.
周婷  刘春艳  李颖  阴龙飞 《中草药》2020,51(17):4457-4463
目的制备乳糖酸(LA)修饰聚酰胺-胺树枝状大分子(PAMAM)接枝白藜芦醇(Res)的纳米颗粒,并进行体外评价。方法采用发散法合成G3.0PAMAM,将末端部分羧基化(PAMAM-COOH),经酯化反应键合Res、酰胺化反应接枝LA在载体表面,制备LA-PAMAM-Res纳米颗粒,用核磁共振氢谱(~1H-NMR)、红外光谱(IR)进行表征;LA-PAMAM-Res物理包载Res制备LA-PAMAM-Res/Res纳米颗粒,并用透析法检测其包封率;HPLC检测2种纳米颗粒的载药量,激光粒度分析法考察其粒径,透析法测定其体外药物释放性能,溶血性实验评价其生物安全性;MTT法考察PAMAM、PAMAM-COOH、Res、LA-PAMAM-Res和LA-PAMAM-Res/Res的细胞毒性及抗癌活性。结果成功制备了LA-PAMAM-Res和LA-PAMAM-Res/Res纳米颗粒。LA-PAMAM-Res/Res的包封率为(75.1±2.2)%,LA-PAMAM-Res和LA-PAMAM-Res/Res的载药量分别为(7.2±0.9)%和(18.4±1.1)%,粒径分别为(126.3±3.4)nm和(251.0±15.7)nm,72 h时体外药物释放度分别为(23.83±0.43)%和(35.28±0.72)%,溶血率均低于5%,且载体PAMAM-COOH比PAMAM具有较小的细胞毒性,LA-PAMAM-Res和LA-PAMAM-Res/Res仍具有抑制肿瘤增殖活性。结论制备了能使药物缓慢释放、生物相容性良好、低细胞毒性和具有抗癌活性的LA-PAMAM-Res和LA-PAMAM-Res/Res纳米颗粒,且LA-PAMAM-Res/Res进一步提高了Res的载药量。  相似文献   

14.
于桐  吴超  季鹏  徐杰  赵颖  郝艳娜  赵文明  王铁良 《中草药》2015,46(18):2720-2726
目的制备黄芩素固体脂质纳米粒并冻干,考察其理化性质及体外释药特性。方法采用乳化蒸发-低温固化法,以包封率为考察指标,正交试验优化其处方并考察其粒径、形态、电位、多分散系数(PDI)及体外溶出。以外观、色泽、再分散性为考察指标筛选最佳冻干保护剂,利用差示扫描量热(DSC)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)分析药物在纳米粒中的存在状态。结果黄芩素固体脂质纳米粒外观呈球状体,分布均匀,平均粒径为(82.64±6.78)nm,PDI为0.242±0.013,Zeta电位为(-25.7±0.5)m V,包封率为(81.3±1.2)%,载药量为(7.16±0.14)%(n=3),以5%甘露醇作冻干保护剂效果较好,药物以无定形状态分散在脂质载体中,体外溶出实验表明黄芩素固体脂质纳米粒与原料药相比具有明显的缓释作用。结论乳化蒸发-低温固化法制得的黄芩素固体脂质纳米粒,粒径小,包封率高,稳定性好,工艺简单。  相似文献   

15.
目的研究川芎嗪微乳递药系统的制备工艺,对其物理药剂学性质进行评价;以不同油相制备不同粒径大小的微乳,考察粒径因素对制剂释药行为的影响。方法以川芎嗪溶解度为指标,筛选油相、乳化剂、助乳化剂;采用伪三元相图法对微乳处方进行优化;采用超滤离心法对载药量、包封率进行研究;采用马尔文粒径仪对粒径、电位进行检测;采用透析袋法对不同粒径微乳的释药行为进行对比研究。结果成功制备了川芎嗪微乳,外观澄清透明,pH均值约为5.46;成功建立了微乳包封率的检测方法;川芎嗪载药量为1.2 mg/mL时,包封率为(87.43±0.20)%。通过改变油相(油酸乙酯、油酸、IPM)制备不同粒径的微乳,当载药量为1.2 mg/mL时3者的粒径分别为(16.80±0.91)、(129.50±1.21)、(18.51±0.24)nm。释放实验显示,在4 h内3者释放率均能达到90%以上,无显著性差异。结论成功制备了均一、稳定的川芎嗪微乳;不同粒径川芎嗪微乳的释药行为不受粒径因素的影响。  相似文献   

16.
冯宇飞  常书源  秦国昭  井中旭  王艳宏 《中草药》2020,51(23):5934-5942
目的 优化线粒体靶向金丝桃苷脂质体(DLD/Hyp-Lip)制备的最佳处方,并研究研究其在胎牛血清中的稳定性及体外释放行为,考察其线粒体靶向性。方法 采用薄膜分散法制备DLD/Hyp-Lip,以包封率和载药量为考察指标进行单因素实验,考察磷脂总量与金丝桃苷(hyperoside,Hyp)用量比、二硬脂酰磷脂酰乙醇胺-聚乙二醇(DSPE-PEG)与DLD用量比等条件对DLD/Hyp-Lip的影响,结合星点设计-效应面法优化DLD/Hyp-Lip处方。使用透射电子显微镜和粒径仪观察测定脂质体粒子外观、平均粒径和Zeta电位,采用血清稳定性实验和体外释药、线粒体靶向性对该载药系统进行评价。结果 DLD/Hyp-Lip最佳处方为磷脂总量和金丝桃苷用量比为12.50:1,磷脂总量与胆固醇用量比为6.00:1,DSPE-PEG与DLD用量比为3:5;测得金丝桃苷包封率为(95.57±0.56)%,载药量为(8.55±0.57)%。所制备的DLD/Hyp-Lip外观良好,平均粒径为(124.9±3.4)nm,Zeta电位为(-6.2±1.9)mV;在胎牛血清中性状稳定,在体外释放介质中24 h累积释放量达到40%。线粒体靶向实验表明DLD/Hyp-Lip可以促进药物聚集在线粒体部位。结论 采用此方法能够精准有效的优化DLD/Hyp-Lip的制备工艺,该方法操作简单方便,可以用于DLD/Hyp-Lip制备与处方的优化,制备的DLD/Hyp-Lip包封率高,粒径小,分布均匀,且具有良好的缓释作用,为DLD/Hyp-Lip的进一步体内研究奠定了基础。载金丝桃苷的DLD/Hyp-Lip具有良好的肝癌细胞线粒体靶向性,是一种潜在高效的肝癌细胞线粒体靶向给药系统。  相似文献   

17.
姚艳胜  季鹏  刘畅  赵文明 《中草药》2016,47(4):591-598
目的制备柚皮素(NRG)固体脂质纳米粒冻干粉,考察其理化性质及经大鼠肺部给药后的体内药动学行为。方法采用乳化蒸发-低温固化法,以包封率、粒径为考察指标,正交试验优化其处方并考察其粒径、形态、电位及体外释放。以外观、色泽、再分散性为考察指标筛选最佳冻干保护剂,采用差式扫描量热(DSC)分析药物在纳米粒中的存在状态。通过肺部给药考察NRG固体脂质纳米粒和NRG原料药溶液在大鼠体内的药动学行为。结果 NRG固体脂质纳米粒外观呈球形,分布均匀,平均粒径为(97.69±2.84)nm,多分散系数(PDI)为0.207±0.010,Zeta电位为(-26.20±0.45)m V,包封率为(81.09±1.37)%,载药量为(8.30±0.04)%(n=3),5%甘露醇为冻干保护剂最好,药物以无定形状态分散在脂质载体中,体外溶出实验表明NRG固体脂质纳米粒与原料药相比具有明显的缓释作用。NRG原料药和纳米粒的Cmax分别为(163.00±23.05)、(269.00±35.34)ng/m L,t1/2分别为(5.13±0.23)、(18.93±7.90)h,AUC0-t分别为(929.32±190.28)、(3 390.23±533.68)ng·h/m L,MRT分别为(7.19±0.44)、(23.29±9.27)h。结论乳化蒸发-低温固化法制得的NRG固体脂质纳米粒,粒径小,包封率高,稳定性好,工艺简单。NRG固体脂质纳米粒肺部给药后有明显的缓释作用,能提高药物的生物利用度。  相似文献   

18.
目的:优化盐酸倍他洛尔-蒙脱石脂质体(Mt-BH-LP)的处方及制备工艺,考察其体外释放性能和渗透性能。方法:采用乙醇注入法-硫酸铵梯度法制备Mt-BH-LP;以包封率和载药量为评价指标,采用正交试验优化Mt-BH-LP的处方;通过透析法考察Mt-BH-LP的体外释放性能;以家兔离体角膜为模型,采用体外改良的Franz扩散池法研究Mt-BH-LP的渗透性,以人永生化角膜上皮细胞(i HCEC)为模型,研究Mt-BH-LP的渗透性。结果:Mt-BH-LP处方工艺条件为卵磷脂-BH(5∶1),卵磷脂-胆固醇(9∶1),硫酸铵浓度0.15 mol·L~(-1),卵磷脂质量225 mg。Mt-BH-LP包封率(75.85±2.15)%,载药量(11.41±0.29)%,平均粒径(218±22.32)nm,Zeta电位(17.03±0.25)m V;体外释放试验表明Mt-BH-LP在10 h累计释放度达到60.2%,离体角膜透过试验结果表明Mt-BH-LP的角膜水化值[(76.72±2.68)%]在正常范围内。结论:采用乙醇注入法-硫酸铵梯度法制备的Mt-BH-LP包封率和载药量较高,缓释性能良好,具有良好的开发与应用前景。  相似文献   

19.
目的建立地榆皂苷自乳化药物传递系统的制备方法并对其进行质量评价。方法通过溶解度试验、辅料配伍、三元相图中形成乳剂区域面积的大小和D-最优混料实验设计来筛选地榆皂苷自乳化药物传递系统的处方组成和比例,以载药量、粒径和多分散系数为评价指标,对油相、表面活性剂和助表面活性剂的用量进行考察。最后以成乳的外观形态、粒径、多分散系数、Zeta电位和体外溶出度为评价指标,评价其质量。结果得到地榆皂苷自乳化药物传递系统最优处方为Obleique CC497-聚山梨酯20-Transcutol P(0.25∶0.45∶0.30),载药量23.93 mg/g,平均粒径为(207.92±2.13)nm,Zeta电位为(38.84±0.18)m V。体外释放结果表明,地榆皂苷自乳化药物传递系统的释药速率极显著地高于地榆皂苷原料药。结论首次建立了地榆皂苷自乳化药物传递系统,工艺合理可行,质量稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号