首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang C  Todorov I  Zhang Z  Liu Y  Kandeel F  Forman S  Strober S  Zeng D 《Blood》2006,107(7):2993-3001
Chronic graft-vs-host disease (GVHD) is a major cause of morbidity and mortality of long-term survivors of allogeneic hemato-poietic cell transplantation (HCT). Chronic GVHD can have features of an autoimmune collagen vascular disease with clinical manifestations similar to autoimmune scleroderma and systemic lupus erythematosus (SLE). However, the pathogenesis of chronic GVHD is poorly understood. It is unclear how autoreactive T and B cells are generated in chronic GVHD recipients. We have recently developed a new chronic GVHD model by transplantation of donor DBA/2 (H-2d) spleen cells into major histocompatibility complex (MHC)-matched but minor antigen-mismatched sublethally irradiated BALB/c (H-2d) recipients as well as athymic BALB/c(nu/nu) and adult-thymectomized BALB/c recipients. Both euthymic and athymic BALB/c recipients developed high levels of serum IgG autoantibodies, sclerodermatous skin damage, and glomerulonephritis. Disease induction required both donor CD25-CD4+ T and B cells in transplants. In contrast, donor CD25+CD4+ T regulatory (Treg) cells prevented the disease induction. These results indicate that host thymus is not required for induction of chronic GVHD and that quiescent autoreactive T and B cells in transplants from nonautoimmune donors may be activated and expanded to cause chronic GVHD with autoimmune manifestations in allogeneic recipients, and donor Treg cells can suppress this process.  相似文献   

2.
OBJECTIVE: Recent reports have shown that donor or host CD4(+)CD25(+) Treg cells can be used to control GVHD or graft rejection following allogeneic BMT in mice. In the present study we investigated the potential of third-party Treg cells compared to donor-type cells to facilitate BM allografting. METHODS: Graft rejection is assessed in a mouse model of T cell-mediated BM allograft rejection. Lethally irradiated C3H mice are transplanted at day 2 after irradiation with T cell-depleted Balb/Nude BM. Graft rejection is induced by purified host-type T cells infused one day prior to BMT. Cells tested for their facilitating activity are added to the T cell-depleted BM allograft. RESULTS: Na?ve or ex vivo-expanded third-party Treg cells can effectively enhance engraftment of T cell-depleted BM allografts, exhibiting reactivity in vitro and in vivo similar to that found for donor-type Treg cells. CONCLUSION: The use of third-party Treg cells in contrast to donor-type cells could allow advanced preparation of a large bank of Treg cells (off-the-shelf), with all the appropriate quality controls required for cell therapy.  相似文献   

3.
CD4+CD25+ regulatory T (Treg) cells are potent modulators of alloimmune responses. In murine models of allogeneic bone marrow transplantation, adoptive transfer of donor CD4+CD25+ Treg cells protects recipient mice from lethal acute graft-versus-host disease (aGVHD) induced by donor CD4+CD25- T cells. Here we examined the differential effect of CD62L+ and CD62L- subsets of CD4+CD25+ Treg cells on aGVHD-related mortality. Both subpopulations showed the characteristic features of CD4+CD25+ Treg cells in vitro and did not induce aGVHD in vivo. However, in cotransfer with donor CD4+CD25- T cells, only the CD62L+ subset of CD4+CD25+ Treg cells prevented severe tissue damage to the colon and protected recipients from lethal aGVHD. Early after transplantation, a higher number of donor-type Treg cells accumulated in host mesenteric lymph node (LN) and spleen when CD4+CD25+CD62L+ Treg cells were transferred compared with the CD62L- subset. Subsequently, CD4+CD25+CD62L+ Treg cells showed a significantly higher capacity than their CD62L- counterpart to inhibit the expansion of donor CD4+CD25- T cells. The ability of Treg cells to efficiently enter the priming sites of pathogenic allo-reactive T cells appears to be a prerequisite for their protective function in aGVHD.  相似文献   

4.
Dutt S  Baker J  Kohrt HE  Kambham N  Sanyal M  Negrin RS  Strober S 《Blood》2011,117(11):3230-3239
Allogeneic hematopoietic cell transplantation can be curative in patients with leukemia and lymphoma. However, progressive growth of malignant cells, relapse after transplantation, and graft-versus-host disease (GVHD) remain important problems. The goal of the current murine study was to select a freshly isolated donor T-cell subset for infusion that separates antilymphoma activity from GVHD, and to determine whether the selected subset could effectively prevent or treat progressive growth of a naturally occurring B-cell lymphoma (BCL(1)) without GVHD after recipients were given T cell-depleted bone marrow transplantations from major histocompatibility complex-mismatched donors. Lethal GVHD was observed when total T cells, naive CD4(+) T cells, or naive CD8(+) T cells were used. Memory CD4(+)CD44(hi) and CD8(+)CD44(hi) T cells containing both central and effector memory cells did not induce lethal GVHD, but only memory CD8(+) T cells had potent antilymphoma activity and promoted complete chimerism. Infusion of CD8(+) memory T cells after transplantation was able to eradicate the BCL(1) lymphoma even after progressive growth without inducing severe GVHD. In conclusion, the memory CD8(+) T-cell subset separated graft antilymphoma activity from GVHD more effectively than naive T cells, memory CD4(+) T cells, or memory total T cells.  相似文献   

5.
Graft-versus-host disease (GVHD) occurs in an unpredictable fashion after 30% to 50% of matched-related transplantations. The presence of increased frequencies of CD4(+)CD25(+) regulatory T cells in donor grafts has been shown to ameliorate GVHD after allogeneic transplantation in murine models. To determine whether a similar relationship exists in humans, we quantitated the coexpression of CD25 on CD4(+) and CD8(+) T cells within 60 donor grafts infused into matched siblings and examined GVHD incidence in the respective recipients. Recipients in whom GVHD developed received donor grafts containing significantly higher frequencies of CD4(+) T cells coexpressing CD25 than those who did not (median, 9.26% vs 2.22%; P =.004). Frequencies of donor graft CD8(+) T cells coexpressing CD25 were also higher (0.65% vs 0.14%; P =.002). Furthermore, transplant recipients who received grafts containing fewer CD4(+)CD25(+) and CD8(+)CD25(+) T cells were less likely to acquire acute GVHD, even though these donor-recipient pairs were similar to others with respect to relevant clinical variables. These data suggest that the coexpression of CD4 and CD25 may be insufficient to identify regulatory T cells in humans and that increased frequencies and numbers of CD25(+) T cells in donor grafts is associated with GVHD in transplant recipients.  相似文献   

6.
Much of the efficacy of allogeneic hematopoietic stem cell transplantation (alloSCT) in curing hematologic malignancies is due to a graft-versus-leukemia (GVL) effect mediated by donor T cells that recognize recipient alloantigens on leukemic cells. Donor T cells are also important for reconstituting immunity in the recipient. Unfortunately, donor T cells can attack nonmalignant host tissues and cause graft-versus-host disease (GVHD). We previously reported that donor CD4(+) effector memory T cells (T(EMs)) do not cause GVHD but transfer functional T-cell memory. In the present work, we demonstrate in an MHC-mismatched model that CD4(+) T(EMs) (unprimed to recipient antigens) mediate GVL against clinically relevant mouse models of chronic phase and blast crisis chronic myelogenous leukemia, without causing GVHD. By creating gene-deficient leukemias and using perforin-deficient T cells, we demonstrate that direct cytolytic function is essential for T(EM)-mediated GVL, but that GVL is retained when killing via FasL, TNF-alpha, TRAIL, and perforin is individually impaired. However, T(EM)-mediated GVL was diminished when both FasL and perforin pathways were blocked. Taken together, our studies identify T(EMs) as a clinically applicable cell therapy for promoting GVL and immune reconstitution, particularly in MHC-mismatched haploidentical alloSCTs in which T cell-depleted allografts are commonly used to minimize GVHD.  相似文献   

7.
Hanash AM  Levy RB 《Blood》2005,105(4):1828-1836
Allogeneic bone marrow transplantation (BMT) is a potentially curative treatment for both inherited and acquired diseases of the hematopoietic compartment; however, its wider use is limited by the frequent and severe outcome of graft-versus-host disease (GVHD). Unfortunately, efforts to reduce GVHD by removing donor T cells have resulted in poor engraftment and elevated disease recurrence. Alternative cell populations capable of supporting allogeneic hematopoietic stem/progenitor cell engraftment without inducing GVHD could increase numbers of potential recipients while broadening the pool of acceptable donors. Although unfractionated CD4(+) T cells have not been shown to be an efficient facilitating population, CD4(+)CD25(+) regulatory cells (T-reg's) were examined for their capacity to support allogeneic hematopoietic engraftment. In a murine fully major histocompatibility complex (MHC)-mismatched BMT model, cotransplantation of donor B6 T-reg's into sublethally conditioned BALB/c recipients supported significantly greater lineage-committed and multipotential donor progenitors in recipient spleens 1 week after transplantation and significantly increased long-term multilineage donor chimerism. Donor engraftment occurred without GVHD-related weight loss or lethality and was associated with tolerance to donor and host antigens by in vitro and in vivo analyses. Donor CD4(+)CD25(+) T cells may therefore represent a potential alternative to unfractionated T cells for promotion of allogeneic engraftment in clinical hematopoietic cell transplantation.  相似文献   

8.
FoxP3(+) regulatory T cells (Tregs) suppress GVHD while preserving graft-versus-tumor effects, making them an attractive target for GVHD therapy. The donor-derived Treg pool can potentially be derived from the expansion of preexisting natural Tregs (nTregs) or from de novo generation of inducible Tregs (iTregs) from donor Tconvs in the transplantation recipient. Using an MHC-mismatched model of acute GVHD, in the present study we found that the Treg pool was comprised equally of donor-derived nTregs and iTregs. Experiments using various combinations of T cells from wild-type and FoxP3-deficient mice suggested that both preexisting donor nTregs and the generation of iTregs in the recipient mice contribute to protection against GVHD. Surprisingly, CD8(+)FoxP3(+) T cells represented approximately 70% of the iTreg pool. These CD8(+)FoxP3(+) T cells shared phenotypic markers with their CD4(+) counterparts and displayed suppressive activity, suggesting that they were bona fide iTregs. Both CD4(+) and CD8(+) Tregs appeared to be protective against GVHD-induced lethality and required IL-2 and TGFβ receptor expression for their generation. These data illustrate the complex makeup of the donor-derived FoxP3(+) Treg pool in allogeneic recipients and their potential role in protection against GVHD.  相似文献   

9.
Graft-versus-host disease (GVHD) is still a major complication after allogeneic stem cell transplantation. In murine models, freshly isolated or ex vivo expanded CD4(+)CD25(high) regulatory T cells (Treg) are able to ameliorate GVHD while maintaining graft-versus-leukaemia reactions. However, in the human setting, prospective studies of this population and its interaction with activated non-regulatory CD134(+) (OX40) lymphocytes during post-transplant follow-up are lacking. In this study, we prospectively quantified CD4(+)CD25(high) and activated CD134(+) lymphocytes in 119 peripheral blood samples from 35 consecutive patients who underwent allogeneic bone marrow transplantation (BMT). Fifty-five samples obtained less than 100 d after allogeneic BMT, were not statistically different regarding CD4(+)CD25(high) Treg or CD134(+) lymphocytes compared with those obtained from patients with (n = 35) or without (n = 20) acute GVHD. Chronic GVHD was associated with a small, but not statistically significant, increase in the number of Treg (9.9 vs. 6.7 x 10(6)/L). However, the CD134/CD25(high) ratio was significantly higher during chronic GVHD (cGHVD) when compared with either patients without cGVHD (67.7 +/- 40.3 vs. 4.0 +/- 0.9, P < 0.01) or cGVHD after treatment (67.7 +/- 40.3 vs. 3.7 +/- 0.8, P < 0.01). Our findings suggest that the suppressive activity of CD4(+)CD25(high) Treg could be abrogated in vivo during cGVHD by CD134 expression in a much higher number of activated donor T lymphocytes. In addition to CD4(+)CD25(high)ex vivo expansion protocols, OX40 blocking might be crucial to optimize the use of Treg to prevent GVHD.  相似文献   

10.
Zhang Y  Joe G  Zhu J  Carroll R  Levine B  Hexner E  June C  Emerson SG 《Blood》2004,103(10):3970-3978
Graft versus host disease (GVHD) is triggered by host antigen-presenting cells (APCs) that activate donor T cells to proliferate and differentiate, but which APC-activated donor T-cell subsets mediate GVHD versus beneficial antitumor effects is not known. Using a CD8(+) T cell-dependent mouse model of human GVHD, we found that host dendritic cell (DC)-induced CD44(hi)CD8(+) effector/memory T cells were functionally defective in inducing GVHD, whereas CD44(lo)CD8(+) naive phenotype T cells were extremely potent GVHD inducers. Depletion of CD44(lo)CD8(+) T cells from host DC-stimulated T cells before transplantation prevented GVHD without impairing their antitumor activity in vivo. Compared with CD44(lo)CD8(+) T cells, CD44(hi)CD8(+) T cells expressed high levels of Fas and were efficiently deleted in vivo following transplantation. These results suggest that ex vivo allogeneic DC stimulation of donor CD8(+) T cells may be useful for the prevention of GVHD and for optimizing antitumor therapies in vivo.  相似文献   

11.
Zhao F  Zhang Y  Wang H  Jin M  He S  Shi Y  Guo Y  Zhang Y 《Blood》2011,117(5):1723-1733
Graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is caused by alloreactive donor T cells that trigger host tissue damage. The inflammatory environment inside recipients is critical for GVHD pathogenesis, but the underpinning mechanisms remain elusive. Using mouse model of human GVHD, we demonstrate osteopontin (OPN), a potent proinflammatory cytokine, plays an important role in regulating activation, migration, and survival of alloreactive T cells during GVHD. OPN was significantly elevated after irradiation and persisted throughout the course of GVHD. Blockade of OPN attenuated GVHD with reduced accumulation of donor T cells in recipient organs. Amelioration was the result of migration and survival suppression caused by anti-OPN treatment on donor-derived T cells for 2 reasons. First, OPN promoted the migration and infiltration of naive and alloreactive CD8(+) T cells into host organs. Second, it also facilitated activation and viability of donor-derived CD8(+) T cells via synergizing with T-cell receptor/CD3 signaling. Finally, anti-OPN treatment retained graft-versus-leukemia effect of alloreactive CD8(+) T cells. This study demonstrates, to our knowledge for the first time, the critical effect of OPN in the initiation and persistence of CD8(+) T cell-mediated GVHD and validates OPN as a potential target in GVHD prevention.  相似文献   

12.
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality after bone marrow transplantation (BMT). CD4(+)CD25(+) immune regulatory T cells (Tregs), long recognized for their critical role in induction and maintenance of self-tolerance and prevention of autoimmunity, are also important in the regulation of immune responses in allogeneic bone marrow (BM) and solid organ transplantation. Published data indicate that ex vivo activated and expanded donor Tregs result in significant inhibition of lethal GVHD. This study provides a direct comparison of LSel(hi) and LSel(lo) Tregs for GVHD inhibition and for the promotion of allogeneic BM engraftment. Imaging of green fluorescent protein-positive effectors in GVHD control mice and LSel(hi) and LSel(lo) Treg-treated mice vividly illustrate the multisystemic nature of GVHD and the profound inhibition of GVHD by LSel(hi) Tregs. Data indicate that LSel(hi) Tregs interfere with the activation and expansion of GVHD effector T cells in secondary lymphoid organs early after BMT. Either donor- or host-type LSel(hi), but not LSel(lo), Tregs potently increased donor BM engraftment in sublethally irradiated mice, an event occurring independently of transforming growth factor beta signaling of host T cells. These data indicate that Treg cellular therapy warrants clinical consideration for the inhibition of GVHD and the promotion of alloengraftment.  相似文献   

13.
Liu YJ  Wu DP  Li CX  He J  Qiu QC  Zhang XG 《中华内科杂志》2006,45(10):835-838
目的 探讨供体CD+4CD+25T细胞亚群、FOXP3调控基因的表达与受者移植物抗宿主病(GVHD)的相关性.方法 (1)30例异基因造血干细胞移植(allo-HSCT),采用免疫荧光标记和流式细胞术检测并比较供体粒细胞集落刺激因子(G-CSF)动员前外周血、动员后采集物CD+4CD+25T细胞亚群比例,随访异基因移植后GVHD的发生率和严重程度.(2)应用RT-PCR技术检测供体FOXP3基因表达情况,分析其与GVHD、疾病复发的相关性.结果 (1)所有患者均获造血重建,粒细胞绝对数(ANC)≥0.5×109/L的中位时间为14(12~15)d,PLT≥20×109/L为18(15~25)d.30例allo-HSCT,中位随访时间12.8(8~16)个月,Ⅰ~Ⅳ度急性GVHD分别为3、4、3、5例.慢性GVHD 6例.(2)供体G-CSF动员前外周血、动员后采集物CD+4CD+25T细胞亚群分别为(2.67±0.38)%、(5.01±1.33)%,两者相比差异无统计学意义(P>0.05).(3)移植后无急性GVHD组、Ⅰ~Ⅱ度急性GVHD组、Ⅲ~Ⅳ度急性GVHD组供体CD+4CD+25T细胞亚群分别为(5.05±1.34)%、(4.17±1.73)%、(1.98±1.10)%.其中Ⅰ~Ⅱ度急性GVHD组与Ⅲ~Ⅳ度急性GVHD组相比差异有统计学意义(P=0.04),无急性GVHD组与Ⅲ~Ⅳ度急性GVHD组相比差异有统计学意义(P=0.002).(4)30例allo-HSCT,7例FOXP3基因表达阳性,5/7例移植后无急性GVHD,其中3例移植后复发,另2/7例移植后Ⅰ度急性GVHD,Ⅱ~Ⅳ度急性GVHD患者FOXP3均不表达.结论 (1)供体CD+4CD+25T细胞亚群比例与受者急性GVHD的发生具有一定的相关性,提高供体CD+4CD+25T细胞数量有望减低移植后急性GVHD发生率.(2)供体移植物FOXP3基因表达阳性,与移植后有无严重急性GVHD发生存在一定相关性.  相似文献   

14.
Karim M  Feng G  Wood KJ  Bushell AR 《Blood》2005,105(12):4871-4877
The importance of CD25(+)CD4(+) regulatory T (Treg) cells in the control of immune responses is established, but their antigen specificity in vivo remains unclear. Understanding Treg-cell specificity requirements will be important if their potential is to be developed for immunotherapy. Pretreatment of recipient mice with donor alloantigen plus anti-CD4 antibody generates CD25(+)CD4(+) Treg cells with the capacity to prevent skin allograft rejection in adoptive transfer recipients. Here we demonstrate that, although this regulation can be antigen-specific, reactivation with the original tolerizing alloantigen allows the Treg cells to suppress rejection of third-party allografts. Aware of the limitations of alloantigen pretreatment, we asked whether graft-protective Treg cells could be generated against unrelated, nongraft antigens. We demonstrate that bystander regulation also extends to CD25(+)CD4(+) Treg cells generated in vivo by exposure to nominal antigens under anti-CD4 antibody cover. Providing these Treg cells are reexposed to the tolerizing antigens before adoptive transfer, they prevent the rejection of fully allogeneic skin grafts. That this might form the basis of a clinically relevant tolerance induction strategy is demonstrated by the fact that, when combined with subtherapeutic anti-CD8 antibody, Treg cells generated in response to nongraft antigens facilitate the acceptance of cardiac allografts in primary recipients.  相似文献   

15.
Reconstitution of the recipient lymphoid compartment following hematopoietic cell transplantation (HCT) is typically delayed. The present studies investigated the residual host CD4(+)CD25(+)Foxp3(+) (Treg) compartment after several conditioning regimens, including T cell-depleted and T cell-replete HCT and observed (1) a small number of recipient Treg cells survived aggressive conditioning; (2) the surviving, that is, residual Tregs underwent marked expansion; and (3) recipient CD4(+)FoxP3(+) cells composed the majority of the Treg compartment for several months post-syngeneic HCT. Notably, residual Tregs also dominated the compartment post-HCT with T cell-depleted (TCD) major histocompatibility complex-matched allogeneic bone marrow but not following T cell-replete transplantations. The residual Treg cell compartment was functionally competent as assessed by in vitro lymphoid suppression and in vivo autoimmune disease transfer assay. These observations support the notion that functional host Tregs initially occupy a niche in lymphopenic transplantation recipients, undergo significant expansion, and contribute to the compartment for an extended period before donor-derived CD4(+)FoxP3(+) T cells eventually compose the majority of the compartment. In total, the findings suggest that the presence of host Tregs may be important to consider regarding elicitation of immune (eg, antitumor, vaccine) responses in recipients during the early post-transplant period involving autologous and certain allogeneic HCT regimens.  相似文献   

16.
Yi T  Zhao D  Lin CL  Zhang C  Chen Y  Todorov I  LeBon T  Kandeel F  Forman S  Zeng D 《Blood》2008,112(5):2101-2110
Th17 is a newly identified T-cell lineage that secretes proinflammatory cytokine IL-17. Th17 cells have been shown to play a critical role in mediating autoimmune diseases such as EAE, colitis, and arthritis, but their role in the pathogenesis of graft-versus-host disease (GVHD) is still unknown. Here we showed that, in an acute GVHD model of C57BL/6 (H-2(b)) donor to BALB/c (H-2(d)) recipient, IL-17(-/-) donor T cells manifested an augmented Th1 differentiation and IFN-gamma production and induced exacerbated acute GVHD. Severe tissue damage mediated by IL-17(-/-) donor T cells was associated with increased Th1 infiltration, up-regulation of chemokine receptors by donor T cells, and enhanced tissue expression of inflammatory chemokines. Administration of recombinant IL-17 and neutralizing IFN-gamma in the recipients given IL-17(-/-) donor cells ameliorated the acute GVHD. Furthermore, the regulation of Th1 differentiation by IL-17 or Th17 may be through its influence on host DCs. Our results indicate that donor Th17 cells can down-regulate Th1 differentiation and ameliorate acute GVHD in allogeneic recipients, and that treatments neutralizing proinflammatory cytokine IL-17 may augment acute GVHD as well as other inflammatory autoimmune diseases.  相似文献   

17.
Chronic graft-versus-host disease (GVHD) is the most common cause of poor long-term outcomes after allogeneic bone marrow transplantation (BMT), but the pathophysiology of chronic GVHD still remains poorly understood. We tested the hypothesis that the impaired thymic negative selection of the recipients will permit the emergence of pathogenic T cells that cause chronic GVHD. Lethally irradiated C3H/HeN (H-2k) recipients were reconstituted with T-cell-depleted bone marrow cells from major histocompatibility complex [MHC] class II-deficient (H2-Ab1-/-) B6 (H-2b) mice. These mice developed diseases that showed all of the clinical and histopathological features of human chronic GVHD. Thymectomy prevented chronic GVHD, thus confirming the causal association of the thymus. CD4+ T cells isolated from chronic GVHD mice were primarily donor reactive, and adoptive transfer of CD4+ T cells generated in these mice caused chronic GVHD in C3H/HeN mice in the presence of B6-derived antigen-presenting cells. Our results demonstrate for the first time that T cells that escape from negative thymic selection could cause chronic GVHD after allogeneic BMT. These results also suggest that self-reactivity of donor T cells plays a role in this chronic GVHD, and improvement in the thymic function may have a potential to decrease chronic GVHD.  相似文献   

18.
The goal of the current study was to determine whether whole bone marrow cells or splenic CD8(+) T cells from C57BL/6 (H-2(b)) donor mice, which are tolerant to BALB/c (H-2(d)) alloantigens, are capable of mediating graft anti-tumor activity against a BALB/c B-cell lymphoma after injection into irradiated BALB/c hosts. The experimental results show that high doses of splenic CD8(+) T cells mixed with T cell-depleted bone marrow cells from C57BL/6 non-tolerant (normal) donors eliminate the BCL(1) B-cell lymphoma cells and induce lethal graft-versus-host disease (GVHD). CD8(+) T cells from tolerant donors simultaneously lose both their ability to induce GVHD and their anti-tumor activity. Whole bone marrow cell transplants from normal donors eliminated BCL(1) tumor cells without inducing GVHD, and bone marrow cells from tolerant donors failed to eliminate the tumor cells. The infused BCL(1) tumor cells expressed an immunogenic tumor-specific idiotype antigen disparate from host alloantigens, indicating that recognition of the tumor-specific antigen alone was insufficient to elicit graft anti-tumor activity from unimmunized allotolerant donor splenic CD8(+) T cells or whole bone marrow cells. We conclude that CD8(+) T cells from unimmunized normal donor mice require alloantigen recognition to mediate their anti-tumor activity following allogeneic BMT.  相似文献   

19.
Selective depletion of alloreactive T cells from allogeneic stem cell grafts can reduce graft-versus-host disease (GVHD) while preserving beneficial effects of T cells including facilitation of engraftment, protection against opportunistic infection, and reduced relapse risk. Memory T cells (CD62L(-)) represent a population of T cells that have previously encountered pathogens and may contain fewer T cells capable of recognizing neoantigens including recipient allogeneic antigen (aAg). We investigated whether human naive (CD62L(+)) or memory (CD62L(-)) T cells had different capacities to respond to aAg by assessing their ability to proliferate in response to and lyse HLA-mismatched Epstein-Barr virus-transformed B cells. Freshly sorted and in vitro expanded CD62L(-) memory T cells were less responsive to aAg stimulation than were CD62L(+) naive T cells but contained higher levels of cytomegalovirus (CMV)-specific T cells. Analysis of T cell receptor (TCR) repertoire showed restricted TCR diversity in the memory T-cell population possibly due to selection associated with chronic exposure to common pathogens. Memory T cells may represent a donor cell subpopulation suitable for enhancing immune reconstitution without increasing the risk of GVHD.  相似文献   

20.
CD4 CD25 调节性T细胞(Treg细胞)是CD4 T细胞的一个亚群,在维持机体自身免疫耐受,诱导移植耐受等方面发挥重要作用。移植物抗宿主病(GVHD)是异基因造血干细胞移植最严重的并发症之一。在动物骨髓移植模型中证实Treg细胞可以促进移植物植入,减少GVHD的发生率和严重度,但并没有消除移植物抗白血病(GVL)的作用。在人体有关Treg细胞对GVHD的影响因研究者分析Treg细胞采用的表型不同,其结论存在不一致性。本文就新近Treg细胞生物学特性,Treg细胞与GVHD和GVL的关系的研究进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号