首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The HIV-1 envelope subunit gp41 plays a role in viral entry by initiating fusion of the viral and cellular membranes. A chimeric molecule was constructed centered on the ectodomain of gp41 without the fusion peptide, with a trimeric isoleucine zipper derived from GCN4 (pIIGCN4) on the N terminus and part of the trimeric coiled coil of the influenza virus hemagglutinin (HA) HA2 on the C terminus. The chimera pII-41-HA was overexpressed as inclusion bodies in bacteria and refolded to soluble aggregates that became monodisperse after treatment with protease. Either trypsin or proteinase K, used previously to define a protease-resistant core of recombinant gp41 [Lu, M., Blacklow, S. C. & Kim, P.S. (1995) Nat. Struct. Biol. 2, 1075–1082], removed about 20–30 residues from the center of gp41 and all or most of the HA2 segment. Evidence is presented that the resulting soluble chimera, retaining the pIIGCN4 coiled coil at the N terminus, is an oligomeric highly α-helical rod about 130 Å long that crystallizes. The chimeric molecule is recognized by the Fab fragments of mAbs specific for folded gp41. A similar chimera was assembled from the two halves of the molecule expressed separately in different bacteria and refolded together. Crystals from the smallest chimera diffract x-rays to 2.6-Å resolution.  相似文献   

2.
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.  相似文献   

3.
The HIV-1 gp41 envelope glycoprotein mediates fusion of the viral and cellular membranes. The core of the gp41 ectodomain undergoes a receptor-triggered conformational transition forming a trimeric, alpha-helical coiled-coil structure. This trimer-of-hairpins species facilitates insertion of the viral envelope protein into the host cell membrane promoting viral entry. The prefusogenic conformation of gp41 is capable of stimulating a neutralizing antibody immune response and is therefore an attractive therapeutic target. Several broadly neutralizing HIV-1 monoclonal antibodies which bind to gp41 have been characterized and include 4E10, Z13 and 2F5. A conserved segment of gp41 (residues 661-684) has been identified as the epitope for the HIV-1 neutralizing antibody 2F5 (MAb 2F5). MAb 2F5 has attracted considerable attention because of the highly conserved recognition epitope and the ability to neutralize both laboratory-adapted and primary viral isolates. Antibodies which recognize the immunodominant regions of gp41 may provide protection against HIV infection if elicited at appropriate concentrations. Here we review the rational design, structure-activity relationships and conformational features of both linear and constrained peptide immunogens incorporating variants of both the 2F5 epitope and the gp41 ectodomain. This review describes a rational design approach combining structural characterization with traditional SAR to optimize MAb 2F5 antibody affinities of gp41-based peptide immunogens. The immunogens are shown to stimulate a high titer, peptide-specific immune response; however, the resulting antisera were incapable of viral neutralization. The implication of these findings with regard to structural and immunological considerations is discussed.  相似文献   

4.
The hydrophobic pocket in the HIV-1 gp41 N-terminal heptad repeat (NHR) domain plays an important role in viral fusion and entry into the host cell, and serves as an attractive target for development of HIV-1 fusion/entry inhibitors. The peptide anti-HIV drug targeting gp41 NHR, T-20 (generic name: enfuvirtide; brand name: Fuzeon), was approved by the U.S. FDA in 2003 as the first HIV fusion/entry inhibitor for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, because T20 lacks the pocket-binding domain (PBD), it exhibits low anti-HIV-1 activity and short half-life. Therefore, several next-generation HIV fusion inhibitory peptides with PBD have been developed. They possess longer half-life and more potent antiviral activity against a broad spectrum of HIV-1 strains, including the T-20-resistant variants. Nonetheless, the clinical application of these peptides is still limited by the lack of oral availability and the high cost of production. Thus, development of small molecule compounds targeting the gp41 pocket with oral availability has been promoted. This review describes the main approaches for identification of HIV fusion/entry inhibitors targeting the gp41 pocket and summarizes the latest progress in developing these inhibitors as a new class of anti-HIV drugs.  相似文献   

5.
6.
We report that human immunodeficiency virus type 1 (HIV-1) has evolved a self-perpetuating mechanism to actively generate cells permissive for productive and cytopathic infection. Only activated T cells can be productively infected, which leads to their rapid depletion (2 × 109/day in an infected individual). Establishment of productive HIV-1 infection therefore requires continual activations from the large pool of quiescent T cells. Tat protein, which is secreted by infected cells, activated uninfected quiescent T cells in vitro and in vivo. These Tat-activated uninfected cells became highly permissive for productive HIV-1 infection. Activation of primary T cells by Tat protein involved integrin receptors and was associated with activation of mitogen-activated protein kinases, including ERK1 and JNK kinase. Accordingly, these primary T cells progressed from G0 to the late G1 phase of the cell cycle.  相似文献   

7.
Most antibodies induced by HIV-1 are ineffective at preventing initiation or spread of infection because they are either nonneutralizing or narrowly isolate-specific. Rare, "broadly neutralizing" antibodies have been detected that recognize relatively conserved regions on the envelope glycoprotein. Using stringently characterized, homogeneous preparations of trimeric HIV-1 envelope protein in relevant conformations, we have analyzed the molecular mechanism of neutralization by two of these antibodies, 2F5 and 4E10. We find that their epitopes, in the membrane-proximal segment of the envelope protein ectodomain, are exposed only on a form designed to mimic an intermediate state during viral entry. These results help explain the rarity of 2F5- and 4E10-like antibody responses and suggest a strategy for eliciting them.  相似文献   

8.
The chemokine receptor CXCR4 functions as a fusion coreceptor for T cell tropic and dual-tropic HIV-1 strains. To identify regions of CXCR4 that are important for coreceptor function, CXCR4–CXCR2 receptor chimeras were tested for the ability to support HIV-1 envelope (env) protein-mediated membrane fusion. Receptor chimeras containing the first and second extracellular loops of CXCR4 supported fusion by T tropic and dual-tropic HIV-1 and HIV-2 strains and binding of a monoclonal antibody to CXCR4, 12G5, that blocks CXCR4-dependent infection by some virus strains. The second extracellular loop of CXCR4 was sufficient to confer coreceptor function to CXCR2 for most virus strains tested but did not support binding of 12G5. Truncation of the CXCR4 cytoplasmic tail or mutation of a conserved DRY motif in the second intracellular loop did not affect coreceptor function, indicating that phosphorylation of the cytoplasmic tail and the DRY motif are not required for coreceptor function. The results implicate the involvement of multiple CXCR4 domains in HIV-1 coreceptor function, especially the second extracellular loop, though the structural requirements for coreceptor function were somewhat variable for different env proteins. Finally, a hybrid receptor in which the amino terminus of CXCR4 was replaced by that of CCR5 was active as a coreceptor for M tropic, T tropic, and dual-tropic env proteins. We propose that dual tropism may evolve in CCR5-restricted HIV-1 strains through acquisition of the ability to utilize the first and second extracellular loops of CXCR4 while retaining the ability to interact with the CCR5 amino-terminal domain.  相似文献   

9.
The HIV-1 gp41 envelope glycoprotein promotes fusion of the virus and cell membranes through the formation of a trimer-of-hairpins structure, in which the amino- and carboxyl-terminal regions of the gp41 ectodomain are brought together. Synthetic peptides derived from these two regions (called N and C peptides, respectively) inhibit HIV-1 entry. In contrast to C peptides, which inhibit in the nanomolar range, N peptides are weak inhibitors with IC(50) values in the micromolar range. To test the hypothesis that the weak inhibition of N peptides results from their tendency to aggregate, we have constructed chimeric variants of the N-peptide region of gp41 in which soluble trimeric coiled coils are fused to portions of the gp41 N peptide. These molecules, which present the N peptide in a trimeric coiled-coil conformation, are remarkably more potent inhibitors than the N peptides themselves and likely target the carboxyl-terminal region of the gp41 ectodomain. The best inhibitors described here inhibit HIV-1 entry at nanomolar concentrations.  相似文献   

10.
HIV-1 entry into cells is mediated by the envelope glycoprotein receptor-binding (gp120) and membrane fusion-promoting (gp41) subunits. The gp41 heptad repeat 1 (HR1) domain is the molecular target of the fusion-inhibitor drug enfuvirtide (T20). The HR1 sequence is highly conserved and therefore considered an attractive target for vaccine development, but it is unknown whether antibodies can access HR1. Herein, we use gp41-based peptides to select a human antibody, 5H/I1-BMV-D5 (D5), that binds to HR1 and inhibits the assembly of fusion intermediates in vitro. D5 inhibits the replication of diverse HIV-1 clinical isolates and therefore represents a previously unknown example of a crossneutralizing IgG selected by binding to designed antigens. NMR studies and functional analyses map the D5-binding site to a previously identified hydrophobic pocket situated in the HR1 groove. This hydrophobic pocket was proposed as a drug target and subsequently identified as a common binding site for peptide and peptidomimetic fusion inhibitors. The finding that the D5 fusion-inhibitory antibody shares the same binding site suggests that the hydrophobic pocket is a "hot spot" for fusion inhibition and an ideal target on which to focus a vaccine-elicited antibody response. Our data provide a structural framework for the design of new immunogens and therapeutic antibodies with crossneutralizing potential.  相似文献   

11.
BACKGROUND: Sequence variations in the gp41 heptad repeat 1 (HR1) region have been identified in some treatment-naive HIV-1-infected patients but it remained elusive whether they confer resistance to fusion inhibitors. OBJECTIVE: To evaluate whether naturally occurring sequence variations in the HIV-1 group M gp41 HR1 region affect the sensitivity to inhibition by T-20 and T-1249. METHODS: Site-directed mutagenesis was used to generate HIV-1 NL4-3 mutants containing changes in the gp41 HR1 domain which have been previously identified in treatment-naive patients infected with various HIV-1 group M subtypes. HIV-1 variants were produced by transient transfection of 293T cells and used to determine viral infectivity and sensitivity to the fusion inhibitors T-20 and T-1249. RESULTS: Most naturally occurring sequence variations in the HR1 domain did not reduce viral infectivity. Three of the 10 HIV-1 variants analysed containing a single substitution of L33V, which is frequently present in subtype D isolates, or combined changes of L54M/Q56K or L34M/L54M/Q56R showed about fivefold reduced sensitivity to inhibition by T-20. In comparison, none of these HR1 sequence variations conferred resistance to T-1249. CONCLUSION: Some naturally occurring sequence variations in the gp41 HR1 region reduce sensitivity of HIV-1 to inhibition by T-20 but not T-1249.  相似文献   

12.
Esophageal ulcers associated with acquired immunodeficiency syndrome (AIDS) may be chronic, debilitating, and resistant to antifungal or antiviral therapy. The therapeutic management of these lesions remains controversial due to the difficulty in identifying pathogenic agent(s). We review previously published cases and describe three AIDS patients with esophageal ulcers that stained by immunoperoxidase techniques for human immunodeficiency virus (HIV)-1 surface glyloprotein (gp41). All three showed symptomatic resolution and healing of their ulcers with corticosteroid therapy. We believe this documentation of HIV-1 gp41 antigen within mononuclear cells of esophageal ulcers in AIDS supports a role of the HIV-1 virus in the pathophysiology of idiopathic esophageal ulcers in patients with AIDS. These cases further support a role for corticosteroid therapy in the treatment of esophageal ulcers resistant to antifungal and antiviral therapy in patients with AIDS.  相似文献   

13.
Patients with AIDS are known to have B-cell hyperactivity. We have previously demonstrated that an extract of HIV-1 could induce differentiation of peripheral blood B lymphocytes of healthy volunteers into immunoglobulin-secreting cells. In an attempt to delineate the B-cell stimulatory subregion in HIV-1, we have investigated the influences of native glycoproteins and recombinant proteins of the envelope. The complete envelope glycoprotein, gp160 and a recombinant protein in the carboxyl terminal region of gp41 termed PE-8 were effective in inducing terminal differentiation of normal peripheral blood B lymphocytes and did so in a T-lymphocyte-dependent manner. The activity was not present in the native exterior envelope glycoprotein, gp120 and several other recombinant proteins, viz PE-2 an PE-3, which are in the amino terminal region of gp120 or in env-9, a protein in the junctional region of gp120 and gp41. Polyclonal and monoclonal antibodies directed to diverse regions of the envelope abrogated the influence of gp160. The PE-8-induced B-cell differentiation was abrogated by goat anti-gp160 antibody but not by goat anti-gp120 antibody or monoclonal antibody to the amino terminal of gp41. These studies suggest that a putative polyclonal B-cell stimulatory epitope of HIV-1 is located in the carboxyl end of the envelope glycoprotein.  相似文献   

14.
Three-dimensional computer models for two segments of the C terminus of gp41, the transmembrane AIDS envelope protein, which may form amphipathic alpha-helices, have been generated using structure prediction techniques combined with energy minimization and molecular dynamics simulations. Regions gp41(772-790) and gp41(828-848) of the HXB2 strain of HIV-1 display extraordinarily high hydrophobic moment maxima as alpha-helices and when in an antiparallel conformation exhibit charge complementarity, implying that they may bind with each other and associate with the membrane. The feasibility of this hypothesis was tested in a series of computer simulations of these peptides, extended by several residues to include additional charge pairing. Beginning with a trial structure in the form of antiparallel alpha-helices of segments 770-794 and 824-856, systematic axial rotations and displacements were used to generate alternative initial states. Molecular dynamics simulations with alpha-helical torsional restraints yielded several approximately cylindrical dimeric structures highly stabilized by numerous salt links and other hydrogen bonds. This suggests that these two regions may fold back on each other in antiparallel fashion to form a loop in the tertiary structure over residues 770-856, with the loop closed by membrane-associated amphipathic alpha-helices with charged sides facing each other. We speculate that such structures could aggregate to form channels or otherwise destabilize the membrane, thereby contributing to the cytopathic effects of the gp120-gp41 complex.  相似文献   

15.
Human Immunodeficiency virus (HIV-1) fusion is mediated by glycoprotein-41, a protein that has not been widely exploited as a drug target. Small molecules directed at the gp41 ectodomain have proved to be poorly drug-like, having moderate efficacy, high hydrophobicity and/or high molecular weight. We recently investigated conversion of a fairly potent hydrophobic inhibitor into a covalent binder, by modifying it to react with a lysine residue on the protein. We demonstrated a 10-fold improvement in antiviral efficacy. Here, we continue this study, utilizing instead molecules with better inherent drug-like properties. Molecules possessing low to no antiviral activity as equilibrium binders were converted into µM inhibitors upon addition of an electrophilic warhead in the form of a sulfotetrafluorophenyl (STP) activated ester. We confirmed specificity for gp41 and for entry. The small size of the inhibitors described here offers an opportunity to expand their reach into neighboring pockets while retaining drug-likeness. STP esterification of equilibrium binders is a promising avenue to explore for inhibiting HIV-1 entry. Many gp41 targeting molecules studied over the years possess carboxylic acid groups which can be easily converted into the corresponding STP ester. It may be worth the effort to evaluate a library of such inhibitors as a way forward to small molecule inhibition of fusion of HIV and possibly other enveloped viruses.  相似文献   

16.
Cytotoxic T lymphocytes (CTLs) are thought to play a crucial role in the termination of the acute primary HIV-1 syndrome, but clear evidence for this presumption has been lacking. Here we demonstrate positive selection of HIV-1 proviral sequences encoding variants within a CTL epitope in Nef, a gene product critical for viral pathogenicity, during and after seroconversion. These positively selected HIV-1 variants carried epitope sequence changes that either diminished or escaped CTL recognition. Other proviruses had mutations that abolished the Nef epitope altogether. These results provide clear evidence that CTLs exert selection pressure on the viral population in acute HIV-1 infection.  相似文献   

17.
The T-cell antigen coreceptor CD4 also serves as the receptor for the envelope glycoprotein gp120 of HIV. Extensive mutational analysis of CD4 has implicated residues from a portion of the extracellular amino-terminal domain (D1) in gp120 binding. However, none of these proteins has been fully characterized biophysically, and thus the precise effects on molecular structure and binding interactions are unknown. In the present study, we produced soluble versions of three mutant CD4 molecules (F43V, G47S, and A55F) and characterized their structural properties, thermostability, and ability to bind gp120. Crystallographic and thermodynamic analysis showed minimal structural alterations in the F43V and G47S mutant proteins, which have solvent-exposed mutant side chains. In contrast, some degree of disorder appears to exist in the folded state of A55F, as a result of mutating a buried side chain. Real time kinetic measurements of the interaction of the mutant proteins with gp120 showed affinity decreases of 5-fold for G47S, 50-fold for A55F, and 200-fold for F43V. Although both rate constants for the binding reaction were affected by these mutations, the loss in affinity was mainly due to a decrease in on rates, with less drastic changes occurring in the off rates. These observations suggest the involvement of conformational adaptation in the CD4–gp120 interaction. Together, the structural and kinetic data confirm that F43V is a critical residue in gp120 recognition site, which may also include main chain interactions at residue Gly-47.  相似文献   

18.
Primary HIV-1 isolates were evaluated for their sensitivity to inhibition by β-chemokines RANTES (regulated upon activation, normal T-cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. Virus isolates of both nonsyncytium-inducing (NSI) and syncytium-inducing (SI) biological phenotypes recovered from patients at various stages of HIV-1 infection were assessed, and the results indicated that only the isolates with the NSI phenotype were substantially inhibited by the β-chemokines. More important to note, these data demonstrate that resistance to inhibition by β-chemokines RANTES, MIP-1α, and MIP-1β is not restricted to T cell line-adapted SI isolates but is also a consistent property among primary SI isolates. Analysis of isolates obtained sequentially from infected individuals in whom viruses shifted from NSI to SI phenotype during clinical progression exhibited a parallel loss of sensitivity to β-chemokines. Loss of virus sensitivity to inhibition by β-chemokines RANTES, MIP-1α, and MIP-1β was furthermore associated with changes in the third variable (V3) region amino acid residues previously described to correlate with a shift of virus phenotype from NSI to SI. Of interest, an intermediate V3 genotype correlated with a partial inhibition by the β-chemokines. In addition, we also identified viruses sensitive to RANTES, MIP-1α, and MIP-1β of NSI phenotype that were isolated from individuals with AIDS manifestations, indicating that loss of sensitivity to β-chemokine inhibition and shift in viral phenotype are not necessarily prerequisites for the pathogenesis of HIV-1 infection.  相似文献   

19.
An inhibition enzyme immunoassay (IEIA), using a human monoclonal antibody (K14) reactive with gp41 of HIV-1, was evaluated for its applicability to the serology of HIV-1 infections. Using panels of serum samples from seronegative and confirmed HIV-1-seropositive individuals, it was shown that all the HIV-1-positive samples in a panel from The Netherlands and 97% of the HIV-1-positive samples from Tanzania were identified by this IEIA. Six per cent of the IEIA-positive samples from Tanzania could not be confirmed in other assays. Testing of serial dilutions of serum samples from African individuals with confirmed HIV-1, HIV-2 or HIV(ANI70) infections in the K14 IEIA, indicated that a HIV-1-specific assay based on this principle may be developed.  相似文献   

20.
HIV-1 virions are highly enriched in cholesterol relative to the cellular plasma membrane. We recently reported that a cholesterol-binding compound, amphotericin B methyl ester (AME), blocks HIV-1 entry and that single amino acid substitutions in the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 confer resistance to AME. In this study, we defined the mechanism of resistance to AME. We observed that the gp41 in AME-resistant virions is substantially smaller than wild-type gp41. Remarkably, we found that this shift in gp41 size is due to cleavage of the gp41 cytoplasmic tail by the viral protease. We mapped the protease-mediated cleavage to two sites in the cytoplasmic tail and showed that gp41 truncations in this region also confer AME resistance. Thus, to escape the inhibitory effects of AME, HIV-1 evolved a mechanism of protease-mediated envelope glycoprotein cleavage used by several other retroviruses to activate envelope glycoprotein fusogenicity. In contrast to the mechanism of AME resistance observed for HIV-1, we demonstrate that simian immunodeficiency virus can escape from AME via the introduction of premature termination codons in the gp41 cytoplasmic tail coding region. These findings demonstrate that in human T cell lines, HIV-1 and simian immunodeficiency virus can evolve distinct strategies for evading AME, reflecting their differential requirements for the gp41 cytoplasmic tail in virus replication. These data reveal that HIV-1 can escape from an inhibitor of viral entry by acquiring mutations that cause the cytoplasmic tail of gp41 to be cleaved by the viral protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号