首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental autoimmune neuritis (EAN) is a CD4+ T cell-mediated, inflammatory demyelinating disease of the peripheral nervous system (PNS) that serves as a model for Guillain–Barré syndrome (GBS) in humans. The facial nerve paralysis is relatively commonly found in GBS patients. Here, EAN was established in Lewis rats by immunization with P2 peptide 57–81, a purified component of peripheral nerve myelin, and Freund's complete adjuvant (FCA). To study whether the facial nerves are involved in the pathogenic process during the EAN course, we observed the clinical and pathological changes as well as cytokine production in facial nerves on Day 14 postimmunization (p.i.), i.e. at height of clinical EAN. As a result, all rats immunized with P2 peptide 57–81 developed severe EAN on Day 14 p.i., but none of the rats manifested clinical signs of facial nerve paralysis. Additionally, only mild inflammatory cell infiltration and proinflammatory cytokine, interferon-γ (IFN-γ) and tumour necrosis factor (TNF-) production as well as devoid demyelination were seen in facial nerves of the EAN rats. On the contrary, severe inflammation and demyelination as well as upregulated IFN-γ and TNF- production were observed in sciatic nerves of the same EAN rats. The underlying mechanism for the difference of the local manifestation of the disease process of EAN remains to be resolved.  相似文献   

2.
Activated glia play a major role in mediating behavioral hypersensitive state following peripheral inflammation. Electroacupuncture is well known to relieve persistent inflammatory pain. The present study was undertaken to examine whether fluorocitrate, a glial metabolic inhibitor, could synergize electroacupuncture antagonizing thermal hyperalgesia and mechanical allodynia evoked by ankle joint inflammation. Monoarthritis of rat ankle joint was induced by an intra-articular injection of Complete Freund's Adjuvant (CFA). The paw withdrawal latency (PWL) from a thermal stimulus and paw withdrawal threshold (PWT) from von Frey hairs were measured in awake rats. Intrathecal (i.t.) injection of 1 nmol fluorocitrate markedly suppressed monoarthritis-induced thermal hyperalgesia and mechanical allodynia. Unilateral electroacupuncture stimulation of "Huantiao" (GB30) and "Yanglingquan" (GB34) acupuncture points (100/2 Hz alternation, 1-2-3 mA) significantly elevated the PWLs and PWTs for 45 min after cessation of electroacupuncture in monoarthritic rats. Co-application of 0.1 or 1 nmol fluorocitrate with electroacupuncture significantly potentiated electroacupuncture analgesia, although 0.1 nmol fluorocitrate alone had no effect on PWLs and PWTs in monoarthritic rats. These results suggested that electroacupuncture and disrupting glial function could synergistically antagonize inflammatory pain, which might provide a potential strategy for the treatment of arthritic pain.  相似文献   

3.
The putative prophylactic and therapeutic effect of interferon-beta (IFN-beta) on autoimmune inflammation of the peripheral nervous system was evaluated in experimental autoimmune neuritis (EAN), a well-known animal model of the human Guillain-Barré syndrome (GBS). We report that treatment of rats with 300,000 U of recombinant rat IFN-beta (rrIFN-beta) given every other day starting at the day of immunization prevented clinical signs of EAN. When treatment was started at the onset of disease development, the cytokine clearly ameliorated EAN. Both B- and T-cell responses towards peripheral myelin were suppressed by the IFN-beta, and immunohistochemical analyses revealed a strong decrease in the numbers of infiltrating CD4(+) T cells, macrophages, and other inflammatory cells as well as a significant reduction in MHC class II antigen expression and monocyte chemotactic protein-1 (MCP-1) production, which induces chemotaxis and chemokinesis of leukocytes from blood. It is concluded that the observed suppression of EAN by rrIFN-beta is associated with a decrease in the migration of inflammatory cells into peripheral nervous tissue.  相似文献   

4.
Inbred, histocompatible Lewis and Fischer 344 rats (LEW and FIS) have been used to identify an inverse relationship between hypothalamic-pituitary-adrenal (HPA) axis activity and susceptibility to autoimmune and chronic inflammatory disorders, with LEW showing blunted HPA axis activity and increased susceptibility toward the development of autoimmunity and chronic inflammation, and FIS showing the opposite relationship. In the present study, LEW and FIS were used to determine the relationship between HPA axis function and acute inflammatory pain (carrageenan-induced hindpaw inflammation) and neuropathic pain (partial sciatic nerve ligation; PSNL). The results showed that carrageenan-induced thermal and mechanical allodynia and hyperalgesia were greater in FIS than in LEW. Similarly, FIS showed more carrageenan-induced hindpaw swelling and higher levels of myeloperoxidase (a measure of neutrophils) in the carrageenan-inflamed hindpaw. After PSNL, LEW showed a profound mechanical allodynia and hyperalgesia, whereas mechanical sensitivity in FIS was unaltered. However, FIS, but not LEW, developed thermal allodynia and hyperalgesia after PSNL. These results provide strong evidence for a positive relationship between HPA axis activity and acute inflammatory pain. The results also support a relationship between HPA axis activity and neuropathic pain, but the relationship is complex and may depend on the pain assay.  相似文献   

5.
Experimental autoimmune neuritis (EAN) is an inflammatory autoimmune demyelinating disease of the peripheral nervous system (PNS) and represents an animal model of Guillain-Barré syndrome (GBS), which is a major inflammatory demyelinating disease of the PNS in humans. In the present study, the dynamics of the expression of the chemokines macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-2 and monocyte chemotactic protein-1 (MCP-1) were determined in the sciatic nerves of EAN rats. Additionally, the effect of neutralizing antibodies against MIP-1alpha, MIP-2 and MCP-1 on the clinical course of EAN and the chemokine expression was investigated. The maximum of MIP-1alpha positive cells in the sciatic nerves was seen on day 14 post immunization (p.i.) correlating with the development of severe clinical signs. Administration of an anti-MIP-1alpha antibody suppressed the clinical signs of EAN and inhibited inflammation and demyelination in the sciatic nerve. Peak numbers of MCP-1 positive cells in the sciatic nerves were detected on day 7 p.i. Administration of an anti-MCP-1 antibody caused a delay of onset of EAN. However, 4 of the 6 EAN rats receiving the anti-MCP-antibody showed the same degree of inflammatory cell infiltration and demyelination in the sciatic nerves as sham-treated EAN rats, whereas only 2 EAN rats had less inflammation and demyelination. The numbers of MIP-2 positive cells reached a maximum on day 21 p.i. Anti-MIP-2 antibody failed to suppress the clinical signs of EAN and the inflammation and demyelination in the sciatic nerves. Only administration of the anti-MIP-1alpha antibody resulted in a significant reduction in the number of chemokine (MIP-1alpha)-positive cells and ED1-positive macrophages in the sciatic nerves. The present results demonstrate that MIP-1alpha and MCP-1 may play a role in the immunopathogenesis of EAN, and that MIP-1alpha induced trafficking of inflammatory cells can be inhibited by immunoneutralization. Further elucidation of the regulation and coordination of MIP-1alpha and MCP-1 production may lead to new therapeutic approaches to GBS in humans.  相似文献   

6.
The most common complication of herpes zoster is post-herpetic neuralgia (PHN), which has been defined as severe pain occurring 1 month after rash onset or persisting for greater than 3 months. PHN is classed as a neuropathic pain that is associated with mechanical allodynia where normally innocuous tactile stimuli are perceived as painful. The development of therapies to treat PHN has been hampered by the lack of animal models, which mimic the clinical situation. We have previously reported that varicella zoster virus (VZV) infection in the rat results in mechanical allodynia and thermal hyperalgesia. Here, we report that following VZV infection of the left footpad rats develop a chronic mechanical allodynia, which is present for longer than 60 days post-infection and which resolves by 100 days PI. The model is robust and reproducible with animals consistently developing allodynia by 3 days PI and continuing to present with symptoms for at least 30 days. The reproducible nature of the induction and course of the allodynia allows the use of this model to determine the effect of various compounds on, and to investigate the pathogenic mechanisms underlying the development of VZV-induced allodynia. Comparative studies using HSV-1 show that the induction of the chronic allodynia is VZV-specific and is not a result is of virus replication-induced tissue damage or accompanying inflammation.Therefore, we propose that the rat VZV infection model could prove useful in studying the mechanisms underlying post-herpetic neuralgia.  相似文献   

7.
Objective: The aim of the study was to evaluate if Campylobacter jejuni (C.j.) when used as an adjuvant would be able to produce a different form of Experimental Allergic Neuritis (EAN). We present here some preliminary results. Background: EAN is considered the in vivo model of Guillain-Barrè Syndrome (GBS), which is often preceded by c.j. infection. EAN can be induced in Lewis rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), an emulsion formed by oil-in-water and dead mycobacteria. An adjuvant is usually necessary for the induction of EAN because it enhances the immunogenicity of the antigen. Clinically EAN is characterized by an acute monophasic course and progressive tail and limb weakness. The pathological finding is represented by marked demyelination affecting the roots and the sciatic nerve. Methods: 4 Lewis rats were immunized with an emulsion containing 2 mg of bovine peripheral myelin and C.j. strain Penner 0:41 in incomplete Freund's adjuvant (IFA). They were compared to 4 controls immunized with the same amount of peripheral myelin in CFA. The clinical course of the disease and the histological pattern of the roots and the sciatic nerve were examined. Anti-peripheral myelin, anti-C.jejuni and anti-GM1 antibodies' reactivity was detected by an ELISA assay. A biochemical study was performed to test the role of cell- and humoral-mediated responses. Results: The Lewis rats immunized with the C.j. as an adjuvant showed a delayed onset and a milder course of disease. Pathology in the roots was characterized by predominant demyelination, whereas the sciatic nerve presented very little signs of damage. Conclusion: This serotype of C.j. appears to be a less effective adjuvant in inducing EAN rather than Mycobacteria. Further studies are necessary to elucidate the pathogenetic mechanisms involved in GBS.  相似文献   

8.
Experimental autoimmune neuritis (EAN) is a CD4+ T cell-mediated, inflammatory demyelinating disease of the peripheral nervous system (PNS) that serves as a model for Guillain-Barré syndrome (GBS) in humans. Various mouse and rat strains show different susceptibilities to EAN that can be induced by immunization with bovine PNS myelin (BPM) + Freund's complete adjuvant (FCA). We examined PNS-induced T and B cell responses and cytokine protein production as well as mRNA expression to study the mechanisms behind susceptibility to EAN in Lewis rats and resistance in Sprague-Dawley (SD) rats. Lewis rats with EAN have elevated PNS myelin-reactive interferon-γ (IFN-γ) production, TNF-α mRNA expression, and increased B cell responses to PNS myelin antigens, but low PNS myelin-reactive transforming growth factor-β (TGF-β) and interleukin (IL)-10 mRNA expression in lymph node mononuclear cells (MNC). In contrast, resistance to EAN in SD rats is associated with reduced BPM and P2 peptide-reactive IFN-γ production, TNF-α mRNA expression, and suppressed B cell responses to PNS myelin antigens as well as up-regulation of TGF-β and IL-10 mRNA expression. Resistance to EAN is also associated with low-grade inflammation or absence of histological evidence of EAN. These results suggest that differential autoreactive T and B cells responses to PNS myelin antigens are strain specific, and the susceptibility to EAN is related to quantitative rather than qualitative differences in distribution between pro-inflammatory and anti-inflammatory cytokines. J. Neurosci. Res. 54:373–381, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Complement activation triggers inflammation and has been implicated in neurological diseases associated with pain. However, the role of complement in neuropathic pain has not been clearly defined. In this study, we tested whether complement is activated by partial ligation of the rat sciatic nerve, a widely used model of neuropathic pain, and whether complement activation or inhibition in peripheral nerve influences leukocyte recruitment and neuropathic pain. We found that C3 deposition significantly increased from 6 h to 7 days in the injured nerve and was associated with the extent of thermal hyperalgesia and mechanical allodynia. However, no deposition of the membrane attack complex was detected. Complement activation by endoneurial injection of aggregated rat immunoglobulin G into normal sciatic nerve produced significant thermal hyperalgesia and mechanical allodynia of the ipsilateral hindpaw at 2-7 days after injection. This was accompanied by increased deposition of C3 and recruitment of macrophages at 7 days following injection. Complement inhibition using systemic injections of soluble complement receptor 1 (AVANT Immunotherapeutics, Inc., Needham, USA) into rats markedly suppressed C3 deposition and T-cell and macrophage recruitment to the injured nerve, and produced significant alleviation of thermal hyperalgesia and mechanical allodynia. These results demonstrate that C3 activation in the nerve contributes to increased infiltration of inflammatory cells and to neuropathic pain behaviors following peripheral nerve injury. Complement inhibition may be a potential therapeutic treatment for neuropathic pain.  相似文献   

10.
The saposin C-derived peptide TX14(A) prevents onset of functional and structural disorders in the peripheral nerve of diabetic rats. We have now investigated the ability of TX14(A) to alleviate behavioral indices of abnormal pain perception in adult female rats 4-6 weeks after onset of STZ-induced diabetes. Untreated diabetic rats exhibited tactile allodynia (response threshold = 3 ± 1 g) compared to age-matched controls (10 ± 1g). A single ip injection of TX14(A) transiently alleviated tactile allodynia, with an effect that was maximal 6 hours (11 ± 1g) after injection and diminished within 48 hours. Maximal efficacy was seen with a 1 mg/kg dose while no effects were noted in control rats. Control rats exhibited a transient thermal hyperalgesia (77 ± 5% of baseline paw withdrawal latency) 15 minutes after intrathecal delivery of substance P (30 nmol) that resolved within 30 minutes. Untreated diabetic rats exhibited substance P evoked thermal hyperalgesia of similar magnitude (82 ± 5% at 15 minutes) but of greater duration (83 ± 4% at 1 hour). Intrathecal delivery of TX14(A) 30 minutes before intrathecal substance P was without effect on the transient thermal hyperalgesia in control rats (74 ± 9% at 15 minutes). In diabetic rats, the prolonged thermal hyperalgesia was abolished by prior intrathecal delivery of TX14(A), although the transient thermal hyperalgesia (72 ± 8% at 15 minutes) remained. These studies show that TX14(A) can rapidly allevate diabetes-induced allodynia and hyperalgesia for up to 48 hours.  相似文献   

11.
Astrocytes and microglia in the spinal cord have recently been reported to contribute to the development of peripheral inflammation-induced exaggerated pain states. Both lowering of thermal pain threshold (thermal hyperalgesia) and lowering of response threshold to light tactile stimuli (mechanical allodynia) have been reported. The notion that spinal cord glia are potential mediators of such effects is based on the disruption of these exaggerated pain states by drugs thought to preferentially affect glial function. Activation of astrocytes and microglia can release many of the same substances that are known to mediate thermal hyperalgesia and mechanical allodynia. The aim of the present series of studies was to determine whether exaggerated pain states could also be created in rats by direct, intraspinal immune activation of astrocytes and microglia. The immune stimulus used was peri-spinal (intrathecal, i.t.) application of the Human Immunodeficiency Virus type 1 (HIV-1) envelope glycoprotein, gp120. This portion of HIV-1 is known to bind to and activate microglia and astrocytes. Robust thermal hyperalgesia (tail-flick, TF, and Hargreaves tests) and mechanical allodynia (von Frey and touch-evoked agitation tests) were observed in response to i.t. gp120. Heat denaturing of the complex protein structure of gp120 blocked gp120-induced thermal hyperalgesia. Lastly, both thermal hyperalgesia and mechanical allodynia to i.t. gp120 were blocked by spinal pretreatment with drugs (fluorocitrate and CNI-1493) thought to preferentially disrupt glial function.  相似文献   

12.
Opioid peptides have been proven effective in reducing the sign of hyperalgesia associated with inflammation. Electroacupuncture (EA) produces antinociception via release of endogenous opioid peptides in normal rats. Moreover, intrathecal injection of dynorphin has antinociceptive effect in rats. The present study was designed to examine whether EA has effect on the thermal and mechanical hyperalgesia in rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. The results are the following: (1) single session of 100Hz EA (0.5-1.0-1.5 mA, 10 min for each intensity) at both Zusanli (ST 36) and Sanyinjiao acupoints (SP 6) significantly increased mechanical withdrawal threshold determined by von Frey filaments but not with thermal withdrawal latency that is determined by hot plate (52 +/- 0.2 degrees C); (2) 100 Hz EA applied twice a week for 4 weeks and showed a significant decrease in the mechanical hyperalgesia at the third and fourth week, with no effect on thermal hyperalgesia; (3) naloxone (20 mg kg(-1)) had the ability to reverse the inhibition of the mechanical hyperalgesia produced by a single session of EA. In conclusion, the present results indicate that a single or repetitive EA could reduce mechanical hyperalgesia, but not thermal hyperalgesia, in CFA-inflammatory pain rats, and the opioid system might be involved in these effects.  相似文献   

13.
Neurostimulation approaches including spinal cord and peripheral nerve stimulation are typically used to treat intractable chronic pain in individuals who are refractory to pain medications. Our earlier studies have shown that a voltage controlled capacitive discharge (VCCD) method of stimulation of nerve activation is able to selectively recruit activity in large myelinated nerve fibers. In this study, we were able to wirelessly activate the sciatic nerve using the VCCD waveform. The purpose of this study was to determine whether this waveform can effectively improve two of the most troublesome pain symptoms experienced by patients with chronic neuropathic pain mechanical and cold hyperalgesia. Neuropathic mechanical hyperalgesia was reproduced using the Spinal Nerve Ligation (SNL) rat model whereas cold allodynia was reproduced using the Chronic Constriction Injury (CCI) model in male rats. Von Frey and cold plate tests were used to evaluate paw withdrawal threshold and latency to withdrawal before and after stimulation in experimental and control rats. Paw withdrawal threshold increased significantly compared to post-lesion baseline after VCCD stimulation in SNL rats. We also observed a significant improvement in cold allodynia in the active implant CCI rats after stimulation. These results suggest that the VCCD stimulation using a wireless microstimulator may be effective in the treatment of neuropathic pain.  相似文献   

14.
Neuropathic conditions for which treatment is sought, the so-called chronic pain syndrome, are characterized usually by complex behavioural disturbances as well as pain. In this study we evaluated whether social behavioural and sleep disruptions occurred after nerve injury. Before and after chronic constriction of the sciatic nerve, resident-intruder and sleep-wake cycles, as well as mechanical and thermal allodynia/hyperalgesia, were quantified. Sciatic nerve injury in all animals reduced withdrawal thresholds to tactile and thermal (cold) stimuli. Resident-intruder and sleep-waking behaviours were altered in some but not all animals. One group (30%, 'persistent change') had enduring reductions in dominant behaviour to an intruder and decreased slow-wave sleep and increased wakefulness during both light and dark cycles. Another group (25%, 'recovery') had a transient reduction in dominant behaviours and decreased slow-wave sleep and increased wakefulness during only the light cycle. In a third group (45%, 'no effect') resident-intruder and sleep-waking behaviours remained normal. Our finding that the degree of 'pain' as inferred from the allodynia/hyperalgesia was identical in all animals suggests that the alterations to resident-intruder and sleep-wake cycles were independent of the level of sensory disturbance. An absence of correlation between intensity of sensory disturbances and measures of disability (loss of sleep, familial/social problems) is also characteristic of human neuropathic pain. These data indicate that: (i) in a subpopulation of animals sciatic injury results in two of the major complex behavioural changes which are characteristic of neuropathic pain in humans; (ii) testing only for allodynia and hyperalgesia is not sufficient to detect this subpopulation.  相似文献   

15.
Autonomic nervous system (ANS) dysfunction occurs in more than half of Guillain--Barré syndrome (GBS) patients and is an important cause of death in the disease. In this study we examined heart rate (HR) changes in an animal model of GBS, experimental autoimmune neuritis (EAN), induced by immunization with myelin extracted from bovine spinal roots. The animals developed progressive motor weakness accompanied by significant weight loss and hypothermia. HR was measured in 33 EAN rats at rest (rHR) and followings stressful stimulation (sHR). Average pre-immunization rHR was 341+/-28 beats per minute (b.p.m.) and sHR was 486+/-21 bpm. Although the mean rHR in rats with EAN was not significantly different compared to that at baseline, there was a significant increase of variation of rHR with six rats demonstrating bradycardia (<280 b.p.m.) and 10 tachycardia (>400 b.p.m.) (P<0.01, F-test). sHR in EAN rats was significantly lower (P<0.01), suggesting sympathetic system impairment. These findings may serve as a basis for testing treatments of ANS dysfunction in EAN.  相似文献   

16.
Tumor necrosis factor (TNF) and its receptor (TNFR) have been strongly implicated in the pathogenesis of autoimmune disease. Soluble cytokine receptors may be shed naturally from cell membranes to inhibit cytokine activity. Experimental autoimmune neuritis (EAN) is a CD4 Th1 cell-mediated animal model of Guillain-Barré syndrome (GBS) in humans. In the present study, we investigated the effects of soluble TNFR type I (sTNFR I) in EAN induced in mice by P0 peptide 180-199 and Freund's complete adjuvant. Our data from two different therapeutic regimens indicate that the administration of sTNFR I effectively ameliorated the clinical and pathological signs of EAN, i.e., decreased its severity, shortened its duration, and reduced inflammatory cell infiltration into the peripheral nervous system. The suppression of clinical EAN was accompanied in vitro by a marked reduction in antigen-specific T-cell proliferation and IFN-gamma synthesis by spleen cells from sTNFR I-treated mice, compared to control mice treated with PBS. These data directly demonstrate a pivotal role for TNF in the development of EAN and also suggest that sTNFR I may have therapeutic potential for alleviating GBS in humans.  相似文献   

17.
Our laboratory has previously shown that glial activation and increased proinflammatory cytokine expression are observed in the rat spinal cord following peripheral nerve injuries that result in neuropathic pain behaviors. In the present study, we sought to determine whether acute peripheral inflammation induces changes in central glial and cytokine (Interleukin-1beta) expression similar to those seen following peripheral spinal nerve transection. Two models of peripheral inflammation were used in this study: formalin (5% solution) or zymosan (25 mg/ml) injected subcutaneously into the plantar portion of the left hind paw of male Holtzman-strain Sprague-Dawley rats. The rats were euthanized at 1 h, 6 h, and 1, 3, 7 days post-injection (n=4 or 5/group/time point). As expected, the animals treated with formalin showed a spontaneous pain response and mechanical allodynia that persisted for approximately 60 min following injection. The animals treated with zymosan exhibited mild spontaneous pain responses during the first hour and mechanical allodynia at 6 h and 1 day following injection. Immunohistochemistry for glial activation and cytokine expression was performed on L4-L5 spinal levels in all rats. Spinal sections from both formalin and zymosan treated animals exhibited microglial and astrocytic activation and increased Interleukin-1beta immunoreactivity at 1 and 6 h, respectively. Spinal glial activation and upregulation of Interleukin-1beta appear to parallel the development and maintenance of zymosan and formalin-induced mechanical allodynia. These findings support a unifying theory that glial activation and cytokine expression have a similar, if not related, role in producing hyperalgesia following either peripheral inflammation or peripheral nerve injury.  相似文献   

18.
The bee venom (BV) model is a valid inflammatory pain model in animals and has been extended to human studies using its principle protein, mellitin. After subcutaneous (s.c.) injection of BV, long-lasting spontaneous nociception followed by thermal hyperalgesia, static allodynia, and local inflammatory response (edema) can be observed in rats. We hypothesize that (1) neurogenic components may contribute to the BV-induced inflammatory response and (2) static and dynamic mechanical allodynia may exist simultaneously in the BV model. Using different approaches including sciatic nerve transection (SCT), L4-L6 dorsal rhizotomy (DRT) and local treatment of the sciatic nerve with capsaicin, we found that SCT, DRT, and local capsaicin onto the sciatic nerve produced a significant inhibition of the BV-induced increase in volume of the injected paw, with a stronger effect of the SCT and the local capsaicin treatments than that of the DRT treatment. Static and dynamic mechanical allodynia in the BV test was assessed by measuring the paw withdrawal mechanical threshold and the paw withdrawal latency before and after the BV injection, respectively. Local capsaicin onto the sciatic nerve produced a significant inhibition of the BV-induced decrease in the paw withdrawal mechanical threshold, but not the paw withdrawal latency, of the injected paw. These findings suggest that neurogenic components, via dorsal root reflex and axon reflex mechanisms, are probably involved in the maintenance and the development of the BV-induced inflammation. In addition, the capsaicin-sensitive primary afferents may play differential roles in the development of the BV-induced static and dynamic mechanical allodynia.  相似文献   

19.
趋化因子mRNA在实验性变态反应性神经炎中表达的研究   总被引:1,自引:0,他引:1  
目的:实验性变态反应性神经炎(EAN)是一类T细胞介导的周围神经系统的自身免疫病,可用牛坐骨神经加完全氟氏佐剂诱导而成。本文研究趋化因子mRNA在实验性变态反应性神经炎(EAN)中的表达并探索其可能的作用。方法:用兔坐骨神经匀浆免疫Wistar大鼠,诱导格林巴利综合症(GBS)的动物模型EAN;采用地高辛标记的寡核苷酸探针检测EAN病变神经组织浸润细胞上趋化因子单核细胞趋化蛋白-1(MCP-1)及巨噬细胞炎性蛋白-1β(MIP-1β)mRNA表达情况。结果:MCP-1mRNA在临床症状出现前1-2天(14天)水平最高,随后逐渐下降;MIP-1 βmRA在临床症状出现前1-2天水平开始升高,在临床症状达到高峰时(21天)最高,进入恢复期后降至基础水平。结论:趋化因子在EAN的炎性细胞迁移及浸润进入神经细胞过程中起到重要作用。  相似文献   

20.
Shi XQ  Zekki H  Zhang J 《Glia》2011,59(2):231-241
Activation of macrophages/microglia via toll-like receptors (TLRs) plays an important role in inflammation and host defense against pathogens. Pathogen-associated molecular patterns bind TLRs, thereby triggering NF-κB signaling and production of proinflammatory cytokines. Recent data suggest that nonpathogenic molecules resulting from trauma can also trigger inflammation via TLRs. We sought to determine whether peripheral nerve injury could induce the expression of TLR2 on the site of injury-damaged nerves and/or in the central nervous system and to investigate whether TLR2 is necessary for the development of nerve injury-induced neuropathic pain. We observed a significant increase in TLR2, IκB-α, and TNF-α mRNAs in damaged nerves. Increased inflammation-related molecules were found essentially on ED1(+) macrophages. Expression of both IκB-α and TNF-α in peripheral injured nerves was reduced in TLR2 deficient mice where the recruitment of ED1(+) cells is significantly impaired. Although after peripheral nerve injury, spinal microglia became highly activated showing an increase in Iba-1 immunoreactivity and an enlargement of their cell bodies, neither TLR2 mRNA nor IκB-α mRNA was detected in activated microglia. Nerve injury-evoked spinal microglial activation was not significantly altered in TLR2 KO mice. Paw withdrawal threshold and latency in response to mechanical and heat stimuli, respectively, decreased shortly after nerve lesion in wild type mice. In TLR2 KO mice, nerve injury-induced thermal hyperalgesia was completely abolished contrary to that seen in wild-type mice, whereas mechanical allodynia was partially reduced. We suggest that TLR2 is necessary for the development of neuropathic pain and its contribution is more important in thermal hypersensitivity than that of mechanical allodynia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号