首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
We previously described a new osteogenic growth factor, osteolectin/Clec11a, which is required for the maintenance of skeletal bone mass during adulthood. Osteolectin binds to Integrin α11 (Itga11), promoting Wnt pathway activation and osteogenic differentiation by leptin receptor+ (LepR+) stromal cells in the bone marrow. Parathyroid hormone (PTH) and sclerostin inhibitor (SOSTi) are bone anabolic agents that are administered to patients with osteoporosis. Here we tested whether osteolectin mediates the effects of PTH or SOSTi on bone formation. We discovered that PTH promoted Osteolectin expression by bone marrow stromal cells within hours of administration and that PTH treatment increased serum osteolectin levels in mice and humans. Osteolectin deficiency in mice attenuated Wnt pathway activation by PTH in bone marrow stromal cells and reduced the osteogenic response to PTH in vitro and in vivo. In contrast, SOSTi did not affect serum osteolectin levels and osteolectin was not required for SOSTi-induced bone formation. Combined administration of osteolectin and PTH, but not osteolectin and SOSTi, additively increased bone volume. PTH thus promotes osteolectin expression and osteolectin mediates part of the effect of PTH on bone formation.

The maintenance and repair of the skeleton require the generation of new bone cells throughout adult life. Osteoblasts are relatively short-lived cells that are constantly regenerated, partly by skeletal stem cells within the bone marrow (1). The main source of new osteoblasts in adult bone marrow is leptin receptor-expressing (LepR+) stromal cells (24). These cells include the multipotent skeletal stem cells that give rise to the fibroblast colony-forming cells (CFU-Fs) in the bone marrow (2), as well as restricted osteogenic progenitors (5) and adipocyte progenitors (68). LepR+ cells are a major source of osteoblasts for fracture repair (2) and growth factors for hematopoietic stem cell maintenance (911).One growth factor synthesized by LepR+ cells, as well as osteoblasts and osteocytes, is osteolectin/Clec11a, a secreted glycoprotein of the C-type lectin domain superfamily (5, 12, 13). Osteolectin is an osteogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Osteolectin acts by binding to integrin α11β1, which is selectively expressed by LepR+ cells and osteoblasts, activating the Wnt pathway (12). Deficiency for either Osteolectin or Itga11 (the gene that encodes integrin α11) reduces osteogenesis during adulthood and causes early-onset osteoporosis in mice (12, 13). Recombinant osteolectin promotes osteogenic differentiation by bone marrow stromal cells in culture and daily injection of mice with osteolectin systemically promotes bone formation.Osteoporosis is a progressive condition characterized by reduced bone mass and increased fracture risk (14). Several factors contribute to osteoporosis development, including aging, estrogen insufficiency, mechanical unloading, and prolonged glucocorticoid use (14). Existing therapies include antiresorptive agents that slow bone loss, such as bisphosphonates (15, 16) and estrogens (17), and anabolic agents that increase bone formation, such as parathyroid hormone (PTH) (18), PTH-related protein (19), and sclerostin inhibitor (SOSTi) (20). While these therapies increase bone mass and reduce fracture risk, they are not a cure.PTH promotes both anabolic and catabolic bone remodeling (2124). PTH is synthesized by the parathyroid gland and regulates serum calcium levels, partly by regulating bone formation and bone resorption (2325). PTH1R is a PTH receptor (26, 27) that is strongly expressed by LepR+ bone marrow stromal cells (8, 2830). Recombinant human PTH (Teriparatide; amino acids 1 to 34) and synthetic PTH-related protein (Abaloparatide) are approved by the US Food and Drug Administration (FDA) for the treatment of osteoporosis (19, 31). Daily (intermittent) administration of PTH increases bone mass by promoting the differentiation of osteoblast progenitors, inhibiting osteoblast and osteocyte apoptosis, and reducing sclerostin levels (3235). PTH promotes osteoblast differentiation by activating Wnt and BMP signaling in bone marrow stromal cells (28, 36, 37), although the mechanisms by which it regulates Wnt pathway activation are complex and uncertain (38).Sclerostin is a secreted glycoprotein that inhibits Wnt pathway activation by binding to LRP5/6, a widely expressed Wnt receptor (7, 8), reducing bone formation (39, 40). Sclerostin is secreted by osteocytes (8, 41), negatively regulating bone formation by inhibiting the differentiation of osteoblasts (41, 42). SOSTi (Romosozumab) is a humanized monoclonal antibody that binds sclerostin, preventing binding to LRP5/6 and increasing Wnt pathway activation and bone formation (43). It is FDA-approved for the treatment of osteoporosis (20, 44) and has activity in rodents in addition to humans (45, 46).The discovery that osteolectin is a bone-forming growth factor raises the question of whether it mediates the effects of PTH or SOSTi on osteogenesis.  相似文献   

4.
The extracellular matrix (ECM) provides a precise physical and molecular environment for cell maintenance, self-renewal, and differentiation in the stem cell niche. However, the nature and organization of the ECM niche is not well understood. The adult freshwater planarian Schmidtea mediterranea maintains a large population of multipotent stem cells (neoblasts), presenting an ideal model to study the role of the ECM niche in stem cell regulation. Here we tested the function of 165 planarian homologs of ECM and ECM-related genes in neoblast regulation. We identified the collagen gene family as one with differential effects in promoting or suppressing proliferation of neoblasts. col4-1, encoding a type IV collagen α-chain, had the strongest effect. RNA interference (RNAi) of col4-1 impaired tissue maintenance and regeneration, causing tissue regression. Finally, we provide evidence for an interaction between type IV collagen, the discoidin domain receptor, and neuregulin-7 (NRG-7), which constitutes a mechanism to regulate the balance of symmetric and asymmetric division of neoblasts via the NRG-7/EGFR pathway.

Across the animal kingdom, stem cell function is regulated by the microenvironment in the surrounding niche (1), where the concentration of molecular signals for self-renewal and differentiation can be precisely regulated (2). The niche affects stem cell biology in many processes, such as aging and tissue regeneration, as well as pathological conditions such as cancer (3). Most studies have been done in tissues with large stem cell populations, such as the intestinal crypt (4) and the hair follicle (5) in mice. Elucidation of the role of the stem cell niche in tissue regeneration requires the study of animals with high regenerative potential, such as freshwater planarians (flatworms) (6). Dugesia japonica and Schmidtea mediterranea are two well-studied species that possess the ability to regenerate any missing body part (6, 7).Adult S. mediterranea maintain a high number of stem cells (neoblasts)—∼10 to 30% of all somatic cells in the adult worm—with varying potency, including pluripotent cells (814). Neoblasts are the only proliferating somatic cells: they are molecularly heterogeneous, but all express piwi-1 (1518). Lineage-committed neoblasts are “progenitors” that transiently express both piwi-1 and tissue-specific genes (15, 19). Examples include early intestinal progenitors (γ neoblast, piwi-1+/hnf4+) (8, 10, 15, 1921) and early epidermal progenitors (ζ neoblast, piwi-1+/zfp-1+) (8, 15). Other progenitor markers include collagen for muscles (22), ChAT for neurons (23), and cavII for protonephridia (24, 25). During tissue regeneration, neoblasts are recruited to the wound site, where they proliferate then differentiate to replace the missing cell types (16, 26). Some neoblasts express the pluripotency marker tgs-1, and are designated as clonogenic neoblasts (cNeoblasts) (10, 11). cNeoblasts are located in the parenchymal space adjacent to the gut (11).Neoblasts are sensitive to γ-irradiation and can be preferentially depleted in the adult planarian (27). After sublethal γ-irradiation, remaining cNeoblasts can repopulate the stem cell pool within their niche (10, 11). The close proximity of neoblasts to the gut suggests gut may be a part of neoblast niche (28, 29). When gut integrity was impaired by silencing gata4/5/6, the egfr-1/nrg-1 ligand-receptor pair, or wwp1, maintenance of non–γ-neoblasts were also disrupted (20, 30, 31), but whether that indicates the gut directly regulates neoblast remains unclear. There is evidence indicating the dorsal-ventral (D/V) transverse muscles surrounding the gut may promote neoblast proliferation and migration, with the involvement of matrix metalloproteinase mt-mmpB (32, 33). The central nervous system has also been implicated in influencing neoblast maintenance through the expression of EGF homolog neuregulin-7 (nrg-7), a ligand for EGFR-3, affecting the balance of neoblast self-renewal (symmetric or asymmetric division) (34).In other model systems, an important component of the stem-cell niche is the extracellular matrix (ECM) (35). Germline stem cells in Drosophila are anchored to niche supporting cells with ECM on one side, while the opposite side is exposed to differentiation signals, allowing asymmetric cell fate outcomes for self-renewal or differentiation following division (3638). Few studies have addressed the ECM in planarians, largely due to the lack of genetic tools to manipulate the genome, the absence of antibodies to specific planarian ECM homologs, or the tools required to study cell fate changes. However, the genomes of D. japonica (3941) and S. mediterranea (4145), and single-cell RNA-sequencing (scRNA-seq) datasets for S. mediterranea are now available (11, 4650). A recent study of the planarian matrisome demonstrated that muscle cells are the primary source of many ECM proteins (51), which, together with those produced by neoblasts and supporting parenchymal cells, may constitute components of the neoblast niche. For example, megf6 and hemicentin restrict neoblast’s localization within the parenchyma (51, 52). Functional studies also implicate ECM-modifiers, such as matrix metalloproteases (MMPs) in neoblast migration and regeneration. For example, reducing the activity of the ECM-degrading enzymes mt-mmpA (26, 33), mt-mmpB (53), or mmp-1 (33) impaired neoblast migration, proliferation, or overall tissue growth, respectively. Neoblasts are also likely to interact with ECM components of the niche via cell surface receptors, such as β1 integrin, inactivation of which impairs brain regeneration (54, 55).Here, we identified planarian ECM homologs in silico, followed by systematic functional assessment of 165 ECM and ECM-related genes by RNA interference (RNAi), to determine the effect on neoblast repopulation in planarians challenged by a sublethal dose of γ-irradiation (10). Surprisingly, multiple classes of collagens were shown to have the strongest effects. In particular, we show that the type IV collagens (COLIV) of basement membranes (BMs), were required to regulate the repopulation of neoblasts as well as lineage progression to progenitor cells. Furthermore, our data support an interaction between COLIV and the discoidin domain receptor (DDR) in neurons that activates signaling of NRG-7 in the neoblasts to regulate neoblast self-renewal versus differentiation. Together, these data demonstrate multifaceted regulation of planarian stem cells by ECM components.  相似文献   

5.
6.
As biological invasions continue to increase globally, eradication programs have been undertaken at significant cost, often without consideration of relevant ecological theory. Theoretical fisheries models have shown that harvest can actually increase the equilibrium size of a population, and uncontrolled studies and anecdotal reports have documented population increases in response to invasive species removal (akin to fisheries harvest). Both findings may be driven by high levels of juvenile survival associated with low adult abundance, often referred to as overcompensation. Here we show that in a coastal marine ecosystem, an eradication program resulted in stage-specific overcompensation and a 30-fold, single-year increase in the population of an introduced predator. Data collected concurrently from four adjacent regional bays without eradication efforts showed no similar population increase, indicating a local and not a regional increase. Specifically, the eradication program had inadvertently reduced the control of recruitment by adults via cannibalism, thereby facilitating the population explosion. Mesocosm experiments confirmed that adult cannibalism of recruits was size-dependent and could control recruitment. Genomic data show substantial isolation of this population and implicate internal population dynamics for the increase, rather than recruitment from other locations. More broadly, this controlled experimental demonstration of stage-specific overcompensation in an aquatic system provides an important cautionary message for eradication efforts of species with limited connectivity and similar life histories.

Theoretical population models can produce counterintuitive predictions regarding the consequences of harvest or removal of predatory species. These models show that for simple predator-prey systems, there can be positive population responses to predator mortality resulting from harvest for fisheries or population management, which can create an increased equilibrium level of that predator species (15). Among these mortality processes is the “hydra effect,” named after the mythical multi-headed serpent that grew two new heads for each one that was removed (6, 7). This counterintuitive outcome can be driven by a density-dependent process known as overcompensation. The hydra effect typically refers to higher equilibrium or time-averaged densities in response to increased mortality, typically involving consumer populations undergoing population cycles. Population increases in response to mortality can be the result of stage-specific overcompensation, which involves an increase in a specific life history stage or a size class following increased mortality. The first analysis of overcompensatory responses to mortality did not depend on stage specificity and was applied initially to fisheries harvests (1). Subsequent models have included stage specificity and have been applied to a broad range of systems in which species have been harvested for consumption or removed for population control of non-native species (4, 5, 815).Theory suggests that overcompensation in response to harvest or removal can occur for a variety of reasons, including 1) reduced competition for resources and increased adult reproduction rates, 2) faster rates of juvenile maturation or greater success in reaching the adult stage, and 3) increased juvenile or adult survival rates (17). An increase in reproductive output in response to reduced adult density can be the result of a reduction in resource competition (SI Appendix, Fig. S1).While there is substantial evidence that conditions that could produce density-dependent overcompensation occur frequently, evidence for overcompensation in natural populations is rare. For only a few populations do we have the long-term demographic data collected over a sufficiently long duration and for population densities over a wide enough range to detect this effect. Unfortunately, recent reviews of population increases in response to increased mortality do not include field studies with explicit controls for removals (1317).There are examples of density-dependent overcompensation from field populations (4, 1315), as well as a larger number of studies from the laboratory and greenhouse typically involving plant and insect populations (1822). Among the field examples is a population control program for smallmouth bass in a lake in upstate New York, which paradoxically resulted in greater bass abundance, primarily of juveniles, after 7 y of removal efforts (23, 24). Another field study in the United Kingdom showed that perch populations responded similarly when an unidentified pathogen decimated adults (25). Other programs that attempted to remove invasive fishes, including pikeperch in England (26), brook trout in Idaho (27), and Tilapia in Australia (28), showed similar results. However, although many of these examples involved well-executed studies with substantial field data, none had explicit controls for removal, such as comparable populations without harvest (or disease). Thus, despite the support of current theory in these studies, the contribution of external factors to observed population responses to harvest remains uncertain. To date, we are unaware of any experimental studies with comparable controls in a field population that demonstrates overcompensation in a single species (1315).  相似文献   

7.
Earth’s largest biotic crisis occurred during the Permo–Triassic Transition (PTT). On land, this event witnessed a turnover from synapsid- to archosauromorph-dominated assemblages and a restructuring of terrestrial ecosystems. However, understanding extinction patterns has been limited by a lack of high-precision fossil occurrence data to resolve events on submillion-year timescales. We analyzed a unique database of 588 fossil tetrapod specimens from South Africa’s Karoo Basin, spanning ∼4 My, and 13 stratigraphic bin intervals averaging 300,000 y each. Using sample-standardized methods, we characterized faunal assemblage dynamics during the PTT. High regional extinction rates occurred through a protracted interval of ∼1 Ma, initially co-occurring with low origination rates. This resulted in declining diversity up to the acme of extinction near the DaptocephalusLystrosaurus declivis Assemblage Zone boundary. Regional origination rates increased abruptly above this boundary, co-occurring with high extinction rates to drive rapid turnover and an assemblage of short-lived species symptomatic of ecosystem instability. The “disaster taxon” Lystrosaurus shows a long-term trend of increasing abundance initiated in the latest Permian. Lystrosaurus comprised 54% of all specimens by the onset of mass extinction and 70% in the extinction aftermath. This early Lystrosaurus abundance suggests its expansion was facilitated by environmental changes rather than by ecological opportunity following the extinctions of other species as commonly assumed for disaster taxa. Our findings conservatively place the Karoo extinction interval closer in time, but not coeval with, the more rapid marine event and reveal key differences between the PTT extinctions on land and in the oceans.

Mass extinctions are major perturbations of the biosphere resulting from a wide range of different causes including glaciations and sea level fall (1), large igneous provinces (2), and bolide impacts (3, 4). These events caused permanent changes to Earth’s ecosystems, altering the evolutionary trajectory of life (5). However, links between the broad causal factors of mass extinctions and the biological and ecological disturbances that lead to species extinctions have been difficult to characterize. This is because ecological disturbances unfold on timescales much shorter than the typical resolution of paleontological studies (6), particularly in the terrestrial record (68). Coarse-resolution studies have demonstrated key mass extinction phenomena including high extinction rates and lineage turnover (7, 9), changes in species richness (10), ecosystem instability (11), and the occurrence of disaster taxa (12). However, finer time resolutions are central to determining the association and relative timings of these effects, their potential causal factors, and their interrelationships. Achieving these goals represents a key advance in understanding the ecological mechanisms of mass extinctions.The end-Permian mass extinction (ca. 251.9 Ma) was Earth’s largest biotic crisis as measured by taxon last occurrences (1315). Large outpourings from Siberian Trap volcanism (2) are the likely trigger of calamitous climatic changes, including a runaway greenhouse effect and ocean acidification, which had profound consequences for life on land and in the oceans (1618). An estimated 81% of marine species (19) and 89% of tetrapod genera became extinct as established Permian ecosystems gave way to those of the Triassic. In the ocean, this included the complete extinction of reef-forming tabulate and rugose corals (20, 21) and significant losses in previously diverse ammonoid, brachiopod, and crinoid families (22). On land, many nonmammalian synapsids became extinct (16), and the glossopterid-dominated floras of Gondwana also disappeared (23). Stratigraphic sequences document a global “coral gap” and “coal gap” (24, 25), suggesting reef and forest ecosystems were rare or absent for up to 5 My after the event (26). Continuous fossil-bearing deposits documenting patterns of turnover across the Permian–Triassic transition (PTT) on land (27) and in the oceans (28) are geographically widespread (29, 30), including marine and continental successions that are known from China (31, 32) and India (33). Continental successions are known from Russia (34), Australia (35), Antarctica (36), and South Africa’s Karoo Basin (Fig. 1 and 3740), the latter providing arguably the most densely sampled and taxonomically scrutinized (4143) continental record of the PTT. The main extinction has been proposed to occur at the boundary between two biostratigraphic zones with distinctive faunal assemblages, the Daptocephalus and Lystrosaurus declivis assemblage zones (Fig. 1), which marks the traditional placement of the Permian–Triassic geologic boundary [(37) but see ref. 44]. Considerable research has attempted to understand the anatomy of the PTT in South Africa (38, 39, 4552) and to place it in the context of biodiversity changes across southern Gondwana (53, 54) and globally (29, 31, 32, 44, 47, 55).Open in a separate windowFig. 1.Map of South Africa depicting the distribution of the four tetrapod fossil assemblage zones (Cistecephalus, Daptocephalus, Lystrosaurus declivis, Cynognathus) and our two study sites where fossils were collected in this study (sites A and B). Regional lithostratigraphy and biostratigraphy within the study interval are shown alongside isotope dilution–thermal ionization mass spectrometry dates retrieved by Rubidge et al., Botha et al., and Gastaldo et al. (37, 44, 80). The traditional (dashed red line) and associated PTB hypotheses for the Karoo Basin (37, 44) are also shown. Although traditionally associated with the PTB, the DaptocephalusLystrosaurus declivis Assemblage Zone boundary is defined by first appearances of co-occurring tetrapod assemblages, so its position relative to the three PTB hypotheses is unchanged. The Ripplemead member (*) has yet to be formalized by the South African Committee for Stratigraphy.Decades of research have demonstrated the richness of South Africa’s Karoo Basin fossil record, resulting in hundreds of stratigraphically well-documented tetrapod fossils across the PTT (37, 39, 56). This wealth of data has been used qualitatively to identify three extinction phases and an apparent early postextinction recovery phase (39, 45, 51). Furthermore, studies of Karoo community structure and function have elucidated the potential role of the extinction and subsequent recovery in breaking the incumbency of previously dominant clades, including synapsids (11, 57). Nevertheless, understanding patterns of faunal turnover and recovery during the PTT has been limited by the scarcity of quantitative investigations. Previous quantitative studies used coarsely sampled data (i.e., assemblage zone scale, 2 to 3 Ma time intervals) to identify low species richness immediately after the main extinction, potentially associated with multiple “boom and bust” cycles of primary productivity based on δ13C variation during the first 5 My of the Triassic (41, 58). However, many details of faunal dynamics in this interval remain unknown. Here, we investigate the dynamics of this major tetrapod extinction at an unprecedented time resolution (on the order of hundreds of thousands of years), using sample-standardized methods to quantify multiple aspects of regional change across the Cistecephalus, Daptocephalus, and Lystrosaurus declivis assemblage zones.  相似文献   

8.
Myopia has become a major public health concern, particularly across much of Asia. It has been shown in multiple studies that outdoor activity has a protective effect on myopia. Recent reports have shown that short-wavelength visible violet light is the component of sunlight that appears to play an important role in preventing myopia progression in mice, chicks, and humans. The mechanism underlying this effect has not been understood. Here, we show that violet light prevents lens defocus–induced myopia in mice. This violet light effect was dependent on both time of day and retinal expression of the violet light sensitive atypical opsin, neuropsin (OPN5). These findings identify Opn5-expressing retinal ganglion cells as crucial for emmetropization in mice and suggest a strategy for myopia prevention in humans.

Myopia (nearsightedness) in school-age children is generally axial myopia, which is the consequence of elongation of the eyeball along the visual axis. This shape change results in blurred vision but can also lead to severe complications including cataract, retinal detachment, myopic choroidal neovascularization, glaucoma, and even blindness (13). Despite the current worldwide pandemic of myopia, the mechanism of myopia onset is still not understood (48). One hypothesis that has earned a current consensus is the suggestion that a change in the lighting environment of modern society is the cause of myopia (9, 10). Consistent with this, outdoor activity has a protective effect on myopia development (9, 11, 12), though the main reason for this effect is still under debate (7, 12, 13). One explanation is that bright outdoor light can promote the synthesis and release of dopamine in the eye, a myopia-protective neuromodulator (1416). Another suggestion is that the distinct wavelength composition of sunlight compared with fluorescent or LED (light-emitting diode) artificial lighting may influence myopia progression (9, 10). Animal studies have shown that different wavelengths of light can affect the development of myopia independent of intensity (17, 18). The effects appear to be distinct in different species: for chicks and guinea pigs, blue light showed a protective effect on experimentally induced myopia, while red light had the opposite effect (1822). For tree shrews and rhesus monkeys, red light is protective, and blue light causes dysregulation of eye growth (2325).It has been shown that visible violet light (VL) has a protective effect on myopia development in mice, in chick, and in human (10, 26, 27). According to Commission Internationale de l’Eclairage (International Commission on Illumination), VL has the shortest wavelength of visible light (360 to 400 nm). These wavelengths are abundant in outside sunlight but can only rarely be detected inside buildings. This is because the ultraviolet (UV)-protective coating on windows blocks all light below 400 nm and because almost no VL is emitted by artificial light sources (10). Thus, we hypothesized that the lack of VL in modern society is one reason for the myopia boom (9, 10, 26).In this study, we combine a newly developed lens-induced myopia (LIM) model with genetic manipulations to investigate myopia pathways in mice (28, 29). Our data confirm (10, 26) that visible VL is protective but further show that delivery of VL only in the evening is sufficient for the protective effect. In addition, we show that the protective effect of VL on myopia induction requires OPN5 (neuropsin) within the retina. The absence of retinal Opn5 prevents lens-induced, VL-dependent thickening of the choroid, a response thought to play a key role in adjusting the size of the eyeball in both human and animal myopia models (3033). This report thus identifies a cell type, the Opn5 retinal ganglion cell (RGC), as playing a key role in emmetropization. The requirement for OPN5 also explains why VL has a protective effect on myopia development.  相似文献   

9.
Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine’s antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine’s antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor–mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine’s antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine’s antidepressant action.

Major depressive disorder (MDD) is a serious disorder that affects ∼20.6% of the US population and is a leading cause of suicide (1). One crucial problem in treating patients with MDD is an incomplete response rate to medications, where a large fraction of patients do not show a response to primary antidepressant medications (2, 3). Recent clinical findings demonstrate that a subanesthetic dose of ketamine, a noncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, produces rapid antidepressant effects within hours in some patients with treatment-resistant depression or MDD (46). However, ∼50% of patients with treatment-resistant depression do not respond to ketamine (7), and factors involved in the nonresponsiveness to ketamine remain unclear.The hippocampus is a brain region that has been linked to the pathophysiological changes in MDD. Patients with MDD show a decrease in hippocampal volume and function (812). In contrast, MDD patients treated with classic antidepressants have a reversal in hippocampal volume changes along with an improvement in hippocampus-dependent cognitive function (1315). Previous preclinical studies have shown animal models of depression also exhibit a decrease in hippocampal volume and function (13), and hippocampal synaptic functional enhancement is required to mediate antidepressant responses (1618). This enhancement of hippocampal function has been suggested to be a key requirement to exert an antidepressant response.Ketamine induces rapid molecular changes that elicit synaptic plasticity in the hippocampus (16, 1922). Specifically, ketamine rapidly generates synaptic potentiation of field excitatory postsynaptic potentials (fEPSPs) in CA3–CA1 synapses in the hippocampus (ketamine potentiation) by inducing the rapid translation of brain-derived neurotrophic factor (BDNF) and trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) onto the postsynaptic surface (16, 19, 23, 24). Recent studies have shown that if key factors for the antidepressant effects of ketamine, such as BDNF (16, 25, 26) or AMPA receptors (16, 27), are deleted or blocked, the synaptic potentiation in the hippocampus concurrently disappears, suggesting that the synaptic potentiation underlies ketamine’s antidepressant effects (16, 19).Ketamine-mediated potentiation of fEPSPs in CA3–CA1 synapses has been shown to require a block of NMDAR activation by spontaneous glutamate release. Ketamine produces synaptic potentiation in the presence of tetrodotoxin, which blocks sodium channels, and thereby the generation of action potentials, suggesting that blocking NMDARs activated by the spontaneous presynaptic release is key to producing the synaptic potentiation (19, 21, 28, 29). In agreement with this premise, deletion of Vps10p-tail-interactor-1a (Vti1a) and vesicle-associated membrane protein 7 (VAMP7), which are soluble N-ethylmaleimide–sensitive factor attachment protein receptor proteins selectively involved in spontaneous neurotransmitter release (30, 31) in the CA3 hippocampal region, occluded the ketamine potentiation (32). Collectively, these lines of evidence suggest spontaneous glutamate release, and NMDARs are important factors for ketamine potentiation. Thus, it is possible that if these pre- or postsynaptic components are impaired, ketamine may not produce the synaptic potentiation and antidepressant effects.Reelin is a secreted glycoprotein and acts as a neuromodulator in the adult brain by regulating pre- and postsynaptic machinery. Reelin binds to its receptors, apolipoprotein E receptor 2 (Apoer2) and very-low-density lipoprotein receptor (VLDLR) and increases tyrosine phosphorylation in Disabled-1 (DAB1) (3335). The Reelin pathway regulates pre- or postsynaptic function through its downstream signaling pathways in the adult brain. In presynaptic terminals, the Reelin-Apoer2 pathway activates phosphoinositide 3-kinase (PI3K) and increases Ca2+ release from intracellular stores, which in turn mobilizes VAMP7-containing synaptic vesicles and augments spontaneous release (31). At the postsynaptic sites, Reelin’s binding to Apoer2 reciprocally activates DAB1 and Src family kinases (SFKs). Subsequently, the activated SFKs increase tyrosine phosphorylation in NMDAR subunits, GluN2A and GluN2B (3437), and increase NMDAR open probability (3739). Since pre- and postsynaptic components regulated by Reelin have been suggested to be important for ketamine potentiation (16, 1921, 32), it is conceivable that disrupted Reelin signaling may abrogate the antidepressant action and synaptic plasticity of ketamine.To examine this premise, we used genetically modified mice with a deletion of either Reelin or Apoer2 and investigated changes in antidepressant-like behaviors and synaptic potentiation in the CA1 hippocampal region following ketamine treatment. We also used pharmacological inhibitors to examine the effects of signaling molecules downstream of Reelin-Apoer2, specifically SFKs and PI3K, on ketamine-induced behavioral changes and synaptic plasticity. Lastly, we investigated whether the disruption of ketamine’s effects is due to a requirement for the activation of Reelin-dependent signaling or the impairment of NMDAR function by the disruption of Reelin-dependent signaling. Our results suggest that disruption of the Reelin-Apoer2-SFKs pathway depresses NMDAR function and diminishes ketamine’s use-dependent NMDAR antagonism, thereby rendering synapses nonresponsive to ketamine’s action as well as subsequent antidepressant responses. Taken together, these results provide insight into understanding the cellular and molecular mechanisms underlying ketamine’s antidepressant effects.  相似文献   

10.
11.
Hierarchical nanomaterials have received increasing interest for many applications. Here, we report a facile programmable strategy based on an embedded segmental crystallinity design to prepare unprecedented supramolecular planar nanobrush-like structures composed of two distinct molecular packing motifs, by the self-assembly of one particular diblock copolymer poly(ethylene glycol)-block-poly(N-octylglycine) in a one-pot preparation. We demonstrate that the superstructures result from the temperature-controlled hierarchical self-assembly of preformed spherical micelles by optimizing the crystallization−solvophobicity balance. Particularly remarkable is that these micelles first assemble into linear arrays at elevated temperatures, which, upon cooling, subsequently template further lateral, crystallization-driven assembly in a living manner. Addition of the diblock copolymer chains to the growing nanostructure occurs via a loosely organized micellar intermediate state, which undergoes an unfolding transition to the final crystalline state in the nanobrush. This assembly mechanism is distinct from previous crystallization-driven approaches which occur via unimer addition, and is more akin to protein crystallization. Interestingly, nanobrush formation is conserved over a variety of preparation pathways. The precise control ability over the superstructure, combined with the excellent biocompatibility of polypeptoids, offers great potential for nanomaterials inaccessible previously for a broad range of advanced applications.

Biomacromolecules fold and assemble into complex, well-organized hierarchical structures by a network of noncovalent interactions, which enable tremendous architectural diversity in nature (1, 2). For example, polypeptide chains encoded with assembly information in their monomer sequence can fold into highly ordered conformations, which give rise to their biological functionality (3). Inspired by these intricate natural designs, numerous efforts have been devoted to fabricating hierarchical nanostructures using synthetic polymeric materials (411). However, the precision control over the assembly process and structure across many length scales, as commonly seen in biomacromolecules, remains a challenging task (12). This is because the assembly information content encoded within synthetic macromolecules is considerably lower.Synthetic chemists have looked to develop polymer systems that retain many of the structural features found in natural biopolymers. Bioinspired synthetic polymers have attracted growing attention, because of their inherent structural advantages, facile synthetic approaches, and improved stability, to serve as promising materials for the de novo design and assembly of hierarchical nanostructures. In particular, polypeptoids are a class of peptidomimetic polymers based on a polar amide backbone (1315). This differs substantially from carbon-chain polymers such as polyethylene and polypropylene. The amide groups impart higher water solubility, excellent biocompatibility, the opportunity for multiple backbone−backbone interactions, and enable a wide range of bioactivities. Polypeptoids are devoid of hydrogen bond donating sites and chirality on the backbone due to the N substitution. This simplifies the complex molecular interactions inherent in peptidomimetic materials, resulting in efficient engineering and controllable architecture construction. For example, polypeptoids with alkyl side chain groups are semicrystalline with inherent characteristic packing domains, which is in sharp contrast to polypeptides (1619).Macromolecular crystallization is an essential process in both nature and materials manufacturing. The self-assembly of block copolymers containing crystalline blocks generally enables the formation of multiscale architectures with a high level of control over morphology and dimension (20, 21). Recently, living crystallization-driven self-assembly has been demonstrated to be an effective strategy to precisely control the nanoscale morphology (2230). Inspired by the natural encoded information-guided self-assembly, we based our design on a hydrophobic poly(N-alkylglycine) peptoid block that is known to form a rectangular crystalline lattice with controllable dimension and two melting transitions (31). It is also known that solvophobic interaction is the predominant driving force for assembly of systems with solvophobic segments (5). The delicate interplay between crystallization and solvophobicity is essential for biomolecule self-assembly (32), which potentially serves as a powerful strategy for self-assembly of block copolymers. Thus, we embarked on a study of block copolymers, where the relative strength of these two factors could be systematically adjusted. By optimizing the balance between these two factors, we discovered that poly(ethylene glycol)-block-poly(N-octylglycine) (PEG-b-PNOG) formed unique supramolecular planar nanobrush architectures in high yield. We developed a simple temperature-controlled assembly strategy to create superbrushes consisting of two distinct packing domains: a long core fiber, or “spine,” with lengths up to ∼2.0 µm, and laterally splayed shorter fibers of ∼400 nm in length on apposed side surfaces of the spine. We further demonstrated that this lateral growth of the brush exhibits living growth manner via a micelle intermediate, fairly distinct from known living crystallization-driven self-assembly approaches (16, 23, 33), where assemblies grow via the direct attachment of block unimers. Our results coincide with the reported “particle attachment” strategy observed in a range of biomacromolecules and small molecules, where intermediate higher-ordered species form in solution prior to their attachment to the crystal lattice, in contrast to monomer-by-monomer crystal growth (1, 32, 34, 35). Such pathways allow for the optimization of interactions to facilitate thermodynamic favored transition from the initial species to hierarchical assemblies.  相似文献   

12.
13.
Genetic editing of induced pluripotent stem (iPS) cells represents a promising avenue for an HIV cure. However, certain challenges remain before bringing this approach to the clinic. Among them, in vivo engraftment of cells genetically edited in vitro needs to be achieved. In this study, CD34+ cells derived in vitro from iPS cells genetically modified to carry the CCR5Δ32 mutant alleles did not engraft in humanized immunodeficient mice. However, the CD34+ cells isolated from teratomas generated in vivo from these genetically edited iPS cells engrafted in all experiments. These CD34+ cells also gave rise to peripheral blood mononuclear cells in the mice that, when inoculated with HIV in cell culture, were resistant to HIV R5-tropic isolates. This study indicates that teratomas can provide an environment that can help evaluate the engraftment potential of CD34+ cells derived from the genetically modified iPS cells in vitro. The results further confirm the possibility of using genetically engineered iPS cells to derive engraftable hematopoietic stem cells resistant to HIV as an approach toward an HIV cure.

A major objective of recent HIV research is to develop a “cure” for this virus infection that avoids lifelong adherence to antiretroviral therapy (ART). One of the approaches toward reaching this objective has been to genetically delete or mutate genes encoding for proteins that promote HIV infection and spread. An attractive candidate for this strategy is the Ccr5 gene, for which a genetic mutation causing a 32-bp deletion has been shown to be associated with natural protection from HIV infection and disease (1, 2). The Ccr5 gene encodes CCR5, a human cell-surface chemokine receptor that is a coreceptor for HIV attachment and infection of cells (3, 4). The Ccr5 allele with its 32-bp deletion results in a truncated isoform of the CCR5 receptor, CCR5Δ32, which is not expressed at the cell surface. Thus, entry of the virus into the cell is blocked (5).Induced pluripotent stem (iPS) cells (6), because of their capacity to differentiate into CD34+ hematopoietic stem cells (HSCs) (7), can reconstitute a full immune system (8, 9). These iPS cells are therefore a target of choice for genetic engineering. Our group and others have demonstrated that iPS cells generated from the peripheral blood mononuclear cells (PBMC) of both healthy individuals (10) and HIV-infected patients under ART (11) can have their wild-type allele of the Ccr5 gene genetically edited to carry the Ccr5 Δ32 mutation (12, 13). Notably, using CRISPR/Cas9 technology, the Ccr5 gene can be modified to have the naturally occurring Δ32 variant allele that has been associated with resistance to R5-tropic viruses. Moreover, while it is not present at the cell surface, the truncated CCR5Δ32 protein is still expressed and, as such, could have other important physiological roles (1417).We have confirmed that the genetically modified Ccr5 Δ32 iPS cells can be differentiated into CD34+ HSCs in vitro (10, 18). Under appropriate cell culture conditions, they can give rise to various myeloid and lymphoid cell lineages (10, 11, 18). This result can also be observed with the formation of teratomas following the injection of large quantities of iPS cells into mice. Teratomas are multicellular tumors composed of many different cell types including HSCs. Notably, immune cells with the CCR5Δ32 mutation differentiated in vitro from the genetically modified iPS cell-derived HSCs and inoculated with HIV are resistant to R5-tropic virus infection (10, 18).These results have suggested that editing Ccr5 in iPS cells from HIV-infected subjects can be a promising strategy toward an HIV cure. The pluripotent stem cells can be induced from a small number of PBMC from the patients and genetically modified to become resistant to HIV infection (10, 11, 18). In this case, leukapheresis to obtain large amounts of these cells (19) is not required. The edited HSCs could then be transplanted back to the original patient without concern for immune cell rejection. Therefore, because these experiments were performed in cell culture, an important remaining question is whether in vitro-edited iPS cells can differentiate into HSCs that can be transplanted back into a recipient in vivo (20).To address this question, transplantation of the in vitro-derived CD34+ cells was attempted under various conditions in animal models of humanized or immunodeficient mice (21). In approaches to obtain sufficient numbers of CD34+ cells for transplantation, our ability to grow them in vitro offered an opportunity. However, although we could expand CD34+ cells substantially in culture (18), we observed that engraftment of these cell culture-derived CD34+ cells in humanized NSG-BLT mice did not occur. Thus, alternatively, to study the genetically edited cells in vivo, we explored the use of differentiated CD34+ cells in vivo via the generation of teratomas from iPS cells. We found that not only did these teratomas successfully yield human CD34+ cells, but importantly, these CD34+ cells could engraft in recipient immunodeficient NSG mice. This observation has been made by Nakauchi and colleagues (22) with different mouse strains. Finally, we confirmed that the PBMC formed in mice from these teratoma-derived genetically edited CD34+ cells are resistant to ex vivo R5-tropic HIV infection when they carry the mutant Δ32 Ccr5 allele.  相似文献   

14.
Older age at the time of infection with hepatitis viruses is associated with an increased risk of liver fibrosis progression. We hypothesized that the pace of fibrosis progression may reflect changes in gene expression within the aging liver. We compared gene expression in liver specimens from 54 adult donors without evidence of fibrosis, including 36 over 40 y old and 18 between 18 and 40 y old. Chitinase 3-like 1 (CHI3L1), which encodes chitinase-like protein YKL-40/CHI3L1, was identified as the gene with the greatest age-dependent increase in expression in liver tissue. We investigated the cellular source of CHI3L1 in the liver and its function using liver tissue specimens and in vitro models. CHI3L1 expression was significantly higher in livers of patients with cirrhosis of diverse etiologies compared with controls represented by patients who underwent liver resection for hemangioma. The highest intrahepatic CHI3L1 expression was observed in cirrhosis due to hepatitis D virus, followed by hepatitis C virus, hepatitis B virus, and alcohol-induced cirrhosis. In situ hybridization of CHI3L1 messenger RNA (mRNA) identified hepatocytes as the major producers of CHI3L1 in normal liver and in cirrhotic tissue, wherein hepatocytes adjacent to fibrous septa showed higher CHI3L1 expression than did those in more distal areas. In vitro studies showed that recombinant CHI3L1 promotes proliferation and activation of primary human hepatic stellate cells (HSCs), the major drivers of liver fibrosis. These findings collectively demonstrate that CHI3L1 promotes liver fibrogenesis through a direct effect on HSCs and support a role for CHI3L1 in the increased susceptibility of aging livers to fibrosis progression.

It is well-established that the incidence of severe liver disease with rapid liver fibrosis progression in humans is increased in the elderly, although the underlying mechanisms remain to be elucidated (1). The role of age has been particularly well documented in patients with hepatitis C virus (HCV) infection, where age at the onset of infection was found to be a major determinant for fibrosis progression and disease severity in immunocompetent subjects (26). Likewise, donor age was shown to have a major impact on graft outcome after liver transplantation for end-stage HCV disease: When the donors were younger than 40, the interval to cirrhosis was 10 y, whereas when the donors were 41 to 50 or older, the intervals were 6.7 and 2.7 y, respectively (7). Collectively, these data suggest that age-related changes in liver response to injury play a key role in determining the increased susceptibility of the aging liver to fibrosis (2, 4, 7).We hypothesized that the different rate of liver fibrosis progression in patients over 40 y of age could reflect changes in gene expression in aging livers. To test this hypothesis, we studied a large series of liver specimens from 54 well-characterized liver transplant donors by comparing gene expression between liver donors less than and over 40 y of age. We identified chitinase 3-like 1 (CHI3L1) as the gene with the greatest age-dependent increase in expression. CHI3L1, also known as YKL-40 in humans, is a secreted glycoprotein of ∼40 kDa (8), which has been shown to play a critical role in a variety of human diseases associated with inflammation, tissue remodeling, and injury (912). A correlation between serum levels of CHI3L1 with aging was previously documented in a large cohort of healthy individuals in Denmark (13). Elevated levels of CHI3L1 in serum have also been reported as a biomarker of liver fibrosis in patients with chronic liver disease of any etiology (9, 12, 1418). However, the mechanisms underlying the correlation between increased circulating CHI3L1 levels and liver fibrosis have not yet been determined. There is very limited information on the expression of CHI3L1 in primary liver tissue, since in most previous studies serum was the sole clinical material analyzed. Thus, in this study, we investigated the source of CHI3L1 and the mechanisms linking CHI3L1 with liver fibrosis by using primary liver tissue and in vitro models.  相似文献   

15.
16.
In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.

Endocytosis is an evolutionarily conserved eukaryotic pathway by which extracellular material and plasma membrane (PM) components are internalized via vesicles (1, 2). Clathrin-mediated endocytosis (CME), relying on the scaffolding protein clathrin, is the most prominent and the most studied endocytic pathway (35). As clathrin does not interact directly with the PM, nor does it recognize cargoes, adaptor proteins are required to act as essential links between the clathrin coat and the PM (6). In plant cells, material selected for CME is recognized by two adaptor complexes, the adaptor complex 2 (AP-2) and the TPLATE complex (TPC) (79). In contrast to TPC, single subunit mutants of AP-2 are viable (7, 8, 1013) and AP-2 recruitment and dynamics appear to rely on TPC function (8, 14).TPC represents an ancestral adaptor complex, which is however absent in present-day metazoans and yeasts. It was experimentally identified as an octameric complex in Arabidopsis and as a hexametric complex in Dictyostelium (8, 15). Plants, however, are the only eukaryotic supergroup identified so far where TPC is essential for life (8, 15), as knockout or severe knockdown of single subunits of TPC in Arabidopsis leads to pollen or seedling lethality, respectively (8, 13). Two TPC subunits, AtEH1/Pan1 and AtEH2/Pan1, were not associated with the other TPC core components when the complex was forced into the cytoplasm by truncating the TML subunit and did not copurify with the other TSET components in Dictyostelium. This indicates that they may be auxiliary components to the core TPC (8, 15). These AtEH/Pan1 proteins were recently identified as important players in actin-regulated autophagy in plants. AtEH/Pan1 proteins recruit several components of the endocytic machinery to the autophagosomes, and are degraded together with them under stress conditions (16). However, whether this pathway serves to degrade specific cargoes or to regulate the endocytic machinery itself (17), and whether the whole TPC is required for this degradation pathway, remains unclear.Genetic and chemical tools to manipulate endocytosis have been extensively investigated via interfering with the functions of endocytic players, such as clathrin (1822), adaptor proteins (7, 1012, 14, 2325), and dynamin-related proteins (2630). The chemical inhibitors originally used to affect CME in plants have recently been described to possess undesirable side effects (31) or to affect proteins that are not only specific for endocytosis: for example, clathrin itself, as it is also involved in TGN trafficking (19, 22). The same is true for several genetic tools currently available to affect CME in plants (18, 21, 22, 30). Manipulation of TPC, functioning exclusively at the PM, represents a very good candidate to affect CME more specifically. So far however, there are no chemical tools to target TPC functions or dominant-negative mutants available. Inducible silencing works, but causes seedling lethality and takes several days to become effective (8). The only tools to manipulate TPC function in viable plants consist of knock-down mutants with very mild reduction of expression and consequently similar mild effects on CME (8, 14, 16, 32).  相似文献   

17.
Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.

Many motile bacteria live in confining microenvironments (e.g., animal or plant tissue, soil, waste, granulated, and porous materials) and consequently are important to many applications like health [infectious diseases (1, 2), pharmaceuticals (3), and nutrition (4)], agriculture [veterinary (5) and crops (6)], environmental science [photosynthesis (7), biodegradation (8), and bioremediation (9)], and industrial activities [mining (10) and biofouling (11)]. Bacterial motility is essential in the search for available physical space as well as for enabling bacterial taxis in response to external stimuli, such as temperature (12), chemical gradients (13, 14), mechanical cues (15), or magnetic fields (16).To thrive in environments with diverse geometrical and physical characteristics, from open spaces to constraining environments, motile bacteria have evolved a multitude of propelling mechanisms (17), with flagellum-driven being the most common (18, 19). Flagellum-based machinery features various numbers of flagella (20) and designs: monotrichous, lophotrichous, amphitrichous, or peritrichous. The mechanics of this machinery, coupled with cell morphology (21) (e.g., coccus, rod-like, or curved) translates into several motility modes (e.g., turn angle, run-and-tumble, or run-and-flick) (22), and various motility behaviors (e.g., swimming, tumbling, and swarming) (17, 23). Environmental factors (24, 25) (e.g., chemical composition, viscosity, temperature, pH, and the chemistry and the roughness of adjacent surfaces) also influence bacterial motility.“Pure” bacterial motility, unbiased by chemotaxis or fluid flow, was reported near simple flat surfaces (26, 27) and in channels (2830). Simulations of model bacteria in analogous conditions were also undertaken (3137), but owing to the complexity of bacterial mechanics (38), modeling from first principles did not provide sufficient understanding to accurately predict movement patterns of different species in complex, confined environments. Consequently, studies of the effects of bacterial geometry in confined geometries were limited to models of simple, monotrichous bacteria with an assumed rigid flagellum (32, 39).Microfluidic devices (40, 41) are commonly used for the manipulation of individual or small populations of cells in micrometer-sized channels for medical diagnostics (42), drug screening (43), cell separation (44, 45), detection and sorting (46), and single-cell genomics (47). While microfluidic structures are used for the study of the motility of mammalian cells (48, 49), and microorganisms [e.g., fungi (50, 51), algae (52), or bacteria (29, 5356)], these studies typically focus on a single species.To make progress toward a more general understanding of the motility of individual bacterial cells in confining microenvironments, as well as to assess the extent to which the behavior of bacteria with complex architectures can be assimilated with that of the more predictable monotrichous bacteria, the present work investigated the movement of five species (i.e., Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic geometries with various levels of confinement and geometrical complexity.  相似文献   

18.
19.
The ammonium transporter (AMT)/methylammonium permease (MEP)/Rhesus glycoprotein (Rh) family of ammonia (NH3/NH4+) transporters has been identified in organisms from all domains of life. In animals, fundamental roles for AMT and Rh proteins in the specific transport of ammonia across biological membranes to mitigate ammonia toxicity and aid in osmoregulation, acid–base balance, and excretion have been well documented. Here, we observed enriched Amt (AeAmt1) mRNA levels within reproductive organs of the arboviral vector mosquito, Aedes aegypti, prompting us to explore the role of AMTs in reproduction. We show that AeAmt1 is localized to sperm flagella during all stages of spermiogenesis and spermatogenesis in male testes. AeAmt1 expression in sperm flagella persists in spermatozoa that navigate the female reproductive tract following insemination and are stored within the spermathecae, as well as throughout sperm migration along the spermathecal ducts during ovulation to fertilize the descending egg. We demonstrate that RNA interference (RNAi)-mediated AeAmt1 protein knockdown leads to significant reductions (∼40%) of spermatozoa stored in seminal vesicles of males, resulting in decreased egg viability when these males inseminate nonmated females. We suggest that AeAmt1 function in spermatozoa is to protect against ammonia toxicity based on our observations of high NH4+ levels in the densely packed spermathecae of mated females. The presence of AMT proteins, in addition to Rh proteins, across insect taxa may indicate a conserved function for AMTs in sperm viability and reproduction in general.

Ammonium transporters (AMTs), methylammonium permeases (MEPs), and Rhesus glycoproteins (Rh proteins) comprise a protein family with three clades, and homologs from each have been identified in virtually all domains of life (1). AMT proteins were first identified in plants (2) with the simultaneous discovery of MEP proteins in fungi (3), followed by Rh proteins in humans (4). Ammonia (NH3/NH4+) is vital for growth in plants and microorganisms and is retained in some animals for use as an osmolyte (5, 6), for buoyancy (7, 8), and for those lacking sufficient dietary nitrogen (9). In the majority of animals, however, ammonia is the toxic by-product of amino acid and nucleic acid metabolism and, accordingly, requires efficient mechanisms for its regulation, transport, and excretion (1013). AMT, MEP, and Rh proteins are responsible for the selective movement of ammonia (NH3) or ammonium (NH4+) across biological membranes, a process that all organisms require. Unlike their vertebrate, bacterial, and fungal counterparts which function as putative NH3 gas channels (1418), a myriad of evidence suggests that plant AMT proteins and closely related members in some animals are functionally distinct and facilitate electrogenic ammonium (NH4+) transport (17, 1922). In contrast to vertebrates which only possess Rh proteins (23), many invertebrates are unique in that they express both AMT and Rh proteins, sometimes in the same cell (2428). Among insects, the presence of both AMT and Rh proteins has been described in Drosophila melanogaster (29, 30) and mosquitoes that vector disease-causing pathogens, Anopheles gambiae (22, 31) and Aedes aegypti (32, 33). It is unclear whether, in these instances, AMT and Rh proteins can functionally substitute for one another, but in the anal papillae of A. aegypti larvae, knockdown of either Amt or Rh proteins causes decreases in ammonia transport, suggesting that they do not (3234). To date, studies on ammonia transporter (AMT and Rh) function in insects have focused on ammonia sensing and tasting in sensory structures (22, 30, 31, 35), ammonia detoxification and acid–base balance in muscle, digestive, and excretory organs (15, 36), and ammonia excretion in a variety of organs involved in ion and water homeostasis (9, 24, 3234).A. aegypti is the primary vector for the transmission of the human arboviral diseases Zika, yellow fever, chikungunya, and dengue virus, which are of global health concern due to rapid increases in the geographical distribution of this species, presently at its highest ever (37, 38). In light of the well-documented evolution of insecticide resistance in mosquitoes (3942), more recent methods to control disease transmission such as the sterile insect technique (43), transinfection and sterilization of mosquitoes with the bacterium Wolbachia (44), and targeted genome editing rendering adult males sterile (45) have proven effective. These methods take advantage of various aspects of mosquito reproductive biology; however, an understanding of male reproductive biology and the male contributions to female reproductive processes is still in its infancy (46). Here, we describe the expression of an A. aegypti ammonium transporter (AeAmt1) in the sperm during all stages of spermatogenesis, spermiogenesis, and egg fertilization, which is critical for fertility.  相似文献   

20.
Citations are important building blocks for status and success in science. We used a linked dataset of more than 4 million authors and 26 million scientific papers to quantify trends in cumulative citation inequality and concentration at the author level. Our analysis, which spans 15 y and 118 scientific disciplines, suggests that a small stratum of elite scientists accrues increasing citation shares and that citation inequality is on the rise across the natural sciences, medical sciences, and agricultural sciences. The rise in citation concentration has coincided with a general inclination toward more collaboration. While increasing collaboration and full-count publication rates go hand in hand for the top 1% most cited, ordinary scientists are engaging in more and larger collaborations over time, but publishing slightly less. Moreover, fractionalized publication rates are generally on the decline, but the top 1% most cited have seen larger increases in coauthored papers and smaller relative decreases in fractional-count publication rates than scientists in the lower percentiles of the citation distribution. Taken together, these trends have enabled the top 1% to extend its share of fractional- and full-count publications and citations. Further analysis shows that top-cited scientists increasingly reside in high-ranking universities in western Europe and Australasia, while the United States has seen a slight decline in elite concentration. Our findings align with recent evidence suggesting intensified international competition and widening author-level disparities in science.

Science is a highly stratified social system. The distribution of scientific rewards is remarkably uneven, and a relatively small stratum of elite scientists enjoys exceptional privileges in terms of funding, research facilities, professional reputation, and influence (15). The so-called Matthew effect, well-documented in science (615), implies that accomplished scientists receive more rewards than their research alone merits, and recent evidence indicates a widening gap between the “haves” and the “have nots” of science in terms of salary levels (5), research funding (16), and accumulation of scientific awards (17).Inequality may foster creative competition in the science system (18, 19). However, it can also lead to a dense concentration of resources with diminishing returns on investment (intellectual and fiscal) (16, 20), and to monopolies in the marketplace of ideas (21, 22).The social processes that sort scientists into more or less prestigious strata are complex and multifaceted (1, 10, 23) and may be changing in response to external pressures such as globalization, the advent of new information technologies, and shifts in university governance models (3). However, a few common characteristics have always separated elite scientists from the rest of us, most notably their scientific output and visibility. Publications and citations are critical building blocks for status and success in science (23, 24), and the scientific elite accounts for a large share of what is published and cited.In 1926, Lotka observed that the publication frequencies of chemists followed an inverse-square distribution, where the number of authors publishing N papers would be ∼1/N2 of the number of authors publishing one paper (25). Building on Lotka’s work, de Solla Price later went on to suggest that 50% of all publications were produced by a mere 6% of all scientists (26). More recent research demonstrates even larger disparities in citation distributions at the author level (2, 6, 11, 27, 28), but variations in citation concentration across disciplinary, institutional, and national boundaries remain uncertain. Further, it is unclear whether the observed inequalities in citation shares have intensified over time.Advances in author-disambiguation methods (29) allow us to investigate these questions on a global scale. We used a linked dataset of 4,042,612 authors and 25,986,133 articles to examine temporal trends in the concentration of citations at the author level, and differences in the degree of concentration across fields, countries, and institutions.Publication and citation data were retrieved from Clarivate’s Web of Science (WoS). We limited our focus to disciplines within the medical and health sciences, natural sciences, and agricultural sciences, where journal publication is the primary form of scholarly communication (Materials and Methods). We used a disambiguation algorithm to create publication profiles for all authors with five or more publication entries in WoS. The disambiguated dataset allowed us to measure developments in citation concentration from 2000 onward.Per-author citation impact was measured using field-normalized citation scores (ncs). ncs is calculated by dividing the raw per-paper citation scores with the average citation counts of comparable papers published in the same year and subfield. ncs was rescaled to account for citation inflation, represented here as nics. We report per-author cumulative citation impact based on a full and fractional counting. The full counting gives the sum of nics for all papers published by a scientist. The fractional counting also gives the sum of citations accrued by a scientist in all her papers, but divides the per-article citation scores with the number of contributors per paper. We use citation density plots and Gini coefficients to gauge trends in citation imbalance and concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号