首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
牙源性间充质干细胞诱导iPS细胞的效率与时间的研究   总被引:1,自引:1,他引:0  
目的研究比较不同种牙源性间充质干细胞诱导iPS细胞的效率与时间。方法分离牙髓干细胞(DPSCs)、脱落乳牙干细胞(SHED)、牙乳头干细胞(SCAP)。应用慢病毒介导Lin28、Nanog、Oct4和Sox2因子重编程获得iPS细胞。比较在同等条件下三种细胞获得iPS细胞的克隆数与平均诱导时间。结果DPSC诱导iPS细胞的效率是0.167%,高于SHED细胞和SCAP细胞的诱导效率(0.125%,0.033%);DPSC诱导iPS细胞的平均重编程时间是20.1d,均少于SHED细胞和SCAP细胞(23.73d,25.25d),差异均有统计学意义。结论三种不同牙源性细胞有不同的iPS细胞诱导效率与重编程时间,牙髓干细胞有较好的诱导iPS细胞的应用潜能。  相似文献   

2.
ObjectivesThe aim of this study was to characterize the expression status of cadherins in dental pulp-derived mesenchymal progenitor/stem cells from deciduous and permanent teeth, and to determine how cadherins affect the multipotency of the progenitor/stem cells.Materials and methodsWe evaluated and compared the expression status of cadherins in dental pulp-derived cells from deciduous teeth and in cells from permanent teeth by using an array of primers for amplification of RNA encoding human cell adhesion molecules and a real time PCR system. In order to elucidate how cadherins (which are differentially expressed in deciduous and permanent teeth) affect the multipotency of the dental pulp-derived progenitor/stem cells, the ability of the dental pulp cells to differentiate into adipocytes and osteoblasts was evaluated.ResultsR-cadherin was found to be vigorously expressed in the dental pulp cells derived from permanent teeth but not in the dental pulp cells derived from deciduous teeth. N-cadherin was found to be expressed essentially equally in both types of cells. The ability of the dental pulp cells of deciduous teeth to differentiate into adipocytes and osteoblasts was found to be much higher than that of cells obtained from permanent teeth.ConclusionR-cadherin may be a key molecule for providing control over the multipotency of the dental pulp-derived mesenchymal stem cells.  相似文献   

3.
目的 采用蛋白质组学方法研究人乳牙牙髓干细胞(SHED)和恒牙牙髓干细胞(DPSC)中的蛋白表达差异.方法 应用双向凝胶电泳技术分离SHED和DPSC的细胞总蛋白.通过比较两种细胞的蛋白组学图谱,确定差异表达的蛋白点,而后对差异点进行基质辅助激光解析电离飞行时间质谱分析和蛋白数据库信息检索,对差异蛋白进行功能分类.结果 建立了SHED和DPSC的蛋白质组图谱,经软件分析出45个差异蛋白点,其中26个表达上调,19个表达下调,再经质谱鉴定出48种蛋白,其生物学功能涉及细胞周期、代谢等.结论 SHED与DPSC中蛋白的差异表达体现了两种细胞在结构和功能上的异同性,为进一步研究SHED和DPSC在增殖、分化中的差异,以及牙齿相关干细胞在组织工程和再生医学研究中的应用提供参考.  相似文献   

4.
OBJECTIVES: Identification, characterization, and potential application of mesenchymal stem cells (MSC) derived from human dental tissues. METHODS: Dental pulp and periodontal ligament were obtained from normal human impacted third molars. The tissues were digested in collagenase/dispase to generate single cell suspensions. Cells were cultured in alpha-MEM supplemented with 20% fetal bovine serum, 2 mM l-glutamine, 100 microM l-ascorbate-2-phosphate. Magnetic and fluorescence activated cell sorting were employed to characterize the phenotype of freshly isolated and ex vivo expanded cell populations. The developmental potential of cultured cells was assessed following co-transplantation with hydroxyapetite/tricalcium phosphate (HA/TCP) particles into immunocompromised mice for 8 weeks. RESULTS: MSC were identified in adult human dental pulp (dental pulp stem cells, DPSC), human primary teeth (stem cells from human exfoliated deciduous teeth, SHED), and periodontal ligament (periodontal ligament stem cells, PDLSC) by their capacity to generate clongenic cell clusters in culture. Ex vivo expanded DPSC, SHED, and PDLSC populations expressed a heterogeneous assortment of makers associated with MSC, dentin, bone, smooth muscle, neural tissue, and endothelium. PDLSC were also found to express the tendon specific marker, Scleraxis. Xenogeneic transplants containing HA/TCP with either DPSC or SHED generated donor-derived dentin-pulp-like tissues with distinct odontoblast layers lining the mineralized dentin-matrix. In parallel studies, PDLSC generated cementum-like structures associated with PDL-like connective tissue when transplanted with HA/TCP into immunocompromised mice. CONCLUSION: Collectively, these data revealed the presence of distinct MSC populations associated with dental structures with the potential of stem cells to regenerate living human dental tissues in vivo.  相似文献   

5.
Stem cells from human exfoliated deciduous teeth (SHED) have been isolated and characterized as multipotent cells. However, it is not known whether SHED can generate a dental pulp-like tissue in vivo. The purpose of this study was to evaluate morphologic characteristics of the tissue formed when SHED seeded in biodegradable scaffolds prepared within human tooth slices are transplanted into immunodeficient mice. We observed that the resulting tissue presented architecture and cellularity that closely resemble those of a physiologic dental pulp. Ultrastructural analysis with transmission electron microscopy and immunohistochemistry for dentin sialoprotein suggested that SHED differentiated into odontoblast-like cells in vivo. Notably, SHED also differentiated into endothelial-like cells, as demonstrated by B-galactosidase staining of cells lining the walls of blood-containing vessels in tissues engineered with SHED stably transduced with LacZ. This work suggests that exfoliated deciduous teeth constitute a viable source of stem cells for dental pulp tissue engineering.  相似文献   

6.
目的 研究人乳牙牙髓干细胞(SHED)表达和分泌胶质细胞源性神经营养因子(GDNF)的能力及规律,为进一步探讨SHED治疗帕金森病的作用机制提供依据.方法 通过酶消化法体外分离培养人乳牙牙髓中的干细胞,当传代至第3代时,加入神经干细胞的特殊培养基Neurobasal A和细胞因子进行神经球诱导培养,通过Real-Ti...  相似文献   

7.
近年来,成体干细胞不断地从不同的组织中被分离出来,该类细胞具有多向分化潜能、较强的增殖能力和持久的自我更新能力,具备充当组织工程种子细胞的天然优势。2000年和2003年,研究者先后从成人牙髓组织和人乳牙牙髓组织中分离出具有干细胞特征的细胞,这两种细胞的发现对牙组织工程将产生重要的意义。现就这两种成体干细胞的研究进展做一综述,并展望其应用前景。  相似文献   

8.
9.
牙髓组织中含有细胞、血管、神经和纤维等,是一个复杂的3D结构系统。随着干细胞生物学和组织工程学的相互结合和促进,牙髓再生逐渐成为可能。牙体组织中分离出的多种干细胞,如牙髓干细胞、脱落乳牙牙髓干细胞、根尖牙乳头干细胞、牙囊干细胞等,都具有再生牙髓的潜能。文章就牙源性干细胞及以牙源性干细胞为基础的牙髓再生的研究进展做一综述。  相似文献   

10.
《Journal of endodontics》2020,46(7):950-956
IntroductionPulpitis is an inflammation of dental pulp caused by bacterial proliferation near or within pulpal tissues. In advanced stages, when the inflammation is associated with pulp necrosis, pulp preservation is dependent on dental pulp stem cells (DPSCs) that can differentiate into odontoblastlike cells and produce reparative dentin. In this study, we evaluated the influence of sensory neurons through calcitonin gene-related peptide (CGRP) on DPSC viability and proliferation and the ability of DPSCs to differentiate into mineralizing cells.MethodsCommercially available DPSCs were treated with varying doses of CGRP, and metabolic activity, viability, proliferation, and cell death were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays, trypan blue staining, 5-bromo-2'-deoxyuridine cell proliferation assay, and caspase-3 staining, respectively. DPSC differentiation was assessed with alizarin red staining and by quantifying messenger RNA expression of odontoblast makers.ResultsCGRP induced a dose-dependent decrease of DPSC metabolic activity that was prevented by the CGRP receptor antagonist CGRP 8-37. The decrease in the proportion of live cells induced by CGRP is associated with a decrease of cell proliferation but not with caspase-3–dependent apoptosis. Interestingly, dexamethasone-induced DPSC differentiation into mineralizing cells was neither inhibited nor enhanced by CGRP treatment.ConclusionsThe neuropeptide CGRP has an inhibitory effect on DPSC proliferation but does not enhance or inhibit the differentiation of DPSCs into mineralizing cells. This suggests that CGRP might negatively influence the ability of DPSCs to contribute to regenerative or tissue repair processes.  相似文献   

11.
BackgroundRegenerative medicine has emerged as a multidisciplinary field with the promising potential of renewing tissues and organs. The main types of adult stem cells used in clinical trials are hematopoietic and mesenchymal stem cells (MSCs). Stem cells are defined as self-renewing clonogenic progenitor cells that can generate one or more types of specialized cells.HighlightMSCs form adipose, cartilage, and bone tissue. Their protective and regenerative effects, such as mitogenic, anti-apoptotic, anti-inflammatory, and angiogenic effects, are mediated through paracrine and endocrine mechanisms. Dental pulp is a valuable source of stem cells because the collection of dental pulp for stem cell isolation is non-invasive, in contrast to conventional sources, such as bone marrow and adipose tissue. Teeth are an excellent source of dental pulp stem cells (DPSCs) for therapeutic procedures and they can be easily obtained after tooth extraction or the shedding of deciduous teeth. Thus, there is increased interest in optimizing and establishing standard procedures for obtaining DPSCs; preserving well-defined DPSC cultures for specific applications; and increasing the efficiency, reproducibility, and safety of the clinical use of DPSCs.ConclusionThis review comprehensively describes the biological characteristics and origins of DPSCs, their identification and harvesting, key aspects related to their characterization, their multilineage differentiation potential, current clinical applications, and their potential use in regenerative medicine for future dental and medical applications.  相似文献   

12.
SHED (stem cells from human exfoliated deciduous teeth) represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.  相似文献   

13.
MEPE is downregulated as dental pulp stem cells differentiate   总被引:3,自引:0,他引:3  
Previous studies on dental pulp cell culture have described heterogenous mixtures of cells that differentiate into odontoblasts and form mineralized dentin. OBJECTIVE: The aim of this study was to characterize the matrix extracellular phosphoglycoprotein (MEPE) expression by dental pulp stem cells (DPSC), related to cell differentiation. DESIGN: DPSC differentiation to form mineralized nodules was characterized by Alizarin red staining and micro-Raman spectroscopy. Osteogenesis SuperArray analysis was used to broadly screen for osteogenesis-related genes altered by DPSC differentiation. Relative levels of expression of MEPE and DSP were determined by semiquantitative RT-PCR and Western blot. RESULTS: Mineral analysis showed that as DPSC differentiated, they formed a carbonated hydroxyapatite mineral. Differentiation was initially marked by upregulation by Runx2, TGFbeta-related genes, EGFR and genes involved in collagen metabolism. ALP activity first increased, as DPSCs reached confluence but later decreased when cells further differentiated three weeks after confluence. MEPE was the only marker that was downregulated as DPSCs differentiated. CONCLUSION: DPSC differentiation can be characterized by downregulation of MEPE as other markers of DPSC differentiation, such as DSP, are upregulated. Expression of MEPE related to DSP and can be used to monitor DPSC as they are used for studies of odontoblast differentiation, tissue engineering or vital pulp therapy. The downregulation of MEPE as DPSC differentiate, suggests that MEPE is an inhibitor of mineralization.  相似文献   

14.
《Journal of endodontics》2022,48(10):1232-1240
IntroductionThe aim of this review is to provide a narrative review on the determinants of dental pulp stem cell (DPSC) heterogeneity that may affect the regenerative properties of these cells.MethodsPubMed, Scopus, and MEDLINE (Ovid) literature searches were done on human dental pulp stem cell heterogeneity. The focus was on human dental pulp stem cells with a primary focus on DPSC heterogeneity.ResultsDPSCs display significant heterogeneity as illustrated by the various subpopulations reported, including differences in proliferation and differentiation capabilities and the impact of various intrinsic and extrinsic factors.ConclusionsThe lack of consistent and reliable results in the clinical setting may be due to the heterogeneous nature of DPSC populations. Standardization in isolation techniques and criteria to characterize DPSCs should lead to less variability in results reported and improve comparison of findings between studies. Single-cell RNA sequencing holds promise in elucidating DPSC heterogeneity and may contribute to the establishment of standardized techniques.  相似文献   

15.
Wang X  Sha XJ  Li GH  Yang FS  Ji K  Wen LY  Liu SY  Chen L  Ding Y  Xuan K 《Archives of oral biology》2012,57(9):1231-1240
ObjectiveThis study focused on the characterization of stem cells from human exfoliated deciduous teeth (SHED) in comparison with dental pulp stem cells (DPSCs) to certify SHED as a key element in tissue engineering.MethodsIn the present study, SHED and DPSCs were assayed for their cell surface antigens and proliferation by measuring the cell cycles, growth rates, Ki67-positive efficiencies, and colony-forming units (CFUs). The evaluation of multi-differentiation was performed using alizarin red and oil red O and real-time PCR in vitro. The mineralization capability of the cells was examined in vivo by implanting with ceramic bovine bone (CBB) into subcutaneous of immunocompromised mice for 8 weeks. A three-dimensional pellet cultivation system is proposed for SHED and DPSCs to recreate the biological microenvironment that is similar to that of a regenerative milieu.ResultsSHED showed a higher proliferation rate and differentiation capability in comparison with DPSCs in vitro, and the results of the in vivo transplantation suggest that SHED have a higher capability of mineralization than the DPSCs. The mRNA expression levels of inflammatory cytokines, including matrix metalloproteinase-1 (MMP1), tissue inhibitors of metalloproteinase-1 (TIMP1), matrix metalloproteinase-2 (MMP2), tissue inhibitors of metalloproteinase-2 (TIMP2) and interleukin-6 (IL-6) were higher in SHED than that in DPSCs. In addition, the expression levels of Col I and proliferating cell nuclear antigen (PCNA) in SHED sheets were significantly higher than those in DPSCs sheets.ConclusionsThis study systematically demonstrated the differences in the growth and differentiation characteristics between SHED and DPSCs. Consequently, SHED may represent a suitable, accessible and potential alternative source for regenerative medicine and therapeutic applications.  相似文献   

16.
IntroductionHuman dental pulp stem/stromal cells (hDPSCs) in adults are primarily derived from the pulp tissues of permanent third molar teeth in existing literatures, whereas no reports exist, to our knowledge, on deriving hDPSCs from a tooth without the need for surgical procedure. The aim of this study was to raise a novel idea to source hDPSCs from complicated crown-fractured teeth requiring root canal therapy.MethodshDPSCs were harvested from the pulp tissues for two complicated crown-fractured teeth requiring root canal therapy, retaining the teeth for subsequent prosthodontic rehabilitation, in a 41-year-old woman who had suffered a motorcycle accident. Pulp tissue from the left lower deciduous canine of a healthy 10-year-old boy (the positive control) was also removed because of high mobility and cultured for hDPSCs.ResultsThe hDPSCs derived from the two complicated crown-fractured teeth and the deciduous tooth were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages and also expressed stem cells markers and differentiation markers, which indicated their stem cell origin and differentiation capability. In addition, hDPSCs from both the complicated crown-fractured teeth and the deciduous tooth showed high expression for bone marrow stem cell markers including CD29, CD90, and CD105 and exhibited very low expression of markers specific for hematopoietic cells such as CD14, CD34, and CD45.ConclusionsThis report describes the successful isolation and characterization of hDPSCs from the pulp tissue of complicated crown-fractured teeth without tooth extraction. Therefore, pulp exposed in complicated crown-fractured teeth might represent a valuable source of personal hDPSCs.  相似文献   

17.
IntroductionThe transplantation of dental pulp stem cells (DPSCs) has emerged as a novel strategy for the regeneration of lost dental pulp after pulpitis and trauma. Dental pulp regeneration of the young permanent tooth with a wide tooth apical foramen has achieved significant progress in the clinical trials. However, because of the narrow apical foramen, dental pulp regeneration in adult teeth using stem cells remains difficult in the clinic. Finding out how to promote vascular reconstitution is essential for the survival of stem cells and the regeneration of dental pulp after transplantation into the adult tooth.MethodsAdipose tissue–derived microvascular fragments (ad-MVFs) were isolated from human adipose tissues. The apoptosis and senescence of DPSCs cultured in conditioned media were evaluated to explore the effects of ad-MVFs on DPSCs. DPSCs combined with ad-MVFs were inserted into the human tooth root segments and implanted subcutaneously into immunodeficient mice. Regenerated pulplike tissues were analyzed by hematoxylin and eosin and immunohistochemistry. The vessels in regenerated tissues were analyzed by Micro-CT and immunofluorescence.ResultsThe isolated ad-MVFs contained endothelial cells and pericytes. ad-MVFs effectively prevented the apoptosis and senescence of the transplanted DPSCs both in vivo and in vitro. Combined with DPSCs, ad-MVFs obviously facilitated the formation of vascular networks in the transplants. DPSCs combined with ad-MVFs formed dental pulp–like tissues with abundant cells and matrix after 4 weeks of implantation. The supplementation of ad-MVFs led to more odontoblastlike cells and increased the formation of mineralized substance around the root canal.ConclusionsCotransplantation with ad-MVFs promotes the angiogenesis and revascularization of transplanted DPSC aggregates, leading to robust regeneration of dental pulp.  相似文献   

18.
IntroductionMesenchymal stem cells (MSCs) have been used for clinical application in tissue engineering and regenerative medicine (TERM). To date, the most common source of MSCs has been bone marrow. However, the bone marrow aspirate is an invasive and painful procedure for the donor. Thus, the identification and characterization of alternative sources of MSCs are of great importance. This study focused on the characterization of stem cells from human exfoliated deciduous teeth (SHED) compared with dental pulp stem cells (DPSCs) and bone marrow–derived mesenchymal stem cells (BMMSCs).MethodsWe have compared “stemness” such as the proliferation rate and the expression of stem cell marker of DPSCs, SHED, and BMMSCs. In addition, gene expression profile of DPSCs and SHED were analyzed by using DNA microarray.ResultsAll cells isolated from the three sources exhibited MSC characteristics including a fibroblastic morphology, and the expression of mesenchymal stem-cell markers. The proliferation rate of SHED was significantly higher than that of DPSCs and BMMSCs (P < 0.05). The comparison of the gene expression profiles indicated 4386 genes with a changed expression between DPSCs and SHED by 2.0-fold or more. Higher expression in SHED was observed for genes that participate in pathways related to cell proliferation and extracellular matrix, including several cytokines such as fibroblast growth factor and tumor growth factor beta.ConclusionsBecause of its advantages of a higher proliferation capability, abundant cell supply, and painless stem cell collection with minimal invasion, SHED could be a desirable option as a cell source for potential therapeutic applications.  相似文献   

19.
Dental stem cells from human exfoliated deciduous teeth (SHED) and dental follicle cells (DFCs) are neural crest-derived stem cells from human dental tissues. Interestingly, SHED and DFCs can successfully differentiate into neuron-like cells. We hypothesized that SHED and DFCs have the same neural cell differentiation potentials. To evaluate neural cell differentiation, we cultivated SHED and DFCs in four different serum-replacement media (SRMs) and analyzed cell morphology, cell proliferation, and gene expression patterns before and after differentiation. In a standard cell culture medium, SHED and DFCs have not only similar cell morphologies, but they also have similar gene expression patterns for known stem cell markers. However, only SHED expressed the neural stem cell marker Pax6. After cultivation in SRMs, cell proliferations of DFCs and SHED were reduced and the cell morphology was spindle-like with long processes. However, differentiated DFCs and SHED had different neural cell marker expression patterns. For example, gene expression of the late neural cell marker microtubule-associated protein 2 was upregulated in DFCs and downregulated in SHED in SRM with the B27 supplement. In contrast, SHED formed neurosphere-like cell clusters in SRM with the B27 supplement, epidermal growth factor, and fibroblast growth factor-2. Moreover, SHED differentially expressed the glial cell marker glial fibrillary acidic protein, which in contrast was weakly or not expressed in DFCs. In conclusion, SHED and DFCs have different neural differentiation potentials under the same cell culture conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号