首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveThis study evaluated the combined effect of fluoride varnish to Er:YAG or Nd:YAG laser on permeability of eroded root dentine.DesignSixty slabs of bovine root dentine (2 × 2 × 2 mm) were eroded with citric acid 0.3% (pH 3.2) during 2 h and then kept in artificial saliva during 24 h. Specimens were randomly assigned in 6 groups (n = 10), to receive the following treatments: fluoride varnish; fluoride varnish + Er:YAG laser; fluoride varnish + Nd:YAG laser; non-fluoride varnish; non-fluoride varnish + Er:YAG laser; non-fluoride varnish + Nd:YAG laser. The Er:YAG (100 mJ, 3 Hz) and Nd:YAG (70 mJ, 15 Hz) were applied for 10 s. Specimens were subjected to further erosive challenges with citric acid 0.3% 4×/day, during 1 min, for 5 days, remaining in artificial saliva between cycles. Dentin permeability was then assessed. Two-way ANOVA demonstrated no significant interaction between laser and varnish (p = 0.858).ResultsNo effect was also detected for the main factor varnish (p = 0.768), while permeability of eroded root dentin was significantly lower when such substrate was laser-irradiated, no matter the laser source (p < 0.001).ConclusionsThis study concluded that Er:YAG and Nd:YAG lasers can be employed to control the permeability of eroded root dentin, regardless of fluoride varnish application.  相似文献   

2.
Cracking of tooth structure is a frequent mechanism of clinical failure necessitating treatment. Some laser conditions, particularly those without sufficient water cooling, may cause surface cracking of dentin. Surface cracks may serve as initiation sites for the onset of catastrophic fracture under mechanical stress, resulting in failure of the dentin. In this study, the hypothesis that laser initiated cracks result in lower bending strength of dentin was tested.Dentin beam specimens were prepared from human molar teeth, 1.1 mm × 1.1 mm × ~9 mm, and divided into groups C (control), W (wet), D (dry) of 12 beams each. In groups W and D, the middle of each beam on one surface (buccal) was irradiated with either a Er-YAG or Q-switched Er-YSGG laser and measured under a microscope, noting the dimensions in the irradiated area and immediately adjacent to irradiated area. Each beam was placed in a mechanical testing machine in a four-point bend jig and tested with a monotonically increasing load at a displacement rate of 1 mm/min until failure. The bending strengths for groups C, W (Er-YAG laser) and D (Q-switched Er-YSGG laser) were, respectively, 141.6, 114.0, and 90.9 MPa. A one-way ANOVA determined a significant difference between groups C and D, p < 0.001. Conclusion: The Q-switched Er-YSGG laser without water caused cracks in the surface that significantly decreased the bending strength of dentin.  相似文献   

3.
《Dental materials》2014,30(7):752-758
ObjectiveThe objective of this study was to determine if Gluma dentin desensitizer (5.0% glutaraldehyde and 35% HEMA in water) can inhibit the endogenous MMPs of dentin matrices in 60 s and to evaluate its effect on dentin matrix stiffness and dry mass weight.MethodsDentin beams of 2 mm × 1 mm × 6 mm were obtained from extracted human third molars coronal dentin. To measure the influence of Gluma treatment time on total MMP activity of dentin, beams were dipped in 37% phosphoric acid (PA) for 15 s and rinsed in water. The acid-etched beams were then dipped in Gluma for 5, 15, 30 or 60 s, rinsed in water and incubated into SensoLyte generic MMP substrate (AnaSpec, Inc.) for 60 min. Controls were dipped in water for 60 s. Additional beams of 1 mm × 1 mm × 6 mm were completely demineralized in 37% PA for 18 h, rinsed and used to evaluate changes on the dry weight and modulus of elasticity (E) after 60 s of Gluma treatment followed by incubation in simulated body fluid buffer for 0, 1 or 4 weeks. E was measured by 3-pt flexure.ResultsGluma treatment inhibited total MMP activity of acid-etched dentin by 44, 50, 84, 86% after 5, 15, 30 or 60 s of exposure, respectively. All completely demineralized dentin beams lost stiffness after 1 and 4 weeks, with no significant differences between the control and Gluma-treated dentin. Gluma treatment for 60 s yielded significantly less dry mass loss than the control after 4 weeks.SignificanceThe use of Gluma may contribute to the preservation of adhesive interfaces by its cross-linking and inhibitory properties of endogenous dentin MMPs.  相似文献   

4.
ObjectiveTo assess the effect of chitosan, at concentrations of 2.5% and 5.0%, on the wettability of the eroded dentin, followed by analysis of surface morphology by SEM.Methods104 bovine dentin slabs were ground, polished and then immersed in 20 mL of citric acid (pH = 3.2) under continuous stirring for 2 h. Specimens were randomly divided according to the dentin substrate: sound and eroded, and then, subdivided into 4 groups (n = 10): without rewetting (control), 1% acetic acid, 2.5% chitosan and 5.0% chitosan. Then, a drop of the adhesive system Single Bond 2 (3M) was deposited onto surface of each specimen. The contact angle between dentin surface and the adhesive system was measured by using a goniometer. The other 24 specimens were subjected to analysis under SEM. Statistical analysis was performed using the normality test (Kolmogorov-Smirnov) and Analysis of Variance (ANOVA) (p > 0.05).ResultsNo differences were found between the angles produced on the eroded dentin rewetting with chitosan at the concentrations of 2.5% and 5%.ConclusionThe chitosan, regardless of the concentration used, did not influence the eroded dentin wettability. Through SEM analysis, it was found particles of chitosan deposited on the surface and within the dentinal tubules.  相似文献   

5.
ObjectivesThe purpose of this work was to investigate the effects of layering techniques in resin composite restorations on the micro-tensile bond strength to the dentin of the occlusal cavity.MethodsHuman premolars were extracted and randomly divided into four groups. The occlusal enamel was then removed to expose a flat superficial dentin surface. Cavities 3.5 mm long and 3.5 mm wide were prepared to a depth 3 mm below the dentin surface. The adhesive Single Bond was applied according to the manufacturer's instructions. The teeth were then restored with Z100 resin composite as follows: Group 1 was restored in horizontal increments (three layers). Groups 2 and 3 were restored in different oblique increments (three layers). Group 4 was restored in oblique increments (four layers). After 24 h storage at 37 °C in water, all the teeth were sectioned to obtain bar-shaped specimens with a bonded surface area of approximately 0.9 mm × 0.9 mm. Dentin micro-tensile bond strength was measured at a crosshead speed of 0.5 mm/min. The results obtained were statistically analyzed using one-way ANOVA and SNK test at a significance level of P = 0.05. All fractures were then observed under a scanning electron microscope (SEM).ResultsThe results showed that there is a significant difference between the strength of the micro-tensile bonds to the dentin of occlusal cavities depending on which of the four layering restorative techniques was used (P < 0.01). SEM observation showed that failure patterns were most evidently interfacial cohesive failure.SignificanceLayering techniques in resin composite restorations affected the micro-tensile bond strength between the resin composite and the dentin. But the outcomes related to only Single Bond, as the same using other adhesives might have different outcomes.  相似文献   

6.
《Dental materials》2019,35(9):1300-1307
ObjectiveTo investigate the effect of an experimental biomimetic mineralization kit (BIMIN) on the chemical composition and crystallinity of caries-free enamel and dentin samples in vitro.MethodsEnamel and dentin samples from 20 human teeth (10 for enamel; 10 for dentin) were divided into a control group without treatment and test samples with BIMIN treatment. Quantitative analysis of tissue penetration of fluoride, phosphate, and calcium was performed using energy-dispersive X-ray spectroscopy (EDX). Mineralization depth was measured by Raman spectroscopy probing the symmetric valence vibration near 960 cm−1 as a marker for crystallinity. EDX data was statistically analyzed using a paired t-test and Raman data was analyzed using the Student’s t-test.ResultsEDX analysis demonstrated a penetration depth of fluoride of 4.10 ± 3.32 μm in enamel and 4.31 ± 2.67 μm in dentin. Calcium infiltrated into enamel 2.65 ± 0.64 μm and into dentin 5.58 ± 1.63 μm, while the penetration depths for phosphate were 4.83 ± 2.81 μm for enamel and 6.75 ± 3.25 μm for dentin. Further, up to 25 μm of a newly mineralized enamel-like layer was observed on the surface of the samples. Raman concentration curves demonstrated an increased degree of mineralization up to 5–10 μm into the dentin and enamel samples.SignificanceBiomimetic mineralization of enamel and dentin samples resulted in an increase of mineralization and a penetration of fluoride into enamel and dentin.  相似文献   

7.
《Dental materials》2019,35(10):1471-1478
ObjectiveThis study investigated the effects of dentin pretreatment with 2.5% titanium tetrafluoride (TiF4) on nanomechanical properties, and the in situ gelatinolytic activity of the dentin–resin interface, for up to 6 months.MethodsTwenty-four human teeth were prepared by exposing occlusal flat dentin surfaces, and were randomly assigned to experimental groups, according to application or non-application of a TiF4 pretreatment, and to the adhesive systems (Clearfil SE Bond or Scotchbond Universal). Resin composite (Filtek Supreme Ultra) was built up incrementally on the teeth in all the groups. Then, the specimens were sectioned and randomly selected for evaluation at 24 h, 3 months and 6 months of storage time. The reduced modulus of elasticity (Er) and the nanohardness of the underlying dentin, as well as the hybrid layer and the adhesive layer were measured using a nanoindenter. Gelatinolytic activity at the dentin–resin interfaces was assessed by in situ zymography using quenched fluorescein-conjugated gelatin at 24 h and 6 months. Statistical analyses were performed with ANOVA and Tukey’s tests.ResultsThere were no differences in Er and nanohardness values between adhesives systems and pretreatment (p = 0.1250). In situ zymography showed significantly higher gelatinolytic activity after 6 months for all the experimental groups (p = 0.0004), but no differences between the adhesive systems (p = 0.7708) and the surface pretreatment (p = 0.4877). Significance: Dentin pretreatment with 2.5% TiF4 followed by self-etching adhesive systems did not influence nanomechanical properties or gelatinolytic activity of the adhesive–dentin interface layers, over time.  相似文献   

8.
ObjectiveTo investigate the role of dentinal tubules in the fracture properties of human root dentin and whether resin-filled dentinal tubules can enhance fracture resistance.Materials and methodsCrack propagation in human root dentin was investigated in 200 μm thick longitudinal samples and examined by light and scanning electron microscopy. 30 maxillary premolar teeth were prepared for work of fracture (Wf) test at different tubule orientations, one perpendicular and two parallel to dentinal tubules. Another 40 single canal premolars were randomly divided into four groups of 10 each: intact dentin, prepared but unobturated canal, canal obturated with epoxy rein (AH Plus?/gutta percha), or with UDMA resin sealer (Resilon®/RealSeal®). The samples were prepared for Wf test parallel to dentinal tubules. Wf was compared under ANOVA with statistical significance set at p < 0.05.ResultsDentinal tubules influenced the path of cracks through dentin, with micro-cracks initiated in peritubular dentin of individual tubules ahead of the main crack tip. A significant difference (p < 0.001) was found between Wf perpendicular to tubule direction (254.9 J/m2) vs. parallel to tubule direction from inner to outer dentin (479.4 J/m2). Neither canal preparation nor obturation using epoxy- or UDMA-based resins as sealer cements substantially influenced fracture properties of root dentin, despite extensive infiltration of dentinal tubules by both sealer cements.  相似文献   

9.
ObjectivesThis study evaluated the relationship between microtensile bond strength (μTBS) and occurrence of nanoleakage at the resin–dentin interface using the same specimens.MethodsResin–dentin-bonded micro-specimens (sticks with a size of 300 μm × 300 μm × 8 mm) were prepared using one of two material combinations (group I: Syntac classic/Tetric Ceram Cavifil: n = 57; group II: Prime & Bond NT/Spectrum TPH: n = 52). After immersion of the micro-specimens in 0.1% rhodamine-B solution for 1 h, nanoleakage was imaged nondestructively using a confocal laser scanning microscope (CLSM). Then the specimens were subjected to a μTBS test.ResultsFor the influence of nanoleakage on μTBS with the Syntac classic/Tetric Ceram Cavifil group, the nonparametric Spearman correlation was 0.033 at p = 0.805. For the Prime & Bond NT/Spectrum TPH group, the nonparametric Spearman correlation was 0.077 at p = 0.584.SignificanceThe degree of nanoleakage had no influence on microtensile bond strength for the Syntac classic/Tetric Ceram Cavifil or for the Prime & Bond NT/Spectrum TPH group.  相似文献   

10.
《Dental materials》2014,30(11):1245-1251
ObjectivesBonding stability of resinous adhesives to dentin is still problematic and may involve regional variations in dentin composition. This study is to evaluate the effect of dentin depth on the stability of resin-dentin bonds under thermocycling challenge.MethodsDentin slabs with two flat surfaces parallel to the tooth axis were obtained from extracted human third molars. The slabs were randomized into eight groups according to the location of dentin [deep dentin (DD) or superficial dentin (SD)], the adhesive treatment (Single Bond 2 or Clearfil S3 Bond), and the storage treatment (thermocycling for 5000 times vs. no). After the adhesive treatment and composite buildup on the dentin slabs, the micro-shear bond strength (μSBS) of each group was detected. The concentrations of cross-linked carboxyterminal telopeptide of type I collagen (ICTP) were also evaluated using an immunoassay to detect the degree of collagen degradation in each group.ResultsDentin depth, adhesive treatment and storage treatment all showed significant effects on both the μSBSs and the ICTP values (P < 0.05). Regardless of the adhesive type, thermocycling decreased the μSBSs and increased the ICTP values (P < 0.05). The DD groups showed significantly lower μSBSs and higher ICTP values than SD groups after thermocycling aging (P < 0.05). The treatment with Single Bond 2 significantly increased the ICTP values (P < 0.05), whereas Clearfil S3 Bond showed no effect on the ICTP values (P > 0.05).SignificanceDeep dentin showed significantly more bond degradation after thermocycling than did superficial dentin.  相似文献   

11.
《Dental materials》2014,30(7):e189-e198
ObjectivePolymerization shrinkage developed in vertical and horizontal directions after light activation of light-curing composite restorative materials. The purpose of this study was to examine the effects of vertical and horizontal polymerization shrinkage on: (a) dimensional changes of resin composites in tooth cavities; (b) shear bond strengths to enamel and dentin; and (c) marginal gap width in a non-reacting Teflon mold.MethodsVertical and horizontal polymerization shrinkage in tooth cavities were measured immediately (3 min) after light activation. With the same time lapse, shear bond strengths to enamel and dentin and marginal gap widths in Teflon mold were also measured.ResultsThere was a significant correlation between vertical and horizontal polymerization shrinkage (r = 0.647, p = 0.043) in the tooth cavity. Composite materials which produced small vertical shrinkage also produced smaller horizontal shrinkage. Composite materials which produced small vertical shrinkage in the tooth cavity exhibited greater shear bond strengths to both enamel (r = −0.697, p = 0.025) and dentin (r = −0.752, p = 0.012). Composite materials which produced smaller horizontal shrinkage produced smaller marginal gap widths in the Teflon mold (r = 0.829, p = 0.003). No relationships were observed between horizontal shrinkage in the tooth cavity and shear bond strengths to both enamel and dentin (p > 0.05).SignificanceDuring the early stage of setting (<3 min) in tooth cavities, the vertical shrinkage of light-activated composite restorative materials was correlated with horizontal shrinkage.  相似文献   

12.
AimTo test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure.Materials and methodsExtracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3 × 15 min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n = 10 points/location), representing conditions before and after bleaching.ResultsTooth shade changes were significant (p < 0.001; 95% CI = −1/−8; power = 99%), and most of the enamel layer was unaffected after bleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R2 = 0.97; p < 0.0001; power > 99%).ConclusionsChanges in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss > organic gain > water gain > decrease in permeability) and decreased from the enamel surface inward.  相似文献   

13.
PurposeThe purpose of this study was to evaluate the effect of Morinda Citrifolia Juice (MCJ) on smear layer removal and microhardness value of root canal dentin in compared with various endodontic irrigants.Material and methodsEighty-four single-rooted human teeth were prepared to apical size of #35. Since decoronation, samples were divided into seven groups of 12 in each (n = 12). Specimens were finally irrigated by either 1: 2.5% NaOCl, 2: 6% MCJ, followed by a final flush of 17% ethylene diaminetetraacetic acid (EDTA), 3: 6% MCJ, 4: 2.5% NaOCl then17% EDTA, 5: MTAD, 6: 2% chlorhexidine (CHX), and 7: saline. After irrigation, all samples were subjected to Vickers microhardness test at 100 and 500-μm depths and then were examined under scanning electron microscopy (SEM) and ImageJ program was used to calculate open dentinal tubules. One way ANOVA and post hoc Tukey tests were used to reveal any significant differences among and between groups respectively.ResultsThe microhardness values at 100 μm and 500 μm for MTAD were significantly lower than for NaOCl + EDTA and MCJ + EDTA groups (p < 0.05). MCJ + EDTA, NaOCl + EDTA, and MTAD protocol significantly removed smear layer in compared with control group (p < 0.05), with no significant differences among these three groups.ConclusionsIt was concluded that 6% MCJ followed by a final flush of 17% EDTA can be regarded as an effective solution on smear layer removal without any adverse influence on microhardness property of root canal dentin.  相似文献   

14.
ObjectivesThe objectives of this study were to quantify the dimensional changes in dentin and enamel during dehydration, and to determine if there are differences between the responses of these tissues from young and old patients.MethodsMicroscopic digital image correlation (DIC) was used to evaluate deformation of dentin and enamel as a function of water loss resulting from free convection in air. Dimensional changes within both tissues were quantified for two patient age groups (i.e. young 18  age  30 and old 50  age) and in two orthogonal directions (i.e. parallel and perpendicular to the prevailing structural feature (dentin tubules or enamel prisms)). The deformation histories were used to estimate effective dehydration coefficients that can be used in quantifying the strains induced by dehydration.ResultsBoth dentin and enamel underwent contraction with water loss, regardless of the patient age. There was no significant difference between responses of the two age groups or the two orthogonal directions. Over 1 h of free convection, the average water loss in dentin was 6% and resulted in approximately 0.5% shrinkage. In the same time period the average water loss in the enamel was approximately 1% and resulted in 0.03% shrinkage. The estimated effective dehydration coefficients were ?810 μm/m/(% weight loss) and ?50 μm/m/(% weight loss) for dentin and enamel, respectively.SignificanceThe degree of deformation shrinkage resulting from dehydration is over a factor of magnitude larger in dentin than enamel.  相似文献   

15.
ObjectivesTo study the microtensile bond strengths and nanoleakage of low-shrinkage composite to dentin. The null hypotheses tested were (1) aging does not affect the bonding of low-shrinkage composite; (2) there is no difference in microtensile bond strengths and nanoleakage using different bonding strategies.Methods32 extracted molars were assigned to one of four groups: LS System Adhesive (LS, 3M ESPE); dentin etched for 15 s with phosphoric acid + LS System Adhesive (LSpa); Adper Single Bond Plus (SB, 3M ESPE); SB + LS Bond (SBLS). Occlusal dentin was exposed and restored with Filtek LS (3M ESPE). The samples were tested after 24 h or after 20,000 thermocycles and 6 months of aging. Teeth were sectioned with a cross-section of 0.8 ± 0.2 mm2 and fractured at a crosshead speed of 1 mm/min. The data were submitted to ANOVA/Duncan's post hoc test, at p < 0.05. Five slabs from each group were selected and immersed in 50 wt% ammoniacal silver nitrate. Then, specimens were processed for SEM, the silver penetration was measured and data analyzed with Kruskal–Wallis at p < 0.05.ResultsNo statistically significant difference was found among the experimental groups for the factor dentin treatment (p = 0.165) and aging (p = 0.091). All experimental groups exhibit some degree of nanoleakage. There was no adhesion of Filtek LS applied directly over dentin surfaces treated with SB.SignificanceThe new low-shrinkage resin composite showed compatibility only with its dedicated adhesive. Pre-etching did not improve the bond strengths to low-shrinkage resin composite. Some degree of nanoleakage was evident in all groups.  相似文献   

16.
ObjectiveInvestigate the effects of dentin pretreatment with 2.5% titanium tetrafluoride (TiF4) aqueous solution followed by two-step self-etching (CLE/Clearfil SE Bond) and one-step self-etching adhesive systems (SBU/Single Bond Universal) on carious lesion inhibition at the tooth-restoration interface using an in situ model.DesignSixty-four cavities at the enamel-dentin junction of dental fragments were randomly distributed according to groups (n = 16): 1) TiF4 + CLE; 2) TiF4 + SBU; 3) CLE; 4) SBU. Cavities were restored using resin composite, and placed in intraoral palatal devices used by 16 volunteers for 21 days, to induce caries formation in situ. The fragments were then ground-flat to perform Knoop microhardness tests. Nine indentations were performed on each enamel and dentin substrate, subjacent to the restoration. Analysis of variance and Tukey’s test were applied.ResultsEnamel: groups receiving TiF4 dentin pretreatment (regardless of adhesive system and tooth-restoration interface distance) presented higher hardness means at a depth of 25 μm from the outer tooth surface (p < 0.0001). Dentin: groups receiving CLE presented higher means when applying TiF4 pretreatment, whereas groups restored with SBU presented higher means without pretreatment (p = 0.0003).ConclusionsDentin pretreatment with TiF4 inhibited demineralization of the enamel interface in situ, regardless of the adhesive, and TiF4 pretreatment followed by CLE application showed higher potential for inhibiting dentin demineralization at the interface.  相似文献   

17.
ObjectiveThe present in situ - investigation aimed to specify the impact of pure hydroxyapatite microclusters on initial bioadhesion and bacterial colonization at the tooth surface.DesignPellicle formation was carried out in situ on bovine enamel slabs (9 subjects). After 1 min of pellicle formation rinses with 8 ml of hydroxyapatite (HA) microclusters (5%) in bidestilled water or chlorhexidine 0.2% were performed. As negative control no rinse was adopted. In situ biofilm formation was promoted by the intraoral slab exposure for 8 h overnight. Afterwards initial bacterial adhesion was quantified by DAPI staining and bacterial viability was determined in vivo/in vitro by live/dead-staining (BacLight). SEM analysis evaluated the efficacy of the mouthrinse to accumulate hydroxyapatite microclusters at the specimens’ surface and spit-out samples of the testsolution were investigated by TEM.ResultsCompared to the control (2.36 × 106 ± 2.01 × 106 bacteria/cm2), significantly reduced amounts of adherent bacteria were detected on specimens rinsed with chlorhexidine 0.2% (8.73 × 104 ± 1.37 × 105 bacteria/cm2) and likewise after rinses with the hydroxyapatite testsolution (2.08 × 105 ± 2.85 × 105 bacteria/cm2, p < 0.001). No demonstrable effect of HA-particles on Streptococcus mutans viability could be shown. SEM analysis confirmed the temporary adsorption of hydroxyapatite microclusters at the tooth surface. Adhesive interactions of HA-particles with oral bacteria were shown by TEM.ConclusionHydroxyapatite microclusters reduced initial bacterial adhesion to enamel in situ considerably and could therefore sensibly supplement current approaches in dental prophylaxis.  相似文献   

18.
ObjectiveTo evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins.MethodsDentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4 h and 24 h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured.ResultsCoating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24 h (p = 0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24 h (p = 0.026 uncoated, p = 0.009 with serum).ConclusionsThe present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion.  相似文献   

19.
PurposeThe purpose of this study was to evaluate the effect of pretreatment using phosphoric acid, sodium hypochlorite and sulfinic acid sodium salt on the bonding of one-step self-etching adhesives to root canal dentin.MethodsThirty-six single-rooted sound human premolars were randomly assigned into three groups before applying the one-step self-etching adhesive. These comprised a control group with no pretreatment, an NC group that received phosphoric acid and subsequent sodium hypochlorite gel pretreatments, and an NC + AC group that received an additional treatment with sulfinic acid sodium salt following the same pretreatment applied to the NC group. Microtensile bond strength measurements, bonding interface observations by scanning electron microscopy (SEM), elemental analyses by X-ray photoelectron spectroscopy (XPS) and degree of polymerization (DOP) analyses by Raman spectroscopy were subsequently performed.ResultsThe bond strength was significantly higher in the NC + AC group than in the other two groups (Control: P = 000.1 and NC: P = 0.004). SEM observations showed that resin tags were present in the dentinal tubules in the NC and NC + AC groups. Compared to the control group, the adhesive resin layer had a lower DOP in the NC group, while the DOP for the NC + AC group was higher than that of the NC specimens.ConclusionsBonding to root canal dentin was improved by applying sulfinic acid sodium salt in addition to treatment with phosphoric acid followed by sodium hypochlorite. The DOP of the adhesive resin was reduced by sodium hypochlorite and subsequently restored by applying sulfinic acid sodium salt.  相似文献   

20.
ObjectiveThis study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion.MethodsAcrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 107 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino}carbonyl]-2H-tetrazolium-hydroxide) method.ResultsFor rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings.ConclusionsS and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号