首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used six candidal strains (two Candida albicans and one each of four other species) to study the effects of test conditions on the activity of SCH 39304 compared with that of fluconazole in broth macro- and microdilution assays. Increasing the inoculum from 10(2) to 10(5) yeasts per ml raised the MICs for all isolates up to greater than 512-fold. In contrast, results with a 50% turbidimetric endpoint (50% inhibitory concentration; IC1/2) varied no more than twofold. Similar effects were seen with fluconazole, and both drugs were found to have an associated delay in onset of action. Acidity was found to increase both MICs and IC1/2s. Other effects were observed among four synthetic media, but a consistent pattern was not identified. Incubation temperatures of 37, 35, and 30 degrees C yielded equivalent results. Broth microdilution IC1/2s against most of 40 isolates of C. albicans were 0.31 microgram/ml +/- fourfold for SCH 39304 and 0.16 microgram/ml +/- twofold for fluconazole. Treatment of experimental candidiasis in rats with SCH 39304 and fluconazole resulted in 50% effective doses of 0.33 and 0.49 mg/kg per day, respectively. In contrast, another C. albicans isolate, previously identified as resistant to other azoles, had IC1/2s of 20 micrograms of SCH 39304 per ml and, in vivo, a 50% effective dose of 2.25 mg/kg per day. We conclude that the in vivo efficacy of SCH 39304 correlates with MIC results when broth macrodilution testing is performed with a small inoculum and with IC1/2 results which are independent of inoculum size.  相似文献   

2.
The purpose of the study was to evaluate the interlaboratory agreement of broth dilution susceptibility methods for five species of conidium-forming (size range, 2 to 7 microns) filamentous fungi. The methods used included both macro- and microdilution methods that were adaptations of the proposed reference method of the National Committee for Clinical Laboratory Standards for yeasts (m27-P). The MICs of amphotericin B, fluconazole, itraconazole, miconazole, and ketoconazole were determined in six centers by both macro- and microdilution tests for 25 isolates of Aspergillus flavus, Aspergillus fumigatus, Pseudallescheria boydii, Rhizopus arrhizus, and Sporothrix schenckii. All isolates produced clearly detectable growth within 1 to 4 days at 35 degrees C in the RPMI 1640 medium. Colony counts of 0.4 x 10(6) to 3.3 x 10(6) CFU/ml (mean, 1.4 x 10(6) CFU/ml) were demonstrated in 90% of the 148 inoculum preparations. Overall, good intralaboratory agreement was demonstrated with amphotericin B, fluconazole, and ketoconazole MICs (90 to 97%). The agreement was lower with itraconazole MICs (59 to 79% median). Interlaboratory reproducibility demonstrated similar results: 90 to 100% agreement with amphotericin B, fluconazole, miconazole, and ketoconazole MICs and 59 to 91% with itraconazole MICs. Among the species tested, the MICs for S. schenckii showed the highest variability. The results of the study imply that it may be possible to develop a reference method for antifungal susceptibility testing of filamentous fungi.  相似文献   

3.
Candida species other than Candida albicans frequently cause nosocomial infections in immunocompromised patients. Some of these pathogens have either variable susceptibility patterns or intrinsic resistance against common azoles. The availability of a rapid and reproducible susceptibility-testing method is likely to help in the selection of an appropriate regimen for therapy. A flow cytometry (FC) method was used in the present study for susceptibility testing of Candida glabrata, Candida guilliermondii, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, and Cryptococcus neoformans based on accumulation of the DNA binding dye propidium iodide (PI). The results were compared with MIC results obtained for amphotericin B and fluconazole using the NCCLS broth microdilution method (M27-A). For FC, the yeast inoculum was prepared spectrophotometrically, the drugs were diluted in either RPMI 1640 or yeast nitrogen base containing 1% dextrose, and yeast samples and drug dilutions were incubated with amphotericin B and fluconazole, respectively, for 4 to 6 h. Sodium deoxycholate and PI were added at the end of incubation, and fluorescence was measured with a FACScan flow cytometer (Becton Dickinson). The lowest drug concentration that showed a 50% increase in mean channel fluorescence compared to that of the growth control was designated the MIC. All tests were repeated once. The MICs obtained by FC for all yeast isolates except C. lusitaniae were in very good agreement (within 1 dilution) of the results of the NCCLS broth microdilution method. Paired t test values were not statistically significant (P = 0.377 for amphotericin B; P = 0.383 for fluconazole). Exceptionally, C. lusitaniae isolates showed higher MICs (2 dilutions or more) than in the corresponding NCCLS broth microdilution method for amphotericin B. Overall, FC antifungal susceptibility testing provided rapid, reproducible results that were statistically comparable to those obtained with the NCCLS method.  相似文献   

4.
The technical parameters for antifungal susceptibility testing with Candida species were reexamined to determine the optimal conditions for testing with semiautomated preparations of broth microdilution cultures, automated spectrophotometric readings of the cultures, and dose-response and endpoint determinations by means of a computer spreadsheet. Tests were based on proposed standard method M27P of the National Committee for Clinical Laboratory Standards for antifungal agents. RPMI 1640 broth with extra glucose to a final concentration of 2% gave higher and more reproducible drug-free control readings without affecting susceptibility endpoint readings. An inoculum of 8 x 10(4) yeasts per ml prepared from a carbon-limiting broth culture without further standardization was found to give optimal control readings after 48 h of incubation at 37 degrees C. For flucytosine, fluconazole, itraconazole, and ketoconazole, endpoints based on 50% growth inhibition (50% inhibitory concentration) gave the minimum variation with inoculum size and the fewest endpoint differences with RPMI 1640 medium obtained from two different suppliers. The 50% inhibitory concentration was also the optimal endpoint for fluconazole and ketoconazole susceptibilities in comparison with broth macrodilution MICs determined by the method of the National Committee for Clinical Laboratory Standards. Intralaboratory reproducibility was determined by retrospective analysis of replicate results for isolates retested at random over a 2-year period. This approach showed less favorable reproducibility than has been reported from purpose-designed, prospective antifungal susceptibility studies, but it may better reflect real-life test reproducibility. Susceptibility data for 616 clinical isolates of yeasts, representing 16 Candida and Saccharomyces spp., confirmed the tendency of Candida lusitaniae isolates to show relatively low susceptibilities to amphotericin B, the tendency of Candida krusei isolates to show low flucytosine and fluconazole susceptibilities, and the presence of some isolates in the species Candida albicans, Candida glabrata, and Candida tropicalis with low susceptibilities to azole derivative antifungal agents. The study demonstrates the value of automation and standardization in all stages of yeast susceptibility testing, from plate preparation to data analysis.  相似文献   

5.
We performed a prospective study to compare the Etest and the microdilution method (NCCLS guidelines) for determining the MICs of fluconazole, itraconazole, flucytosine and amphotericin B for 35 strains of Cryptococcus neoformans. For the microdilution method (MDM) RPMI 1640 medium with 2% glucose was used for fluconazole, itraconazole and flucytosine, and Antibiotic Medium 3 for amphotericin B. For the Etest, RPMI 1640 medium with 2% glucose and solidified with 1.5% agar was used for the four antifungal agents. Amphotericin B was also tested on Antibiotic Medium 3 solidified with 1.5% agar. Fluconazole and flucytosine MICs by the Etest showed good correlation with the broth MDM (81.1 and 89.2% agreement within two dilutions, respectively). With the tested population of itraconazole- and amphotericin B-susceptible isolates, the MIC agreement for itraconazole was 54%; amphotericin B showed the lowest agreement (8.1% on Antibiotic Medium 3 and 13.5% on RPMI).  相似文献   

6.
The in vitro susceptibilities of Cryptococcus neoformans isolates from consecutive human immunodeficiency virus-positive and -negative patients to the antifungal agents fluconazole, amphotericin B, and flucytosine were determined by different techniques, including the CLSI method, Etest, and broth microdilution in yeast nitrogen base (YNB) medium, during a multicenter prospective study in France. The relationship between the in vitro data and the clinical outcome 2 weeks after the initiation of antifungal therapy was assessed. In addition, the correlation between the strain serotype and the in vitro activities of the antifungals was determined, and the susceptibility results obtained with the different techniques were also compared. Thirty-seven patients received a combination of amphotericin B with flucytosine as first-line therapy, 22 were treated with amphotericin B alone, and 15 received fluconazole alone. Whatever the antifungal tested, there was no trend toward higher MICs for strains isolated from patients who failed to respond to a given therapy compared to those from patients who did not with either the CLSI method, Etest, or broth microdilution in YNB medium. The MICs obtained by the CLSI or Etest method were significantly lower for serotype D strains than for serotype A strains for both fluconazole and amphotericin B, while flucytosine MICs were not different according to serotype. These findings suggest that the in vitro antifungal susceptibility of C. neoformans, as determined with the techniques used, is not able to predict the early clinical outcome in patients with cryptococcosis.  相似文献   

7.
Amphotericin B, flucytosine, fluconazole, and voriconazole alone and in combination were evaluated against isolates of Candida lusitaniae. MICs were determined by broth microdilution and Etest, and time-kill studies were conducted. Amphotericin B resulted in fungicidal activity against most isolates, whereas fluconazole, voriconazole, and flucytosine produced primarily fungistatic activities. The addition of flucytosine to amphotericin B resulted in a faster rate and greater extent of kill for isolates for which the MICs of amphotericin B were elevated.  相似文献   

8.
The National Committee for Clinical Laboratory Standards has proposed a reference broth macrodilution method for in vitro antifungal susceptibility testing of yeasts (the M27-P method). This method is cumbersome and time-consuming and includes MIC endpoint determination by visual and subjective inspection of growth inhibition after 48 h of incubation. An alternative microdilution procedure was compared with the M27-P method for determination of the amphotericin B, flucytosine, and fluconazole susceptibilities of 8 American Type Culture Collection strains (6 of them were quality control or reference strains) and 50 clinical isolates of candida albicans. This microdilution method uses as culture medium RPMI 1640 supplemented with 18 g of glucose per liter (RPMI-2% glucose). Preparation of drugs, basal medium, and inocula was done by following the recommendations of the National Committee for Clinical Laboratory Standards. The MIC endpoint was calculated objectively from the turbidimetric data read at 24 h. Increased growth of C. albicans in RPMI-2% glucose and its spectrophotometric reading allowed for the rapid (24 h) and objective calculation of MIC endpoints compared with previous microdilution methods with standard RPMI 1640. Nevertheless, good agreement was shown between the M27-P method and this microdilution test. The MICs obtained for the quality control or reference strains by the microdilution method were in the ranges published for those strains. For clinical isolates, the percentages of agreement were 100% for amphotericin B and fluconazole and 98.1% for flucytosine. These data suggest that this microdilution method may serve as a less subjective and more rapid alternative to the M27-P method for antifungal susceptibility testing of yeasts.  相似文献   

9.
We evaluated the commercially prepared Sensititre YeastOne colorimetric antifungal panel to determine the susceptibility of 170 Candida spp isolates to amphotericin B, fluconazole, itraconazole, and flucytosine. The NCCLS reference microdilution method (M27-A document) was used as reference method. The YeastOne panel was performed according to the manufacturer's instructions. For the colorimetric method, MICs were determined at 24 h of incubation. MICs for the NCCLS reference method were read at 48 h of incubation. The overall agreement within +/-2 dilutions by both methods was calculated against the four antifungal agents. This agreement was 92.9, 68.2, 77.6 and 80% for amphotericin B, fluconazole, itraconazole, and flucytosine, respectively. Thirteen isolates (7.6%) showed very major discrepancies for fluconazole and 12 (7%) for itraconazole. We found that the reading of MIC with the YeastOne panel was somewhat easier than the reading of reference MIC, although the determination of endpoint was sometimes difficult, especially for azoles, because the trailing effect appeared in a high percentage of isolates.  相似文献   

10.
MICs and minimum fungicidal concentrations of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine against 17 isolates of Scopulariopsis spp. were determined by a broth microdilution method. All the isolates were resistant to itraconazole, fluconazole, and flucytosine, and amphotericin B, miconazole, and ketoconazole MICs were low for only a few.  相似文献   

11.
The in vitro susceptibilities of 21 Aspergillus isolates were tested against three antifungal agents in RPMI 1640 and yeast nitrogen base at pH 5.0 and 7.0 by a broth microdilution format of the NCCLS method. The MICs of amphotericin B and itraconazole were higher, while those of flucytosine were lower, at pH 5.0 than at pH 7.0. The poor correlation between in vitro results and clinical outcome could be due to a difference in pH between the in vitro susceptibility test and at the site of infection.  相似文献   

12.
An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, fluconazole, ketoconazole, 5-fluorocytosine, miconazole, and itraconazole against representative species of opportunistic hyphomycetes (Fusarium spp. and Cladosporium [Cladophialophora] spp.) and ascomycetes (Chaetomium spp.). A total of 78 strains were tested, the majority of them twice and some three times on different days. Both methods were performed according to the recommendations of the National Committee for Clinical Laboratory Standards (Document M27-P), with the exception of the temperature of incubation, which was 25 degrees C in our case. A spectrophotometric method for inoculum preparation, RPMI 1640 medium buffered with morpholinepropanesulfonic acid (pH 7.0), and an additive drug dilution procedure were used. The MICs obtained by the two methods were read after 48, 72, and 96 h of incubation for Fusarium spp. and after 72, 96, and 120 h for the remaining isolates. The kappa test was used to calculate the degree of agreement. Considering the three fungal groups together, a good agreement between the results of both tests was observed with almost all the drugs at the different incubation times. There were no cases of poor agreement. The highest level (kappa index = 1) was observed with ketoconazole at the second-day reading. These results support the further evaluation of the broth microdilution test as an alternative to the reference broth macrodilution susceptibility test.  相似文献   

13.
Three methods were compared for the susceptibility testing of yeast isolates to fluconazole and amphotericin B: two fagar diffusion methods (Etest and a tablet diffusion test) and the National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution method. Given as MIC(50)s (range), fluconazole endpoints were: for the 24 h broth microdilution test, 0.25 mg/L (0.06-32 mg/L); for the Etest, 0.38 mg/L (0.064-24 mg/L); and for the NCCLS broth microdilution test, 2 mg/L (0.06->or=64 mg/L). With breakpoints of <3 mg/L for susceptible and >16 mg/L for resistant, the Etest and the 24 h microdilution test classified the isolates in agreement with the classification obtained by the NCCLS method. Results obtained by Etest were in closer NCCLS method than those obtained with the tablet test. Amphotericin B endpoints were lower for the 24 h microdilution and Etests than MICs obtained by the NCCLS broth microdilution method. Reproducibility was high for all tests; however, disadvantages of both diffusion tests were microcolonies in the inhibition zone and dependence on stringent standardization of inoculum.  相似文献   

14.
A multicenter study was performed to evaluate the effect of medium, incubation time (24 and 48 h), and temperature (30 and 35 degrees C) on intra- and interlaboratory variations in MICs of flucytosine, amphotericin B, and ketoconazole for yeasts. Testing was performed on coded isolates of Candida species (11 strains) and Cryptococcus neoformans (2 strains) by using a standard macrodilution protocol 11 laboratories. Four chemically defined media buffered to pH 7.0 with morpholinepropanesulfonic acid were evaluated, including buffered yeast nitrogen base, synthetic amino acid medium-fungal, RPMI 1640 medium, and high-resolution antifungal assay medium. Intralaboratory variability was less than or equal to fourfold for 97% of the replicate sets of data. The highest level of interlaboratory agreement, irrespective of antifungal agent or incubation conditions, was observed with RPMI 1640 medium. Intralaboratory variability was less than or equal to fourfold for 93% of the determinations with ketoconazole and 100% with flucytosine tested in RPMI 1640 medium at 35 degrees C for 24 h. Variability in amphotericin B results was less than or equal to fourfold for 81% of the determinations in RPMI 1640 medium at 35 degrees C for 48 h. The rank order of MICs within each antifungal test group was similar among the various laboratories and was generally in agreement with the reference rank order regardless of the test medium that we used.  相似文献   

15.
The in vitro activity of the novel triazole antifungal agent posaconazole (Noxafil; SCH 56592) was assessed in 45 laboratories against approximately 19,000 clinically important strains of yeasts and molds. The activity of posaconazole was compared with those of itraconazole, fluconazole, voriconazole, and amphotericin B against subsets of the isolates. Strains were tested utilizing Clinical and Laboratory Standards Institute broth microdilution methods using RPMI 1640 medium (except for amphotericin B, which was frequently tested in antibiotic medium 3). MICs were determined at the recommended endpoints and time intervals. Against all fungi in the database (22,850 MICs), the MIC(50) and MIC(90) values for posaconazole were 0.063 microg/ml and 1 mug/ml, respectively. MIC(90) values against all yeasts (18,351 MICs) and molds (4,499 MICs) were both 1 mug/ml. In comparative studies against subsets of the isolates, posaconazole was more active than, or within 1 dilution of, the comparator drugs itraconazole, fluconazole, voriconazole, and amphotericin B against approximately 7,000 isolates of Candida and Cryptococcus spp. Against all molds (1,702 MICs, including 1,423 MICs for Aspergillus isolates), posaconazole was more active than or equal to the comparator drugs in almost every category. Posaconazole was active against isolates of Candida and Aspergillus spp. that exhibit resistance to fluconazole, voriconazole, and amphotericin B and was much more active than the other triazoles against zygomycetes. Posaconazole exhibited potent antifungal activity against a wide variety of clinically important fungal pathogens and was frequently more active than other azoles and amphotericin B.  相似文献   

16.
The in-vitro antifungal susceptibilities of nine isolates belonging to Basidiobolus spp. and seven to Conidiobolus spp. against six antifungals (amphotericin B, ketoconazole, miconazole, itraconazole, fluconazole and flucytosine) were tested. A broth microdilution method, generally following the NCCLS guidelines, was used. Inoculum concentrations of the order of 100 cfu/mL were obtained by culturing fungi in a broth medium (Czapeck broth supplemented with 2% Tween 80 and 0.07% agar). MICs and MFCs were highly variable and isolate-dependent, with the exception of those of flucytosine which were constantly very high. In general, however, Basidiobolus spp. displayed low MICs of fluconazole, itraconazole, ketoconazole and miconazole, and Conidiobolus spp. were resistant to all antifungals tested.  相似文献   

17.
A broth microdilution method and an agar dilution method were used for testing fluconazole, itraconazole, ketoconazole, flucytosine and amphotericin B against 98 clinical isolates belonging to seven species of Candida. The approximate rank order of fluconazole MICs was Candida lusitaniae approximately Candida kefyr < Candida famata approximately Candida guilliermondii < Candida pelliculosa approximately C. lipolytica approximately Candida inconspicua. Candida lypolitica and C. pelliculosa were the species least susceptible to itraconazole and ketoconazole. Flucytosine MICs revealed the highest prevalence of resistant strains among C. lipolytica and C. lusitaniae. All isolates were susceptible to amphotericin B.  相似文献   

18.
Two new glucan synthesis inhibitors, the echinocandin LY303366 and the pneumocandin MK-0991 (formerly L-743,872), were studied for their antifungal activities in vitro in relation to each other and in relation to the activity of the triazole fluconazole. Systematic analysis of broth macrodilution testing by varying the starting inoculum size, medium composition, medium pH, temperature of incubation, length of incubation, or selection of endpoints failed to identify significant differences in antifungal activity for either LY303366 or MK-0991 in comparison to the activity under standard test conditions specified for other antifungal agents in National Committee for Clinical Laboratory Standards (NCCLS) document M27A. Under standardized conditions, both drugs exhibited prominent activity against Candida species including Candida glabrata and Candida krusei but showed little activity against Cryptococcus neoformans. This spectrum of activity differed from that of fluconazole, which exhibited marginal activity against C. glabrata and C. krusei but prominent activity against other Candida species and C. neoformans. For individual strains, broth microdilution MICs of LY303366 and MK-0991 were similar to but frequently higher than broth macrodilution results. In contrast, fluconazole broth microdilution MICs were often lower than broth microdilution results. We conclude that the test conditions specified in NCCLS document M27A are applicable to these two new glucan synthesis inhibitors and that systematic differences between broth microdilution procedures and the broth macrodilution reference standard will need to be addressed before the two test methods can be used interchangeably.  相似文献   

19.
OBJECTIVES: The antifungal drug susceptibilities of 351 isolates of Candida species, obtained through active laboratory-based surveillance in the period January 2002-December 2003, were determined (Candida albicans 51%, Candida parapsilosis 23%, Candida tropicalis 10%, Candida glabrata 9%, Candida krusei 4%). METHODS: The MICs of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and caspofungin were established by means of the broth microdilution reference procedure of the European Committee on Antibiotic Susceptibility Testing. RESULTS AND CONCLUSIONS: Amphotericin B and flucytosine were active in vitro against all strains. A total of 24 isolates (6.8%) showed decreased susceptibility to fluconazole (MIC > or = 16 mg/L) and 43 (12.3%) showed decreased susceptibility to itraconazole (MIC > or = 0.25 mg/L). Voriconazole and caspofungin were active in vitro against the majority of isolates, even those that were resistant to fluconazole.  相似文献   

20.
OBJECTIVES: The aim of this study is to evaluate the susceptibilities of Candida spp. to the common antifungal agents in a German university hospital. Since quick results of in vitro testing are desirable, Etest and the CLSI broth microdilution (BMD) method (reference method) were compared, focusing on the validity of early readings. METHODS: A total of 512 Candida spp. isolates, including 174 from primarily sterile sites, were collected in the clinical routine. The yeasts were differentiated by CHROMagar and verified by API 20C AUX if necessary. In vitro susceptibilities to amphotericin B, flucytosine, fluconazole, voriconazole and caspofungin were determined using the BMD method described in the CLSI (formerly NCCLS) M27-A2 document and Etest. MICs were noted after 24 and 48 h of incubation. RESULTS: The most frequently isolated species was Candida albicans. Among the non-albicans species, Candida glabrata was the most prevalent, followed by Candida tropicalis, Candida parapsilosis and Candida krusei. MICs (mg/L) at which 90% of the strains were inhibited were 1 for amphotericin B, 32 for flucytosine, 8 for fluconazole, 0.25 for voriconazole and 1 for caspofungin. Susceptibility to fluconazole was 85.0% for C. glabrata and 5.3% for C. krusei, almost all other isolates were susceptible in over 90% except very rare species. The 48 h MIC values of Etest and BMD were in agreement (no more than 2 log(2) dilutions) in 88.7% to 98.1% with categorical agreement rates of 91.6% to 98.2%, depending on the antifungal agent. Comparison of the 24 h MICs of both BMD and Etest with the 48 h MICs of the reference method showed categorical agreement in 94.9% to 99.2%. For caspofungin, however, a comparison of the categorical agreement was not possible due to the lack of interpretive breakpoints. The order of frequency and the resistance patterns of the isolates from primarily sterile sites and those of isolates from non-sterile sites did not differ. CONCLUSIONS: No alarming resistances against the agents tested were found; however, owing to the relatively high frequency of C. glabrata with elevated fluconazole MICs, this species and, to a certain extent, C. krusei must be taken into consideration when choosing antifungal agents for calculated therapy. Etest is a reliable method for the susceptibility testing of Candida spp. and the 24 h readings of both Etest and BMD can serve as helpful preliminary results in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号